Volatile Esters and Fusel Alcohol Concentrations in Beer Optimized by Modulation of Main Fermentation Parameters in an Industrial Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analytical Procedures
2.3. Sensory Analysis
2.4. Statistical Analyses
2.4.1. Optimization of The Volatiles and Sensory Quality of Beer
2.4.2. Multiple Response Optimization Procedures
3. Results and Discussion
3.1. Model Fitting
3.2. Polynomial Equations for the Measured Responses
3.3. Multiple Response Optimization Procedures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer—A review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Titica, M.; Landaud, S.; Trelea, I.; Latrille, E.; Corrieu, G.; Cheruy, A. Modeling of the kinetics of higher alcohols and ester production on CO2 emission with a view to control of beer flavor by temperature and top pressure. J. Am. Soc. Brew. Chem. 2000, 58, 167–174. [Google Scholar] [CrossRef]
- Pires, E.; Teixeira, J.; Branyik, T.; Vicente, A. Yeast: The soul of beer’s aroma–a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Renger, S.; Van Hateren, S.; Luyben, K. The formation of esters and higher alcohols during brewery fermentation; the effect of carbon dioxide pressure. J. Inst. Brew. 1992, 98, 509–513. [Google Scholar] [CrossRef]
- Stewart, G. High gravity brewing and distilling—Past experiences and future prospects. J. Am. Soc. Brew. Chem. 2010, 68, 1–9. [Google Scholar] [CrossRef]
- Ferreira, I.; Guido, L. Impact of wort amino acids on beer flavour: A review. Fermentation 2019, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Vanderhaegen, B.; Necen, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging–a critical review. Food Chem. 2007, 95, 357–381. [Google Scholar] [CrossRef]
- Holt, S.; Miks, M.; Carvalho, B.; Moreno, M.; Thevelein, J. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaztekin, M.; Cabaroglu, T.; Erten, H. Effects of fermentation temperature and aeration on production of natural isoamyl acetate by Williopsis saturnus var. saturnus. BioMed Res. Int. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Humia, B.; Santos, K.; Barbosa, A.; Sawata, M.; Mendoca, M.; Padilha, F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Moonjai, N.; Verstrepen, K.; Delvaux, F.; Derdelinckx, G.; Verachtert, H. The effects of linoleic acid supplementation of cropped yeast on its subsequent fermentation performance and acetate ester synthesis. J. Inst. Brew. 2002, 108, 227–235. [Google Scholar] [CrossRef]
- Trelea, I.; Titica, M.; Corrieu, G. Dynamic optimisation of the aroma production in brewing fermentation. J. Process Control 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Brown, A.; Hammond, J. Flavour control in small-scale beer fermentations. Inst. Chem. E 2003, 81, 40–49. [Google Scholar] [CrossRef]
- Dragone, G.; Silva, D.; Almeida e Silva, J. Factors influencing ethanol production rates at high-gravity brewing. Lebensm. Wiss. Technol. 2004, 37, 797–802. [Google Scholar] [CrossRef]
- Lima, L.; Brandão, T.; Lima, N.; Teixeira, J. Comparing the impact of environmental factors during very high gravity brewing fermentation. J. Inst. Brew. 2011, 3, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Miedaner, H. Brautechnische Analysenmethoden, Band II, Methodensammlung der Mitteleuropaischen Brautechnischen Analysenkommision, MEBAK 4th ed.; Selbstverlag der MEBAK: Munich, Germany, 2002. [Google Scholar]
- Verstrepen, K.; Derdelinckx, G.; Dufour, J.; Winderickx, J.; Thevelein, J.; Pretorius, I.; Delvaux, F. Flavour-active esters: Adding fruitness to beer. J. Biosci. Bioeng. 2003, 2, 110–118. [Google Scholar] [CrossRef]
- Lee, M.; Davis, D. Fermentation intensification–Part III: The effect of increasing yeast biomass concentration on fermentation performance. BRI Q. 2000, 3, 1–4. [Google Scholar]
- Verbelen, P.; Dekoninck, T.; Saerens, S.; Van Mulders, S.; Thevelein, M.; Delvaux, F. Impact of pitching rate on yeast fermentation performance and beer flavour. Appl. Microbiol. Cell Physiol. 2009, 82, 155–167. [Google Scholar] [CrossRef]
- Erten, H.; Tanguler, H.; Cakiroz, H. The effect of pitching rate on fermentation and flavour compounds in high gravity brewing. J. Inst. Brew. 2007, 113, 75–79. [Google Scholar] [CrossRef]
- Nakatani, K.; Fukui, N.; Nagami, K.; Nishigaki, M. Kinetic analysis of ester formation during beer fermentation. J. Am. Soc. Brew. Chem. 1991, 4, 152–157. [Google Scholar] [CrossRef]
- Saerens, S.; Verbelen, P.; Vanbeneden, N. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl. Microbiol. Biotechnol. 2008, 80, 1039–1051. [Google Scholar] [CrossRef]
- Jones, H.L.; Margaritis, A.; Stewart, R. The combined effect of oxygen supply strategy, inoculum Size and temperature profile on Very-High-Gravity beer fermentations by Saccharomyces cerevisiae. J. Inst. Brew. 2007, 113, 168–184. [Google Scholar] [CrossRef]
- Landaud, S.; Latrille, E.; Corrieu, G. Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. J. Inst. Brew. 2001, 2, 107–117. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, K.; Żyła, K.; Tuszyński, T. Optimization of wort aeration, wort-filling time, pitching rate, and temperature levels for high-gravity brewing fermentation in an industrial brewery on volatile carbonyls, sulphur compounds and quality of a lager beer. Czech J. Food Sci. 2020. in consideration. [Google Scholar]
- Coelho, E.; Lemos, M.; Genisheva, Z.; Domingues, L.; Vilanova, M.; Oliveira, J.M. Validation of a LLME/GC-MS methodology for quantification of volatile compounds in fermented beverages. Molecules 2020, 25, 621. [Google Scholar] [CrossRef] [Green Version]
Independent Variables | Units | Symbol | Coded Levels | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
Pitching rate | Mln cells/mL | x1 | 6 | 8 | 10 |
Fermentation temperature | °C | x2 | 8.5 | 10 | 11.5 |
Aeration level | mg/L | x3 | 8 | 10 | 12 |
Total time of CCT filling | h | x4 | 4.5 | 9 | 13.5 |
Dependent Parameter | Analysis of Variance | |||||||
---|---|---|---|---|---|---|---|---|
R2 | Lack-Of-Fit | x1 | x2 | x3 | x4 | Significant Components of the Model | ||
Probability | ||||||||
Higher alcohols | 0.91 | 0.932 | 0.022 | 0.0193 | Ns | 0.0003 | 0.0473 | x3x4 |
Amyl alcohols | 0.91 | 0.808 | 0.027 | 0.025 | Ns | 0.0001 | 0.0473 | x3x4 |
Methanol | 0.53 | 0.578 | 0.0307 | ns | Ns | 0.0400 | 0.0327 | blocks |
Isobutanol | 0.68 | 0.358 | 0.0039 | 0.0461 | Ns | 0.035 | 0.0061 | x12 |
1-propanol | 0.30 | 0.000 | 0.0001 | 0.027 | Ns | 0.0001 | 0.0001 | x12 |
Ethyl acetate | 0.89 | 0.967 | 0.0032 | 0.0019 | Ns | ns | - | - |
Isoamyl acetate | 0.69 | 0.953 | 0.0298 | 0.0054 | Ns | ns | - | - |
Ethyl formiate | 0.62 | 0.813 | 0.0356 | ns | Ns | ns | 0.0488 | x1x4 |
Ethyl capronate | 0.56 | 0.0967 | ns | ns | Ns | 0.0247 | - | - |
Ethyl propionate | 0.39 | 0.450 | 0.0179 | 0.0131 | Ns | ns | - | - |
Sensory analysis | 0.71 | 0.0951 | 0.0213 | 0.0012 | 0.0089 | 0.0272 | 0.0021 | x12 |
0.0474 | x1x2 | |||||||
0.0299 | x1x4 | |||||||
0.0040 | x22 | |||||||
0.0021 | x2x3 | |||||||
0.0102 | x32 | |||||||
0.0384 | x42 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
x1 | 69.2920 | 1 | 69.2920 | 54.14 | 0.0000 |
x2 | 90.2682 | 1 | 90.2682 | 70.53 | 0.0000 |
blocks | 0.0308 | 1 | 0.0308 | 0.02 | 0.8776 |
Lack-of-fit | 24.1341 | 14 | 1.7239 | 1.35 | 0.2295 |
Pure error | 46.0771 | 36 | 1.2799 | ||
Total (correlation) | 229.8020 | 53 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
x1 | 0.7245 | 1 | 0.7245 | 22.50 | 0.0000 |
x2 | 1.9982 | 1 | 1.9982 | 62.05 | 0.0000 |
Blocks | 0.0011 | 1 | 0.0011 | 0.03 | 0.8566 |
Lack-of-fit | 0.5608 | 14 | 0.0400 | 1.24 | 0.2885 |
Pure error | 1.1592 | 36 | 0.0322 | ||
Total (correlation) | 4.4437 | 53 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
x1 | 209.5690 | 1 | 209.5690 | 43.40 | 0.0027 |
x2 | 218.6480 | 1 | 218.6480 | 45.28 | 0.0025 |
x3 | 0.4817 | 1 | 0.4817 | 0.10 | 0.7679 |
x4 | 968.5020 | 1 | 68.5020 | 200.56 | 0.0001 |
x3 x4 | 38.6760 | 1 | 38.6760 | 8.01 | 0.0473 |
Blocks | 7.7521 | 1 | 7.7521 | 1.61 | 0.2739 |
Lack-of-fit | 129.9700 | 43 | 3.0226 | 0.63 | 0.8077 |
Pure error | 19.3162 | 4 | 4.8291 | ||
Total (correlation) | 1592.9100 | 53 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
x1 | 496.4050 | 1 | 496.4050 | 49.00 | 0.0022 |
x2 | 145.2880 | 1 | 145.2880 | 14.34 | 0.0193 |
x3 | 2420 | 1 | 4.2420 | 0.42 | 0.5528 |
x4 | 1515.1100 | 1 | 1515.1100 | 149.55 | 0.0003 |
x3 x4 | 81.1538 | 1 | 81.1538 | 8.01 | 0.0473 |
Blocks | 30.1953 | 1 | 30.1953 | 2.98 | 0.1594 |
Lack-of-fit | 250.8160 | 43 | 5.8329 | 0.58 | 0.8406 |
Pure error | 40.5250 | 4 | 10.1312 | ||
Total (correlation) | 2563.7400 | 53 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
x1 | 0.3267 | 1 | 0.3267 | 17.40 | 0.0145 |
x2 | 1.4259 | 1 | 1.4259 | 74.40 | 0.0010 |
x3 | 0.6176 | 1 | 0.6176 | 32.22 | 0.0048 |
x4 | 0.2017 | 1 | 0.2017 | 10.52 | 0.0316 |
x12 | 1.1704 | 1 | 1.1704 | 61.07 | 0.0014 |
x1 x2 | 0.2113 | 1 | 0.2113 | 11.02 | 0.0294 |
x1 x4 | 0.1800 | 1 | 0.1800 | 9.39 | 0.0375 |
x22 | 0.7177 | 1 | 0.7177 | 37.44 | 0.0036 |
x2 x3 | 1.0513 | 1 | 1.0513 | 54.85 | 0.0018 |
x32 | 0.5551 | 1 | 0.5551 | 28.96 | 0.0058 |
x42 | 0.3038 | 1 | 0.3038 | 15.85 | 0.0164 |
Blocks | 0.0007 | 1 | 0.0007 | 0.03 | 0.8648 |
Lack-of-fit | 3.2974 | 37 | 0.0891 | 4.65 | 0.0716 |
Pure error | 0.09 | 4 | 0.0225 | ||
Total (correlation) | 11.457 | 53 |
Technological Parameters | Levels | Optimum/Goal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EtAcet | IsAc | Esters | Isobutanol | HA | Alcohols | Sensory | Volatiles | All | |||
−1 | +1 | Maximize | Minimize | Maximize | Optimize | Optimize | |||||
Pitching rate (mln cells/mL) | 6.0 | 10.0 | 10.0 | 10.0 | 10.0 | 6.0 | 6.1 | 6.0 | 6.0 | 10.0 | 10.0 |
Temperature of fermentation (°C) | 8.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.3 | 8.8 | 9.6 | 11.5 | 11.5 | 11.5 |
Wort aeration level (mg/L) | 8.0 | 12.0 | 10.0 | 9.6 | 10.0 | 8.0 | 8.0 | 8.0 | 11.1 | 8.1 | 8.8 |
Total filling time CCTs (h) | 4.5 | 13.5 | 9.0 | 13.5 | 13.5 | 4.5 | 4.5 | 4.6 | 13.5 | 4.7 | 4.5 |
Volatiles/Sensory | Predicted Values | ||||||||||
Ethyl acetate (EtAcet; mg/L) | 22.1 | 22.1 | 22.1 | 22.0 | |||||||
Isoamyl acetate (IsAc; mg/L) | 2.34 | 2.34 | 2.1 | 2.09 | |||||||
Isobutanol (mg/L) | 11.8 | 12.6 | 12.6 | 12.9 | |||||||
Higher alcohols (HA; mg/L) | 83.5 | 85.2 | 97.4 | 97.9 | |||||||
Sensory quality (pts) | 67 | 66.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharczyk, K.; Żyła, K.; Tuszyński, T. Volatile Esters and Fusel Alcohol Concentrations in Beer Optimized by Modulation of Main Fermentation Parameters in an Industrial Plant. Processes 2020, 8, 769. https://doi.org/10.3390/pr8070769
Kucharczyk K, Żyła K, Tuszyński T. Volatile Esters and Fusel Alcohol Concentrations in Beer Optimized by Modulation of Main Fermentation Parameters in an Industrial Plant. Processes. 2020; 8(7):769. https://doi.org/10.3390/pr8070769
Chicago/Turabian StyleKucharczyk, Krzysztof, Krzysztof Żyła, and Tadeusz Tuszyński. 2020. "Volatile Esters and Fusel Alcohol Concentrations in Beer Optimized by Modulation of Main Fermentation Parameters in an Industrial Plant" Processes 8, no. 7: 769. https://doi.org/10.3390/pr8070769
APA StyleKucharczyk, K., Żyła, K., & Tuszyński, T. (2020). Volatile Esters and Fusel Alcohol Concentrations in Beer Optimized by Modulation of Main Fermentation Parameters in an Industrial Plant. Processes, 8(7), 769. https://doi.org/10.3390/pr8070769