Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region
Abstract
:1. Introduction
2. Olive Harvesting and Processing Methods
Olive Oil Processing Systems and By-Products Characteristics
3. Current Management Practices of Olive Mills by Byproducts in the MENA Region
3.1. Management Practices of OMWW
3.2. Management Practices of Olive Pomace (Jift)
3.3. Other Solid Byproducts
4. Olive Mill Waste Management Practices
4.1. Characteristics, Treatment, Valorization and Utilization of OMWW
4.2. Potential Valorization Options for Olive Mill Wastewaters (OMWWs)
4.3. OMWWs Treatment Methods
4.3.1. Physical Methods
Evaporation
Direct Application to Soil
4.4. Physical-Chemical Treatment
5. Biotechnological Treatments of OMMW
5.1. Aerobic Treatments
5.2. Composting and Cocomposting of OMWs to Produce Soil Amendments
5.3. Anaerobic Digestion
5.4. Biophysical and Biochemical Treatments Options
6. Valorization Options for Two-Phase Olive Mill Waste
6.1. Physical Chemical Treatments—Second Extraction of Oil after Drying
6.2. Potential Thermal Energy
6.3. Direct Application to Soil
6.4. Biotechnological Treatments
6.4.1. Anaerobic Treatment
6.4.2. Solid Fermentation
6.4.3. Composting
6.5. Valuable Products Extraction
7. Additional Valorization Options
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galanakis, C.M. Olive Mill Waste Recent Advances for Sustainable Management; Academic Press: London, UK, 2017; pp. 1–3. [Google Scholar]
- FAOSTAT. Food and Agriculture Organisation Database. 2015. Available online: http://www.fao.org/home/search/en/?q=Olive%20mill%20wastes%20production (accessed on 4 April 2020).
- Khdair, I.A.; Abu-Rumman, G. Pollution Estimation from olive wastewater in Jordan. Heliyon 2019, 5, e02386. [Google Scholar] [CrossRef] [PubMed]
- Khdair, I.A.; Abu-Rumman, G. Evaluation of the environmental pollution from olive mills wastewater. Fresen. Environ. Bull. 2017, 26, 2537–2540. [Google Scholar]
- Ntougias, S.; Gaitis, F.; Katsaris, P.; Skoulika, S.; Iliopoulos, N.; Zervakis, G.I. The effects of olives harvest period and production year on olive mill wastewater properties—evaluation of Pleurotus strains as bioindicators of the effluent’s toxicity. Chemosphere 2013, 92, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Ouzounidou, G.; Zervakis, G.I.; Gaitis, F. Raw and microbiologically detoxified olive mill waste and their impact on plant growth. Terr. Aquat. Environ. Toxicol. 2010, 4, 21–38. [Google Scholar]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sanchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, J.A.; Gonzalvez, J.; Garcia, D.; Cegarra, J. Agrochemical characterization of “alperujo”, a solid by-product of the two phase centrifugation. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzalvez, J.; Garcia, D.; Cegarra, J. Effects of a compost made from the solid byproduct (alperujo) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Bioresour. Technol. 2007, 98, 940–945. [Google Scholar] [CrossRef]
- Paraskeva, P.; Diamadopoulos, E. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sanchez-Monedero, M.A. An overview on olive mill wastes and their valorization methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Niaounakis, M.; Halvadakis, C.P. Olive Mill Waste Management. Literature Review and Patent Survey, 2nd ed.; Elsevier: London, UK, 2006. [Google Scholar]
- Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci. Hortic. 2014, 175, 160–166. [Google Scholar] [CrossRef]
- Rusan, M.; Albalasmeh, A.; Zuraiqi, S.; Bashabsheh, M. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ. Sci. Pollut. 2015, 22, 9127–9135. [Google Scholar] [CrossRef] [PubMed]
- Rusan, M.J.; Malkawi, H.I. Dilution of olive mill wastewater (OMW) eliminates its phytotoxicity and enhances plant growth and soil fertility. Desalin. Water Treat. 2016, 57, 27945–27953. [Google Scholar] [CrossRef]
- Wahsha, M.; Bini, C.; Nadimi-Goki, M. The impact of olive mill wastewater on the physicochemical and biological properties of soils in northwest Jordan. Environ. Qual. 2014, 15, 25–31. [Google Scholar]
- Rigane, H.; Chtourou, M.; Mahmoud, I.B.; Medhioub, K.; Ammar, E. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia). Waste Manag. Res. 2015, 33, 73–80. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Suzzi, G.; Tofalo, R. Trattamento dei reflui. In Collana Coltura & Cultura-L’ulivo e l’olio; Pisante, M., Inglese, P., Lercker, G., Eds.; Bayer Crop Science: Bologna, Italy, 2009; pp. 690–695. [Google Scholar]
- Boubaker, F.; Ridha, B.C. Anaerobic co-digestion of olive mill wastewater with olive mill solid waste in a tubular digester at mesophilic temperature. Bioresour. Technol. 2007, 98, 769–774. [Google Scholar] [CrossRef]
- Kapellakis, I.E.; Tsagarakis, K.P.; Avramaki, C.; Angelakis, A.N. Olive mill wastewater management in river basins: A case study in Greece. Agric. Water Manag. 2006, 82, 354–370. [Google Scholar] [CrossRef]
- El Hadrami, M.; Belaqziz, M.; El Hassni, S.; Hanifi, A.; Abbad, R.; Capasso, L.; Gianfreda, I. Physicochemical characterization and effects of olive oil mill wastewaters fertirrigation on the growth of some Mediterranean crops. J. Agron. 2004, 3, 247–254. [Google Scholar]
- Di Bene, C.; Pellegrino, E.; Debolini, M.; Silvestri, N.; Bonari, E. Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol. Biochem. 2013, 56, 21–30. [Google Scholar] [CrossRef]
- Belaqziz, M.; El-Abbassi, A.; Lakhal, E.K.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J. Environ. Manag. 2016, 171, 158–165. [Google Scholar] [CrossRef]
- Sierra, J.; Marti, E.; Garau, A.M.; Cruanas, R. Effects of the agronomic use of olive oil mill wastewater: Field experiment. Sci. Total Environ. 2007, 378, 90–94. [Google Scholar] [CrossRef]
- Torres, M.M.; Maestri, D.M. The effects of genotype and extraction methods on chemical composition of virgin olive oils from Traslasierra Valley (Cordoba, Argentina). Food Chem. 2006, 96, 507–511. [Google Scholar] [CrossRef]
- Brunetti, G.; Plaza, C.; Senesi, N. Olive pomace amendment in Mediterranean conditions: Effect on soil and humic acid properties and wheat (Triticum turgidum L.). J. Agric. Food Chem. 2005, 53, 6730–6737. [Google Scholar] [CrossRef]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of waste management options in olive oil production. Crit. Rev. Environ.Sci. Tec. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Caputo, A.C.; Scacchia, F.; Pelagagge, P.M. Disposal of by-products in olive oil industry: Waste-to-energy solutions. Appl. Therm. Eng. 2003, 23, 197–214. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K.; Stockmann, R. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Tornberg, E.; Gekas, V. The effect of heat processing on the functional properties of pectin contained in olive mill wastewater. LWT Food Sci. Technol. 2010, 43, 1001–1008. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.; Galanakis, C. Recovery and removal of phenolic compounds from olive mill wastewater. J. Am. Oil Chem. Soc. 2014, 91, 1–18. [Google Scholar] [CrossRef]
- Jarboui, R.; Sellami, F.; Kharroubi, A.; Gharsallah, N.; Ammar, E. Olive mill wastewater stabilization in open–air ponds: Impact on clay-sandy soil. Bioresour. Technol. 2008, 99, 7699–7708. [Google Scholar] [CrossRef]
- Borja, R.; Sanchez, E.; Raposo, F.; Rincon, B.; Jimenez, A.M.; Martin, A. Study of the natural biodegradation of two-phase olive mill solid waste during its storage in an evaporation pond. Waste Manag. 2006, 26, 477–486. [Google Scholar] [CrossRef]
- Rinaldi, M.; Rana, G.; Introna, M. Olive-mill wastewater spreading in southern: Effects on a durum wheat crop. Field Crops Res. 2003, 84, 319–326. [Google Scholar] [CrossRef]
- Lessage-Meessen, L.; Navarro, D.; Maunier, S.; Sigoillot, J.C.; Lorquin, J.; Delattre, M.; Simon, J.L.; Asther, M.; Labat, M. Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 2001, 75, 501–507. [Google Scholar] [CrossRef]
- Mulinacci, N.; Romani, A.; Galardi, C.; Pinelli, P.; Giaccherini, C.; Vincieri, F.F. Polyphenolic content in olive oil waste waters and related olive samples. J. Agric. Food Chem. 2001, 49, 3509–3514. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.; Marti, E.; Montserrat, G.; Cruanas, R.; Garau, M.A. Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci. Total Environ. 2001, 279, 207–214. [Google Scholar] [CrossRef]
- Azzam, M.; Al-Gharabli, S.; Al-Harahsheh, M. Olive mills wastewater treatment using local natural Jordanian clay. Desalin. Water Treat. 2015, 53, 627–636. [Google Scholar] [CrossRef]
- Ilarioni, L.; Proietti, P. Olive tree cultivars. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 59–67. [Google Scholar]
- Nasini, L.; Proietti, P. Olive harvesting. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 89–105. [Google Scholar]
- Aviani, I.; Raviv, M.; Hadar, Y.; Saadi, I.; Dag, A.; Ben-Gal, A.; Yermiyahu, U.; Zipori, I.; Laor, Y. Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale ‘Abencor’ milling system. Bioresour. Technol. 2012, 107, 87–96. [Google Scholar] [CrossRef]
- Kavvadias, V.; Doula, M.K.; Komnistsas, K.; Liakopoulou, N. Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. J. Hazard. Mater. 2010, 182, 144–155. [Google Scholar] [CrossRef]
- Ammar, E.; Nasri, M.; Medhioub, K. Isolation of Enterobacteria able to degrade simple aromatic compounds from the wastewater of olive oil extraction. World J. Microbiol. Biotechnol. 2005, 21, 253–259. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Elia, I.; Petalas, A.V.; Halvadakis, C.P. Removal of total phenols from olive-mill wastewater using an agricultural byproduct olive pomace. J. Hazard. Mater. 2008, 160, 408–413. [Google Scholar] [CrossRef]
- Paredes, C.; Cegarra, J.; Roig, A.; Sanchez-Monedero, M.A.; Bernal, M.P. Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purpose. Bioresour. Technol. 1999, 67, 111–116. [Google Scholar] [CrossRef]
- Davies, L.C.; Vilhena, A.M.; Novais, J.M.; Martins-Dias, S. Olive mill wastewater characteristics: Modelling and statistical analysis. Grasas Aceites. 2004, 55, 233–241. [Google Scholar] [CrossRef]
- Hachicha, S.; Cegarra, J.; Sellami, F.; Hachicha, R.; Drira, N.; Medhioub, K.; Ammar, E. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard. Mater. 2009, 161, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Valta, K.; Aggeli, E.; Papadaskalopoulou, C.; Panaretou, V.; Sotiropoulos, A.; Malamis, D.; Moustakas, K.; Haralambous, K.J. Adding value to olive oil production through waste and wastewater treatment and valorisation: The case of Greece. Waste Biomass Valor. 2015, 6, 913–925. [Google Scholar] [CrossRef]
- Della Greca, M.; Monaco, P.; Pinto, G.; Pollio, A.; Previtera, L.; Temussi, F. Phytotoxicity of low-molecular weight phenols from olive mill waste waters. Bull. Environ. Contamin. Toxicol. 2001, 67, 0352–0359. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Zampini, C.; Torres, M.; Isla, M.I.; Verdenelli, R.A.; Meriles, J.M.; Maestri, D. Physicochemical and toxicological assessment of liquid wastes from olive processing-related industries. J. Sci. Food Agric. 2012, 92, 216–223. [Google Scholar] [CrossRef]
- Piotrowska, A.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol. Biochem. 2006, 38, 600–610. [Google Scholar] [CrossRef]
- Toscano, P.; Montemurro, F. Olive Mill By-Products Management. In Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy; Muzzalupo, I., Ed.; InTech: London, UK, 2012; pp. 173–200. [Google Scholar]
- Amirante, P. I sottoprodotti della filiera olivicola-olearia. In Olea, Trattato Di Olivicoltura; Fiorino, P., Ed.; Edagricole: Bologna, Italy, 2003; pp. 291–303. [Google Scholar]
- Peri, C.; Proietti, P. Olive mill waste and by-products. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 283–302. [Google Scholar]
- Mechri, B.; Cheheb, H.; Boussadia, O.; Attia, F.; Ben Mariem, F.; Braham, M.; Hammami, M. Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot. 2011, 71, 184–191. [Google Scholar] [CrossRef]
- Haddadin, M.S.; Abdulrahim, S.M. Solid State Fermentation of Waste Pomace from Olive Processing. J. Chem. Technol. Biot. 1999, 74, 613–618. [Google Scholar] [CrossRef]
- Haddadin, M.S.; Haddadin, J.; Arabiyat, O.I.; Hattar, B. Biological Conversion of Olive Pomace into Compost by Using Trichoderma Harzianum and Phanerochaete Chrysosporium. Bioresour. Technol. 2009, 100, 4773–4782. [Google Scholar] [CrossRef] [PubMed]
- Mameri, N.; Aioueche, F.; Belhocine, D.; Grib, H.; Lounici, H.; Piron, D.L. Preparation of Activated Carbon from Olive Mill Solid Residue. J. Chem. Technol. Biot. 2000, 75, 625–631. [Google Scholar] [CrossRef]
- El-Sheikh, A.H.; Newman, A.P.; Al-Daffaee, H.K.; Phull, S.; Cresswell, N. Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrol. 2004, 71, 151–164. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Millner, P.D.; Meyer, S.L.; Roig, A. Potential of Olive Mill Waste and Compost as Bio-Based Pesticides against Weeds, Fungi, and Nematodes. Sci. Total Environ. 2008, 399, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Cliffe, K.R.; Patumsawad, S. Co-Combustion of Waste from Olive Oil Production with Coal in a Fluidized Bed. Waste Manag. 2001, 21, 49–53. [Google Scholar] [CrossRef]
- Fisher, D. Types of Olive Oil for Soap Making Recipes. 2013. Available online: http://candleandsoap.about.com/od/soapmakingoils/a/Types-Of-Olive-Oil-For-Soap-Making-Recipes.html (accessed on 10 March 2020).
- Abu Khayer, M.; Cowdhury, M.B.; Akratos, C.S.; Vayenas, D.V.; Pavlou, S. Olive mill waste composting: A review. Int. Biodeter. Biodegr. 2013, 85, 108–119. [Google Scholar]
- Tawarah, K.M.; Rababah, R.A. Characterization of Some Jordanian Crude and Exhausted Olive Pomace Samples. Green Sustain. Chem. 2013, 3, 146–162. [Google Scholar] [CrossRef] [Green Version]
- Abu-Rumman, G.; Khdair, I.A.; Khdair, I.S. Current Status and Future investment Potential in Renewable Energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef]
- Al-Ananzeh, N.; Shakatreh, S.; Al-Ajlouni, K.; Al-Bsoul, A.; Chiha, M. Characterization and Thermal Analysis of Olive Mills Solid Residues (Peat, Pit, and Pulp) in Jordan: Case Study: Irbid, Ajloun, Jarash, and Jordan Valley. Energy Sources Part. A Recovery Util. Environ. Eff. 2016, 38, 1805–1811. [Google Scholar] [CrossRef]
- Klemm, M.; Schmersahl, R.; Kirsten, C.; Weller, N. Biofuels Biofuel: Upgraded New Solids Biofuel Upgraded New Solids; Renewable Energy Systems Springer: New York, NY, USA, 2013; pp. 138–160. [Google Scholar]
- El Hanandeh, A. Energy recovery alternatives for the sustainable management of olive oil industry waste in Australia: Life cycle assessment. J. Clean. Prod. 2015, 91, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.K.M.M.B.; Michailides, M.K.; Akratos, C.S.; Tekerlekopoulou, A.G.; Pavlou, S.; Vayenas, D.V. Composting of three phase olive mill solid waste using different bulking agents. Int. Biodeterior. Biodegradation. 2014, 91, 66–73. [Google Scholar] [CrossRef]
- Khdair, I.A.; Abu-Rumman, G.; Khdair, I.S. Thermal Conductivity of Olive Cake Compost (OCC) as affected by Moisture and Density: An Experimental and Mathematical Modeling. Compost Sci. Util. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Chowdhury, A.K.M.M.B.; Akratos, C.S.; Vayenas, D.V.; Pavlou, S. Olive mill waste composting: A review. Int. Biodeterior. Biodegrad. 2013, 85, 108–119. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Polycarpou, P. Exploitation of Olive Solid Waste for Energy Purposes. Renewable Energy, Economies, Emerging Technologies and Global Practices; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 163–178. [Google Scholar]
- Christoforou, E.; Fokaides, P.A. A review of olive mill solid wastes to energy utilization techniques. Waste Manag. 2016, 49, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Toledano, A.; Alegria, I.; Labidi, J. Biorefining of olive tree (Olea europea) pruning. Biomass Bioenergy 2013, 59, 503–511. [Google Scholar] [CrossRef]
- Trebušak, T.; Levart, A.; Salobir, J.; Pirman, T. Effect of Ganoderma lucidum (Reishi mushroom) or Olea europaea (olive) leaves on oxidative stability of rabbit meat fortified with n-3 fatty acids. Meat Sci. 2014, 96, 1275–1280. [Google Scholar] [CrossRef]
- Stoller, M.; Azizova, G.; Mammadova, A.; Vilardi, G.; Di Palma, L.; Chianese, A. Treatment of olive oil processing wastewater by ultrafiltration, nanofiltration, reverse osmosis and biofiltration. Chem. Eng. Trans. 2016, 47, 409–414. [Google Scholar] [CrossRef]
- Sayadi, S.; Allouche, N.; Jaoua, M.; Aloui, F. Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Proc. Biochem. 2000, 35, 725–735. [Google Scholar] [CrossRef]
- Lozano-Garcia, B.; Parras-Alcantara, L.; Carillo, D.T.; de-Albornoz, M. Effects of olive mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. Catena 2011, 85, 187–193. [Google Scholar] [CrossRef]
- Magdich, S.; Jarboui, R.; Ben Rouina, B.; Boukhris, M.; Ammar, E. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: Impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts. Sci. Total Environ. 2012, 430, 209–216. [Google Scholar] [CrossRef]
- Buchmann, C.; Felten, A.; Peikert, B.; Munoz, K.; Bandow, N.; Dag, A.; Schaumann, G.E. Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant. Soil. 2015, 386, 99–112. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Kurtz, M.P.; Dag, A.; Zipori, I.; Schaumann, G.E. The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. J. Plant. Nutr. Soil Sci. 2015, 178, 641–648. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems, a review. Agric. Water Manag. 2017, 190, 55–64. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Chatzistathis, T.; Balampekou, E.I. A new framework proposal, towards a common EU agricultural policy, with the best sustainable practices for the re-use of olive mill wastewater. Sci. Total Environ. 2018, 622, 942–953. [Google Scholar] [CrossRef]
- Karpouzas, D.G.; Rousidou, C.; Papadopoulou, K.K.; Bekris, F.; Zervakis, G.; Singh, B.; Ehaliotis, C. Effect of continuous olive mill wastewater applications, in the presence and absence of N fertilization, on the structure of the soil fungal community. FEMS Microbiol. Ecol. 2009, 70, 56–69. [Google Scholar] [CrossRef]
- Brunetti, G.; Senesi, N.; Plaza, C. Effects of amendment with treated and untreated olive oil mill wastewaters on soil properties, soil humic substances and wheat yield. Geoderma 2007, 138, 144–152. [Google Scholar] [CrossRef]
- Zenjari, B.; Nejmeddine, A. Impact of spreading olive mill wastewater on soil characteristics: Laboratory experiments. Agronomie 2001, 21, 749–755. [Google Scholar] [CrossRef]
- Lopez-Pineiro, A.; Murillo, S.; Barreto, C.; Munoz, A.; Rato, J.M.; Albarran, A.; Garcia, A. Changes in organic matter and residual effect of amendment with two-phase olive-mill waste on degraded agricultural soils. Sci. Total Environ. 2007, 378, 84–89. [Google Scholar] [CrossRef]
- Amaral, C.; Lucas, M.S.; Coutinho, J.; Crespi, A.L.; do Rosario Anjos, M.; Pais, C. Microbiological and physicochemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Biores. Technol. 2008, 99, 7215–7223. [Google Scholar] [CrossRef]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef]
- Ghaida, A.R. Effect of olive mill solid waste on soil physical properties. Int. J. Soil Sci. 2016, 11, 94–101. [Google Scholar]
- Khdair, I.A.; Ghaida, A.R. Dataset on some soil properties improvement by the addition of olive pomace. Data Brief. 2019, 24, 103878. [Google Scholar] [CrossRef] [PubMed]
- de Jong, E.; Jungmeier, G. Biorefinery concepts in comparison to petrochemical refineries. In Industrial Biorefineries & White Biotechnology; Ashok, P., Rainer, H., Christian, L., Mohammad, T., Madhavan, N., Eds.; Elsevier: Waltham, MA, USA, 2015; pp. 3–33. [Google Scholar]
- Zagklis, D.P.; Arvaniti, E.C.; Papadakis, V.P.; Paraskeva, C.A. Sustainability analysis and benchmarking of olive mill wastewater treatment methods. J. Chem. Technol. Biotechnol. 2013, 88, 742–750. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Zbakh, H.; El Abbassi, A. Potential use of olive mill wastewater in the preparation of functional beverages: A review. J. Func. Foods 2012, 4, 53–65. [Google Scholar] [CrossRef]
- Kishikawa, A.; Ashour, A.; Zhu, Q.C.; Yasuda, M.; Ishikawa, H.; Shimizu, K. Multiple biological effects of olive oil by-products such as leaves, stems, flowers, olive milled waste, fruit pulp, and seeds of the olive plant on skin. Phytother. Res. 2015, 29, 877–886. [Google Scholar] [CrossRef]
- Dogruel, S.; Olmez-Hanci, T.; Kartal, Z.; Arslan-Alaton, I.; Orhon, D. Effect of Fenton’s oxidation on the particle size distribution of organic carbon in olive mill wastewater. Water Res. 2009, 43, 3974–3983. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Psillakis, E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J. Chem. Technol. Biotechnol. 2004, 79, 431–454. [Google Scholar] [CrossRef]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008, 83, 769–776. [Google Scholar]
- Pera-Titus, M.; Garcia-Molina, V.; Banos, M.A.; Gimenez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Appl. Catal. B Environ. 2004, 47, 219–256. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, 1st ed.; Elsevier: Burlington, VT, USA, 2014. [Google Scholar]
- Yalcuk, A.; Pakdil, N.B.; Turan, S.Y. Performance evaluation on the treatment of olive mill wastewater in vertical subsurface flow, constructed wetlands. Desalination 2010, 262, 209–214. [Google Scholar] [CrossRef]
- Herouvim, E.; Akratos, C.S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Treatment of olive mill wastewater in pilot-scale vertical flow constructed wetlands. Ecol. Eng. 2011, 37, 931–939. [Google Scholar] [CrossRef]
- Michailides, M.; Tatoulis, T.; Sultana, M.-Y.; Tekerlekopoulou, A.G.; Konstantinou, I.; Akratos, C.S.; Vayenas, D.V. Start-up of a free water surface constructed wetland for treating olive mill wastewater. Chem. Ind. 2015, 69, 577–583. [Google Scholar] [CrossRef]
- Sultana, M.; Chowdhury, A.K.M.M.B.; Michailides, M.K.; Akratos, C.S.; Tekerlekopoulou, A.G.; Vayenas, D.V. Integrated Cr(VI) removal using constructed wetlands and composting. J. Hazard. Mater. 2015, 281, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Aytar, P.; Gedikli, S.; Sam, M.; Farizog˘lu, B.; Cabuk, A. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation. Environ. Sci. Pollut. Res. 2013, 20, 3060–3067. [Google Scholar] [CrossRef]
- Aktas, E.S.; Imre, S.; Ersoy, L. Characterization and lime treatment of olive mill wastewater. Water Res. 2001, 35, 2336–2340. [Google Scholar] [CrossRef]
- Grafias, P.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Diamadopoulos, E. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: An efficient hybrid process. Water Res. 2010, 44, 2773–2780. [Google Scholar] [CrossRef]
- Cox, L.; Celis, R.; Hermosin, M.C.; Becker, A.; Cornejo, J. Porosity and herbicide leaching in soils amended with olive mill wastewater. Agric. Ecosyst. Environ. 1997, 65, 151–161. [Google Scholar] [CrossRef]
- Gharaibeh, S.; Rababah, A.; Nishino, H. Low cost treatment and disposal of olive mill wastewater. Pollut. Solut. 2008, 9, 4–6. [Google Scholar]
- Al-Asheh, S.; Juma, R.; Banat, F.; Al-Zou’bi, A.; Al-Qutaish, N. Treatment of olive mills effluent using Electro-Osmosis Dewatering. Hydrol. Curr. Res. 2011, 2, 1–7. [Google Scholar]
- Kapellakis, I.E.; Paranychianakis, N.V.; Tsagarakis, K.P.; Angelakis, A.N. Treatment of olive mill wastewater with constructed wetlands. Water 2012, 4, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Bani Salameh, W. Treatment of olive mill wastewater by ozonation and electrocoagulation processes. Global Adv. Res. J. Eng. Technol. Innov. 2015, 4, 69–78. [Google Scholar]
- Benitez, J.; Beltran-Heredia, J.; Torregrosa, J.; Acero, J.L.; Cercas, V. Aerobic degradation of olive mill wastewaters. Appl. Microbiol. Biotechnol. 1997, 47, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Lafia, W.; Shannak, B.; Al-Shannaga, M.; Al-Anber, Z.; Hasan, M. Treatment of olive mill wastewater by combined advanced oxidation and Biodegradation. Sep. Purif. Technol. 2009, 70, 141–146. [Google Scholar] [CrossRef]
- Cooperband, L. The Art and Science of Composting A Resource for Farmers and Compost Producers; University of Wisconsin-Madison, Center for Integrated Agricultural Systems: Madison, WI, USA, 2002; pp. 1–14. [Google Scholar]
- Sanchez-Arias, V.; Fernandez, F.; Villasenor, J.; Rodriguez, L. Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste. Bioresour. Technol. 2008, 99, 6346–6353. [Google Scholar] [CrossRef]
- Vuppala, S.; Bavasso, I.B.; Stoller, M.; Palma, S.L.D.; Vilardi, G. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 2019, 236, 117622. [Google Scholar] [CrossRef]
- Vlyssides, A.G.; Loizides, M.; Karlis, P.K. Integrated strategic approach for reusing olive oil extraction by-products. J. Clean. Prod. 2004, 12, 603–611. [Google Scholar] [CrossRef]
- Altieri, R.; Esposito, A.; Nair, T. Novel static composting method for bioremediation of olive mill waste. Int. Biodeterior. Biodegrad. 2011, 65, 786–789. [Google Scholar] [CrossRef]
- Filidei, S.; Masciandaro, G.; Ceccanti, B. Anaerobic digestion of olive oil mill effluents: Evaluation of wastewater8 organic load and phytotoxicity reduction. Water Air Soil Poll. 2003, 145, 79–94. [Google Scholar] [CrossRef]
- Ammary, B. Treatment of olive mill wastewater using an anaerobic sequencing batch reactor. Desalination 2005, 177, 157–165. [Google Scholar] [CrossRef]
- Sobhi, B.; Isam, S.; Ahmad, Y.; Jacob, H. Reducing the environmental impact of olive mill wastewater in Jordan, Palestine and Israel. Water Resour. Middle East. Eds Hillel Shuval Hassan Dweik 2007, 2, 409–415. [Google Scholar]
- Khatib, A.; Aqra, F.; Yaghi, S.Y.; Hayeek, B.; Musa, M.; Basheer, S.; Sabbah, I. Reducing the environmental impact of olive mill wastewater. Am. J. Environ. Sci. 2009, 5, 1–6. [Google Scholar]
- Al-Qodah, Z.; Al-Bsoul, A.; Assirey, E.; Al-Shannag, M. Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environ. Eng. Manag. J. 2014, 13, 2109–2118. [Google Scholar]
- Masghouni, M.; Hassairi, M. Energy applications of olive-oil industry by-products: I. The exhaust foot cake. Biomass Bioenerg 2000, 18, 257–262. [Google Scholar] [CrossRef]
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Biasci, A.; Riffaldi, R. Suitability of moist olive pomace as soil amendment. Water Air Soil Pollut. 2001, 128, 13–22. [Google Scholar] [CrossRef]
- Thompson, R.B.; Nogales, R. Nitrogen and carbon mineralization in soil of vermi-composted and unprocessed dry olive cake (‘‘orujo seco’’) produced from two-stage centrifugation for olive oil extraction. J. Environ. Health Sci. B 1999, 34, 917–928. [Google Scholar] [CrossRef]
- Tekin, A.R.; Dalgic, A.C. Biogas production from olive pomace. Resour. Conserv. Recycl. 2000, 30, 301–313. [Google Scholar] [CrossRef]
- Alcaide, E.M.; Ruiz, D.Y.; Moumen, A.; García, A.M. Ruminal degradability and in vitro intestinal digestibility of sunflower meal and in vitro digestibility of olive by-products supplemented with urea or sunflower meal: Comparison between goats and sheep. Anim. Feed Sci. Technol. 2003, 110, 3–15. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Bernal, M.P.; Roig, A. Composting olive mill wastes and sheep manure for orchard use. Compos. Sci. Util. 2004, 12, 130–136. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Coimbra, M.A.; Lopes da Silva, J.A. Calcium mediated gelation of an olive pomace pectic extract. Carbohyd. Polym. 2003, 52, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H NMR. Establishment of a new index for the characterization of extra virgin olive oils. J. Agric. Food Chem. 2012, 60, 11696–11703. [Google Scholar] [CrossRef]
- Boucid, O.; Navarro, D.; Roche, M.; Asther, M.; Haon, M.; Delattre, M.; Lorquin, J.; Labat, M.; Asther, M.; Lesage-Meessen, L. Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process. Biochem. 2005, 40, 1855–1862. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Esposito, A.; Veglio, F. Multi-metallic modeling for biosorption of binary systems. Water Res. 2002, 36, 4095–4105. [Google Scholar] [CrossRef]
- Cox, L.; Hermosı´n, M.C.; Cornejo, J. Influence of organic amendments on sorption and dissipation of imidacloprid in soil. Int. J. Environ. Anal. Chem. 2004, 84, 95–102. [Google Scholar] [CrossRef]
- Albarrán, A.; Celis, R.; Hermosın, M.C.; López-Piñeiro, A.; Cornejo, J. Behavior of simazine in soil amended with the final residue of the olive oil extraction process. Chemosphere 2004, 54, 717–724. [Google Scholar] [CrossRef]
- Siracusa, G.; La Rosa, A.D.; Siracusa, V.; Trovato, M. Ecocompatible use of olive husk as filler in thermoplastic composites. J. Polym. Environ. 2001, 9, 157–161. [Google Scholar] [CrossRef]
Mill Type | Input | Quantity | Output | Quantity |
---|---|---|---|---|
Olive | 1000 kg | Oil | 230.4 kg | |
Traditional | Washing water | 100–200 L | Pomace | 500 kg |
Wastewater | 650 Liter | |||
Olive | 1000 kg | Oil | 256.4 kg | |
3-Phase | Washing water | 100–120 L | Pomace | 581.16 |
Hot water Added | 700–1000 L | Wastewater | 1200 L | |
Olive | 1000 kg | Oil | 247.4 kg | |
2-Phase | Washing water | 100–120 Liter | Pomace | 735 kg |
Wastewater | 200–300 |
Parameters | OMMW | Wet Olive Pomace | Composts |
---|---|---|---|
pH | 4–6 | 5–7 | 50–10 |
Dry matter (%) | 6–7 | 50–71 | |
Water (%) | 83 | 70 | 20 |
BOD (g/L) | 35–110 | ||
COD (g/L) | 40–220 | ||
EC (dS/m) | 5–12 | 1–5 | 2–7.3 |
Organic matter (g/kg) | 46–62 | 840–980 | 260–900 |
TOC (g/kg) | 34–40 | 490–540 | 110–580 |
TN (g/kg) | 0.60–2.10 | 7–19 | 11–54 |
C/N | 52–54 | 28–73 | 9–36 |
p (g/kg) | 0.15–0.30 | 0.7–2.2 | 1–30 |
K (g/kg) | 2–9 | 7–30 | 6–44 |
Na (g/kg) | 0.1–0.4 | 0.5–1.6 | 2–41 |
Ca (g/kg) | 0.20–0.6 | 1.5–9 | 7–72 |
Mg (g/kg) | 0.04–0.22 | 0.7–4 | 1–57 |
Fe (mgkg) | 18–120 | 80–1470 | 100–410 |
Cu (mg/kg) | 1.5–6 | 12–29 | 1.5–80 |
Mn (mg/kg) | 1–12 | 5–39 | 13–130 |
Zn (mg/kg) | 2.4–12 | 10–37 | 38–138 |
Phenols (%) | 1–11 | 0.5–2.4 | 0.1–4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. https://doi.org/10.3390/pr8060671
Khdair A, Abu-Rumman G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes. 2020; 8(6):671. https://doi.org/10.3390/pr8060671
Chicago/Turabian StyleKhdair, Adnan, and Ghaida Abu-Rumman. 2020. "Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region" Processes 8, no. 6: 671. https://doi.org/10.3390/pr8060671
APA StyleKhdair, A., & Abu-Rumman, G. (2020). Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes, 8(6), 671. https://doi.org/10.3390/pr8060671