Elastic Constants Prediction of 3D Fiber-Reinforced Composites Using Multiscale Homogenization
Abstract
:1. Introduction
Multiscale Homogenization of 3D-FRC
2. Materials and Methods
2.1. Materials and Fabrication Process
2.2. Mechanical Testing of 3D-FRC
2.3. Geometric Parameters of 3D-FRC
2.4. The Fiber Volume Fraction of Impregnated Yarns
2.5. Micro-Meso Homogenization
2.5.1. Analytical Method
2.5.2. Numerical Method
2.6. Meso-Macro Homogenization
2.6.1. Analytical Method
2.6.2. Numerical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shah, S.; Karuppanan, S.; Megat-Yusoff, P.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Ansar, M.; Xinwei, W.; Chouwei, Z. Modeling strategies of 3D woven composites: A review. Compos. Struct. 2011, 93, 1947–1963. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, X.; Zhou, C. Generic stiffness model for 3D woven orthogonal hybrid composites. Aerosp. Sci. Technol. 2013, 31, 42–52. [Google Scholar] [CrossRef]
- Tan, P.; Tong, L.; Steven, G. Modeling approaches for 3D orthogonal woven composites. J. Reinf. Plast. Compos. 1998, 17, 545–577. [Google Scholar] [CrossRef]
- Buchanan, S.; Grigorash, A.; Archer, E.; McIlhagger, A.; Quinn, J.; Stewart, G. Analytical elastic stiffness model for 3D woven orthogonal interlock composites. Compos. Sci. Technol. 2010, 70, 1597–1604. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Tong, L.; Steven, G. A three-dimensional modelling technique for predicting the linear elastic property of opened-packing woven fabric unit cells. Compos. Struct. 1997, 38, 261–271. [Google Scholar] [CrossRef]
- Liu, Y.; Straumit, I.; Vasiukov, D.; Lomov, S.V.; Panier, S. Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography. Compos. Struct. 2017, 179, 568–579. [Google Scholar] [CrossRef]
- Elias, A.; Laurin, F.; Kaminski, M.; Gornet, L. Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix. Compos. Struct. 2017, 159, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Hao, A.; Sun, B.; Qiu, Y.; Gu, B. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1073–1082. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, K.; Wan, Y.; Jin, L.; Gu, B.; Sun, B. Experimental and numerical analyses of the mechanical behaviors of three-dimensional orthogonal woven composites under compressive loadings with different strain rates. Int. J. Damage Mech. 2014, 23, 636–660. [Google Scholar] [CrossRef]
- Chen, X.; Papathanasiou, T.D. Interface stress distributions in transversely loaded continuous fiber composites: Parallel computation in multi-fiber RVEs using the boundary element method. Compos. Sci. Technol. 2004, 64, 1101–1114. [Google Scholar] [CrossRef]
- Mahmood, A.; Wang, X.; Zhou, C. Elastic analysis of 3D woven orthogonal composites. Grey Syst. Theory Appl. 2011, 1, 228–239. [Google Scholar] [CrossRef]
- Shah, S.; Choudhry, R.S.; Khan, L.A. Challenges in compression testing of 3D angle-interlocked woven-glass fabric-reinforced polymeric composites. ASTM J. Test. Eval. 2017, 5, 1502–1523. [Google Scholar] [CrossRef] [Green Version]
- Barwick, S.C.; Papathanasiou, T.D. Identification of Sample Preparation Defects in Automated Topological Characterization of Composite Materials. J. Reinf. Plast. Compos. 2016, 22, 655–669. [Google Scholar] [CrossRef]
Description | Parameter | Value (mm) |
---|---|---|
Warp yarn | 0.0034 | |
0.0004 | ||
0.0008 | ||
Fill yarn | 0.0042 | |
0.00041 | ||
Z-yarn | 0.00034 | |
0.00036 | ||
RVE | 9.52 | |
3.96 | ||
3.74 |
Yarn Type | ||
---|---|---|
Warp yarn (1) | 2409 | 71.1 |
Warp yarn (2) | 3120 | 73.3 |
Fill yarn | 225 | 72.1 |
Z-yarn | 4602 | 68.5 |
Materials | Material/Geometric Properties | |
---|---|---|
E-Glass | Modulus of Elasticity (GPa) | 73 |
Modulus of Rigidity (GPa) | 30 | |
Poisson’s Ratio | 0.22 | |
Matrix | Modulus of Elasticity (GPa) | 3.6 |
Modulus of Rigidity (GPa) | 1.31 | |
Poisson’s Ratio | 0.31 |
Load Cases | Along x | Along y | Along z |
---|---|---|---|
Case-A | x = 0, Ux = 0 x = Lx, Ux = Lx | y = 0, y = Lx, Uy = 0 | z = 0, z = Lz, Uz = 0 |
Case-B | x = 0, x = Lx, Ux = 0 | y = 0, Uy = 0 y = Ly, Uy = Ly | z = 0, z = Lz, Uz = 0 |
Case-C | x = 0, x = Lx, Ux = 0 | y = 0, y = Ly, Uy = 0 | z = 0, Uz = 0 z = Lz, Uz = Lz |
Case-D | x = 0, x = Lx, Ux = 0 | y = 0, y = Ly, Ux = Uz = 0 | z = 0, Uy = 0 z = Lz, Uy = Lz |
Case-E | x = 0, x = Lx, Uy = Uz = 0 | y = 0, y = Ly, Uy = 0 | z = 0, Ux = 0 z = Lz, Ux = Lz |
Case-F | x = 0, x = Lx, Uy = Uz = 0 | y = 0, Ux = 0 y = Ly, Ux = Lx | z = 0, z = Lz, Uz = 0 |
Yarn Type | Volume Proportions (%) |
---|---|
Warp yarn | 36 |
Fill yarn | 36 |
Z-yarn | 1.5 |
Matrix | 25.5 |
Voids | 0 |
Homogenized Elastic Constants | Analytical | Numerical | % Error |
---|---|---|---|
Longitudinal modulus “E11” (GPa) | 52.2 | 52 | 0.3 |
Transverse modulus “E22” (GPa) | 17.6 | 17.4 | 1 |
Transverse modulus “E33” (GPa) | 17.6 | 17.5 | 0.5 |
In-plane Poisson’s ratio “v12” | 0.26 | 0.258 | 0.7 |
Out-of-plane Poisson’s ratio “v13” | 0.26 | 0.258 | 0.7 |
Out-of-plane Poisson’s ratio “v23” | 0.35 | 0.38 | 8.5 |
Shear modulus “G12” (GPa) | 6.5 | 6.05 | 6.5 |
Shear modulus “G13” (GPa) | 6.5 | 6.07 | 6.5 |
Shear modulus “G23” (GPa) | 6.5 | 6.23 | 4 |
Engineering Elastic Constants | Exp. | Ana. | Num. | % Error (Exp. & Ana.) | % Error (Exp. & Num.) |
---|---|---|---|---|---|
Longitudinal modulus “Ex” (GPa) | 26.3 | 25.2 | 26.6 | 4.1 | 1.1 |
Transverse modulus “Ey” (GPa) | 26.0 | 25.7 | 26.4 | 1.2 | 1.5 |
Transverse modulus “Ez” (GPa) | 13.3 | 12.5 | |||
Poisson’s ratio in xy-plane “vxy” | 0.148 | 0.138 | |||
Poisson’s ratio in xz-plane “vxz” | 0.328 | 0.36 | |||
Poisson’s ratio in yz-plane “vyz” | 0.330 | 0.36 | |||
Shear modulus “Gxy” (GPa) | 4.5 | 4.96 | 4.80 | 9.5 | 6.2 |
Shear modulus “Gxz” (GPa) | 4.96 | 4.52 | |||
Shear modulus “Gyz” (GPa) | 4.96 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.Z.H.; Megat Yusoff, P.S.M.; Karuppanan, S.; Sajid, Z. Elastic Constants Prediction of 3D Fiber-Reinforced Composites Using Multiscale Homogenization. Processes 2020, 8, 722. https://doi.org/10.3390/pr8060722
Shah SZH, Megat Yusoff PSM, Karuppanan S, Sajid Z. Elastic Constants Prediction of 3D Fiber-Reinforced Composites Using Multiscale Homogenization. Processes. 2020; 8(6):722. https://doi.org/10.3390/pr8060722
Chicago/Turabian StyleShah, S. Z. H., Puteri S. M. Megat Yusoff, Saravanan Karuppanan, and Zubair Sajid. 2020. "Elastic Constants Prediction of 3D Fiber-Reinforced Composites Using Multiscale Homogenization" Processes 8, no. 6: 722. https://doi.org/10.3390/pr8060722
APA StyleShah, S. Z. H., Megat Yusoff, P. S. M., Karuppanan, S., & Sajid, Z. (2020). Elastic Constants Prediction of 3D Fiber-Reinforced Composites Using Multiscale Homogenization. Processes, 8(6), 722. https://doi.org/10.3390/pr8060722