Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Procedures
2.3. Spectroscopic Measurements
2.4. Data Analysis
3. Results and Discussion
3.1. Spirits’ Volatile Composition
3.2. Characterisation of Wine Spirit Spectra
3.3. Analysis of Spectral Information vs. Analytical Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Union. Reg. EU nº 2019/787 of the European Parliament and of the Council of 17 April 2019 on the definition, description, presentation and labelling of spirit drinks, the use of the names of spirit drinks in the presentation and labelling of other foodstuffs, the protection of geographical indications for spirit drinks, the use of ethyl alcohol and distillates of agricultural origin in alcoholic beverages, and repealing Regulation (EC) No 110/2008. Off. J. Eur. Union 2019, L130, 1–54. [Google Scholar]
- Ledauphin, J.; Le Milbeau, C.; Barillier, D.; Hennequin, D. Differences in the Volatile Compositions of French Labeled Brandies (Armagnac, Calvados, Cognac, and Mirabelle) Using GC-MS and PLS-DA. J. Agric. Food Chem. 2010, 58, 7782–7793. [Google Scholar] [CrossRef] [PubMed]
- Wormit, A.; Usadel, B. The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int. J. Mol. Sci. 2018, 19, 2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, P.; Athès, V.; Decloux, M.E.; Ferrari, G.; Snakkers, G.; Raguenaud, P.; Giampaoli, P. Evolution of Volatile Compounds during the Distillation of Cognac Spirit. J. Agric. Food Chem. 2017, 65, 7736–7748. [Google Scholar] [CrossRef]
- Lablanquie, O.; Snakkers, G.; Cantagrel, R.; Ferrari, G. Characterisation of young Cognac spirit aromatic quality. Anal. Chim. Acta 2002, 458, 191–196. [Google Scholar] [CrossRef]
- Caldeira, I.; Bruno de Sousa, R.; Belchior, A.P.; Climaco, M.C. A sensory and chemical approach to the aroma of wooden agend Lourinha wine brandy. Ciência Técnica Vitivinícola 2008, 23, 97–110. [Google Scholar]
- Piggott, J.R.; Conner, J.M.; Paterson, A. Flavour development in whisky maturation. Dev. Food Sci. 1995, 37, 1731–1751. [Google Scholar]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Caldeira, I.; Santos, R.; Ricardo-da-Silva, J.M.; Anjos, O.; Mira, H.; Belchior, A.P.; Canas, S. Kinetics of odorant compounds in wine brandies aged in different systems. Food Chem. 2016, 211, 937–946. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Belchior, A.P. Extraction/oxidation kinetics of low molecular weight compounds in wine brandy resulting from different ageing technologies. Food Chem. 2013, 138, 2460–2467. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Rodríguez, N.; Dominguez, J.M.; Cortés, S. Characterization by chemical and sensory analysis of commercial grape marc distillate (Orujo) aged in oak wood. J. Inst. Brew. 2012, 118, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Canas, S.; Caldeira, I.; Anjos, O.; Lino, J.; Soares, A.; Pedro Belchior, A. Physicochemical and sensory evaluation of wine brandies aged using oak and chestnut wood simultaneously in wooden barrels and in stainless steel tanks with staves. Int. J. Food Sci. Technol. 2016, 51, 2537–2545. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Mosedale, J.; Puech, J. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- da Paixão Teixeira, J.L.; dos Santos Caramês, E.T.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A. Vibrational spectroscopy and chemometrics tools for authenticity and improvement the safety control in goat milk. Food Control 2020, 112, 107105. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Cozzolino, D.; Smyth, H.E.; Gishen, M. Feasibility Study on the Use of Visible and Near-Infrared Spectroscopy Together with Chemometrics To Discriminate between Commercial White Wines of Different Varietal Origins. J. Agric. Food Chem. 2003, 51, 7703–7708. [Google Scholar] [CrossRef]
- Downey, G. Tutorial review. Qualitative analysis in the near-infrared region. Analyst 1994, 119, 2367. [Google Scholar] [CrossRef]
- Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.S.; Oliveira, F.C.C.; Suarez, P.A.Z.; Rubim, J.C. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Anal. Chim. Acta 2003, 493, 219–231. [Google Scholar] [CrossRef]
- Kolomiets, O.A.; Lachenmeier, D.W.; Hoffmann, U.; Siesler, H.W. Quantitative Determination of Quality Parameters and Authentication of Vodka Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2010, 18, 59–67. [Google Scholar] [CrossRef]
- Palma, M. Application of FT-IR spectroscopy to the characterisation and classification of wines, brandies and other distilled drinks. Talanta 2002, 58, 265–271. [Google Scholar] [CrossRef]
- Yang, Y.R.; Ren, Y.F.; Dong, G.M.; Yang, R.J.; Liu, H.X.; Du, Y.H.; Zhang, W.Y. Determination of Methanol in Alcoholic Beverages by Two-Dimensional Near-Infrared Correlation Spectroscopy. Anal. Lett. 2016, 49, 2279–2289. [Google Scholar] [CrossRef]
- Hanousek-Cica, K.; Pezer, M.; Mrvcic, J.; Stanzer, D.; Cacic, J.; Jurak, V.; Krajnovic, M.; Gajdos-Kljusuric, J. Identification of phenolic and alcoholic compounds in wine spirits and their classification by use of multivariate analysis. J. Serb. Chem. Soc. 2019, 84, 663–677. [Google Scholar] [CrossRef] [Green Version]
- del Alamo-Sanza, M.; Nevares, I.; Martínez-Gil, A.; Rubio-Bretón, P.; Garde-Cerdán, T. Impact of long bottle aging (10 years) on volatile composition of red wines micro-oxygenated with oak alternatives. LWT 2019, 101, 395–403. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel maturation, oak alternatives and micro-oxygenation: Influence on red wine aging and quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Spirituous Beverages of Vitivinicultural Origin; OIV: Paris, France, 2014; 225p. [Google Scholar]
- Ana Catarina, P.M.N.; Luís, D.M.; Ofélia Anjos, I.C. Single-laboratory validation of determination of acetaldehyde, ethyl acetate, methanol and fusel alcohols in wine spirits, brandies and grape marc spirits using GC-FID. Ciência Técnica Vitivinícola 2011, 26, 69–76. [Google Scholar]
- Caldeira, I.; Belchior, A.P.; Canas, S. Effect of alternative ageing systems on the wine brandy sensory profile. Ciência Técnica Vitivinícola 2013, 28, 9–18. [Google Scholar]
- Matias-Guiu, P.; Garza-Moreira, E.; Rodríguez-Bencomo, J.J.; López, F. Rapid sensory analysis using response surface methodology: Application to the study of odour interactive effects in model spirits. J. Inst. Brew. 2018, 124, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Lurton, L.; Ferrari, G.; Snakkers, G. Cognac: Production and aromatic characteristics. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2012; pp. 242–266. [Google Scholar]
- Lukić, I.; Miličević, B.; Tomas, S.; Radeka, S.; Peršurić, Đ. Relationship between volatile aroma compounds and sensory quality of fresh grape marc distillates. J. Inst. Brew. 2012, 118, 285–294. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Belchior, A.P.; Canas, S. Sensory impact of alternative ageing technology for the production of wine brandies. Ciência Técnica Vitivinícola 2017, 32, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Deitrich, R.; Zimatkin, S.; Pronko, S. Oxidation of ethanol in the brain and its consequences. Alcohol Res. Health 2006, 29, 266–273. [Google Scholar] [PubMed]
- Canas, S.; Belchior, A.; Mateus, A.; Spranger, M.; Bruno de Sousa, R. Kinetics of impregnation/evaporation and release of phenolic compounds from wood to brandy in experimental model. Ciência Técnica Vitivinícola 2002, 17, 1–14. [Google Scholar]
- Yoshizawa, K.; Momose, H.; Hasuo, T. Substances Evaporated through Barrel during Aging of Whisky. J. Agric. Chem. Soc. Japan 1981, 55, 1063–1068. [Google Scholar] [CrossRef]
- De Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- Engelhard, S.; Löhmannsröben, H.-G.; Schael, F. Quantifying Ethanol Content of Beer Using Interpretive Near-Infrared Spectroscopy. Appl. Spectrosc. 2004, 58, 1205–1209. [Google Scholar] [CrossRef]
- Golic, M.; Walsh, K.; Lawson, P. Short-Wavelength Near-Infrared Spectra of Sucrose, Glucose, and Fructose with Respect to Sugar Concentration and Temperature. Appl. Spectrosc. 2003, 57, 139–145. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific and Technical Ed.: Harlow, UK, 1993; ISBN 19931464035. [Google Scholar]
- Workman, J.J. Interpretive Spectroscopy for Near Infrared. Appl. Spectrosc. Rev. 1996, 31, 251–320. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Y.; Fu, X.; Xie, L.; Ying, Y. Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS. Eur. Food Res. Technol. 2007, 225, 313–320. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Domínguez-Agis, F.; Vázquez, M. Ultraviolet/visible/near-infrared spectral analysis and chemometric tools for the discrimination of wines between subzones inside a controlled designation of origin: A case study of Rías Baixas. Aust. J. Grape Wine Res. 2013, 19, 62–67. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P.A. Can spectroscopy geographically classify Sauvignon Blanc wines from Australia and New Zealand? Food Chem. 2011, 126, 673–678. [Google Scholar] [CrossRef]
- Anjos, O.; Comesaña, M.M.; Caldeira, I.; Pedro, S.I.; Oller, P.E.; Canas, S. Application of Functional Data Analysis and FTIR-ATR Spectroscopy to Discriminate Wine Spirits Ageing Technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Velvarská, R.; Fiedlerová, M.; Hidalgo-Herrador, J.M.; Tišler, Z. Near-infrared spectroscopy as a rapid tool for water content analysis in the partial oxidation of ethanol. Spectrosc. Lett. 2019, 52, 533–540. [Google Scholar] [CrossRef]
- Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjos, O.; Santos, R.; Estevinho, L.M.; Caldeira, I. FT-RAMAN methodology for the monitoring of honeys’ spirit distillation process. Food Chem. 2020, 305, 125511. [Google Scholar] [CrossRef] [Green Version]
Samples | Alcohol Strength (%) | Methanol (mg/mL) | Acetaldehyde (mg/mL) | Ethyl Acetate (mg/mL) | |
---|---|---|---|---|---|
8 Days | TC | 77.2 ± 0.0 | 405.1 ± 7.0 | 27.4 ± 1.5 | 458.5 ± 5.3 |
TL | 77.3 ± 0.2 | 406.2 ± 7.8 | 28.4 ± 0.2 | 446.2 ± 2.8 | |
AC | 77.0 ± 0.0 | 397.7 ± 0.9 | 28.5 ± 0.8 | 455.1 ± 10.3 | |
AL | 77.1 ± 0.1 | 397.0 ± 11.1 | 27.4 ± 0.4 | 460.1 ± 9.1 | |
Technology (Ty) | n.s. | n.s. | n.s. | n.s. | |
Wood (W) | n.s. | n.s. | n.s. | n.s. | |
Ty x W | n.s. | n.s. | n.s. | n.s. | |
residual | -- | -- | -- | -- | |
180 Days | TC | 76.4 ± 0.1 a | 373.3 ± 6.1 a | 34.6 ± 0.3 b | 433.2 ± 2.3 |
TL | 76.6 ± 0.1 a | 380.0 ± 5.6 a | 31.0 ± 1.9 a | 434.5 ± 10.3 | |
AC | 77.0 ± 0.3 b | 390.9 ± 5.7 b | 35.8 ± 0.5 b | 447.0 ± 14.7 | |
AL | 77.0 ± 0.1 b | 394.8 ± 0.1 b | 35.6 ± 0.8 b | 444.0 ± 18.8 | |
Technology (Ty) | 69.4 * | 81.1 ** | 56.8 ** | n.s. | |
Wood (W) | n.s. | n.s. | 21.7 * | n.s. | |
Ty x W | n.s. | n.s. | n.s. | n.s. | |
residual | 30.6 | 18.9 | 21.5 | -- | |
360 Days | TC | 76.5 ± 0.3 | 344.4 ± 4.1 a | 51.4 ± 0.9 b | 499.8 ± 30.4 |
TL | 76.8 ± 0.1 | 351.3 ± 7.2 a | 38.4 ± 4.1 a | 485.1 ± 17.4 | |
AC | 77.0 ± 0.0 | 390.1 ± 1.1 b | 68.5 ± 0.2 c | 478.7 ± 4.2 | |
AL | 76.9 ± 0.0 | 393.5 ± 7.3 b | 55.5 ± 0.9 b | 452.6 ± 7.0 | |
Technology (Ty) | n.s. | 96.6 *** | 60.0 *** | n.s. | |
Wood (W) | n.s. | 0.0 | 34.4 ** | n.s. | |
Ty x W | n.s. | 0.0 | 0.0 | n.s. | |
residual | -- | 3.4 | 5.6 | -- | |
540 Days | TC | 76.2 ± 0.3 a | 343.5 ± 4.1 a | 79.8 ± 0.3 b | 503.4 ± 34.3 a |
TL | 76.8 ± 0.0 b | 355.7 ± 4.5 b | 71.2 ± 0.5 a | 532.7 ± 1.7 b | |
AC | 76.8 ± 0.2 b | 370.1 ± 4.1 c | 89.3 ± 2.3 c | 488.3 ± 1.1 ab | |
AL | 77.2 ± 0.0 b | 353.0 ± 6.3 ab | 81.1 ± 1.8 b | 441.1 ± 7.2 a | |
Technology (Ty) | 42.4 ** | 34.8 ** | 56.4 *** | 55.5 ** | |
Wood (W) | 45.0 ** | 3.0 * | 41.6 *** | 0.9 * | |
Ty x W | 0.0 | 51.3 ** | 0.0 | 26.4 * | |
residual | 12.6 | 10.9 | 2.0 | 17.2 |
Samples | propan-1-ol (mg/mL) | 2-methylpropan-1-ol (mg/mL) | butan-1-ol (mg/mL) | 2+3-methylbutan-1-ol (mg/mL) | |
---|---|---|---|---|---|
8 Days | TC | 175.2 ± 2.7 b | 864.7 ± 8.6 b | 6.4 ± 0.3 | 2063.7 ± 24.8 b |
TL | 175.9 ± 2.9 b | 865.6 ± 8.5 b | 6.4 ± 0.3 | 2063.7 ± 34.0 b | |
AC | 169.7 ± 1.6 a | 850.7 ± 4.6 a | 6.3 ± 0.6 | 2017.0 ± 15.1 a | |
AL | 170.3 ± 0.9 a | 852.0 ± 1.4 a | 5.9 ± 0.1 | 2016.2 ± 7.6 a | |
Tec | 69.6 * | 60.4 * | n.s. | 59.5 * | |
W | n.s. | n.s. | n.s. | n.s. | |
Tec x W | n.s. | n.s. | n.s. | n.s. | |
residual | 30.4 | 39.4 | -- | 40.5 | |
180 Days | TC | 159.2 ± 1.2 a | 793.7 ± 7.3 a | 5.9 ± 0.4 | 1853.9 ± 19.9 a |
TL | 161.6 ± 2.2 a | 806.7 ± 15.6 ab | 6.3 ± 0.3 | 1904.3 ± 29.2 ab | |
AC | 165.8 ± 1.6 b | 817.2 ± 5.1 b | 6.3 ± 0.6 | 1953.0 ± 12.4 b | |
AL | 166.7 ± 0.3 b | 819.8 ± 1.5 b | 5.8 ± 0.1 | 1954.9 ± 9.6 b | |
Tec | 86.2 ** | 57.3 * | n.s. | 71.8 ** | |
W | n.s. | n.s. | n.s. | n.s. | |
Tec x W | n.s. | n.s. | n.s. | n.s. | |
residual | 13.8 | 42.7 | -- | 28.2 | |
360 Days | TC | 155.0 ± 2.5 a | 777.6 ± 14.1 a | 5.5 ± 0.6 | 1871.7 ± 13.7 a |
TL | 156.7 ± 0.8 a | 778.7 ± 8.8 a | 5.6 ± 0.3 | 1881.0 ± 25.4 a | |
AC | 165.5 ± 3.7 b | 797.8 ± 3.2 b | 6.2 ± 0.3 | 1926.2 ± 24.8 b | |
AL | 165.9 ± 3.3 b | 802.2 ± 8.6 b | 5.9 ± 0.2 | 1930.3 ± 23.0 b | |
Tec | 87.6 *** | 66.2 * | n.s. | 71.9 ** | |
W | n.s. | n.s. | n.s. | n.s. | |
Tec x W | n.s. | n.s. | n.s. | n.s. | |
residual | 12.4 | 33.8 | -- | 28.1 | |
540 Days | TC | 157.0 ± 2.0 | 798.8 ± 5.0 b | 5.0 ± 0.0 | 1927.4 ± 17.0 b |
TL | 159.9 ± 3.0 | 801.7 ± 5.6 b | 5.0 ± 0.3 | 1931.9 ± 17.6 b | |
AC | 158.6 ± 1.3 | 795.2 ± 1.4 b | 5.4 ± 0.6 | 1917.0 ± 0.4 b | |
AL | 152.9 ± 1.2 | 772.2 ± 3.6 a | 5.3 ± 0.1 | 1861.7 ± 3.9 a | |
Tec | n.s. | 47.1 ** | n.s. | 46.2 ** | |
W | n.s. | 16.5 * | n.s. | 16.9 * | |
Tec x W | n.s. | 28.5 ** | n.s. | 24.3 * | |
residual | -- | 7.9 | -- | 12.6 |
Aged in 250 L New Barrels | Aged in 1000 L Stainless Steel Tanks with Staves and Micro-Oxygenation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
with Chestnut | with Oak | with Chestnut | with Oak | |||||||||||||
Days | 8 | 180 | 360 | 540 | 8 | 180 | 360 | 540 | 8 | 180 | 360 | 540 | 8 | 180 | 360 | 540 |
Alcohol strength (%) | B | A | A | A | B | A | A | A | A | A | A | A | AB | AB | A | B |
Methanol (g/mL) | C | B | A | A | C | B | A | A | B | B | B | A | B | B | B | A |
Acetaldehyde (mg/mL) | A | B | C | D | A | AB | B | C | A | B | C | D | A | B | C | D |
Ethyl acetate (mg/mL) | A | A | B | B | A | A | B | C | A | A | B | B | A | A | A | A |
Propan-1-ol (mg/mL) | B | A | A | A | B | A | A | A | B | B | B | A | B | B | B | A |
2-methylpropan-1-ol (mg/mL) | B | A | A | A | B | A | A | A | B | A | A | A | C | B | B | A |
butan-1-ol (mg/mL) | B | AB | AB | A | A | A | B | B | B | B | B | A | B | B | B | A |
2+3-methylbutan-1-ol (mg/mL) | C | B | A | A | B | A | A | A | B | AB | A | A | C | B | B | A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes 2020, 8, 736. https://doi.org/10.3390/pr8060736
Anjos O, Caldeira I, Roque R, Pedro SI, Lourenço S, Canas S. Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes. 2020; 8(6):736. https://doi.org/10.3390/pr8060736
Chicago/Turabian StyleAnjos, Ofélia, Ilda Caldeira, Rita Roque, Soraia I. Pedro, Sílvia Lourenço, and Sara Canas. 2020. "Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification" Processes 8, no. 6: 736. https://doi.org/10.3390/pr8060736
APA StyleAnjos, O., Caldeira, I., Roque, R., Pedro, S. I., Lourenço, S., & Canas, S. (2020). Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes, 8(6), 736. https://doi.org/10.3390/pr8060736