Determination of Vitamins K1, K2 MK-4, MK-7, MK-9 and D3 in Pharmaceutical Products and Dietary Supplements by TLC-Densitometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Standard Solutions and Substance
2.3. Pharmaceutical Products, Dietary Supplements and Solutions
- Vigantoletten 1000 (Merck, Serono, Switzerland)—Tablets containing 25 µg of cholecalciferol. Excipients: D,L–α-tocopherol, hydrogenated soybean oil, gelatin, sucrose, corn starch, microcrystalline cellulose, colloidal anhydrous silica, sodium starch glycolate (type C), talc, glycerol tristearate.
- Vitacon (Polfa Warszawa S.A., Poland)—Tablets containing 10 mg of phytomenadione. Excipients: colloidal hydrated silica, microcrystalline cellulose, croscarmellose sodium, lactose monohydrate, magnesium stearate, povidone K-30, carmellose sodium, sucrose, colloidal anhydrous silica, talc, polysorbate 80, titanium dioxide (E171), quinoline yellow (E104), Capol wax.
- Vitamin K2 MK-4, (Carlson Laboratories Inc. Arlington Heights, IL, USA)—Beef gelatin capsules containing 5 mg vitamin K2 as MK-4 (menatetrenone). Other ingredients: microcrystalline cellulose, magnesium stearate (veg.), silicon dioxide.
- Vitamin D3 5000 IU Vitamin K2 100 mcg, (Oxford Vitality, Oxfordshire, UK)—Tablets containing 125 µg of vitamin D3 (as cholecalciferol equivalent to 5000 IU) and 100 µg of vitamin K2 (as menaquinone MK-9). Other ingredients: microcrystalline cellulose, magnesium stearate, dicalcium phosphate, silicon dioxide.
- Kinon (Valentis AG, Agno—Lugano, Switzerland)—Tablets containing 75 µg of vitamin K2 (as menaquinone-7). Other ingredients: microcrystalline cellulose, calcium phosphate, cross-linked sodium carboxymethylcellulose, magnesium stearate (veg.), talc, silicon dioxide.
- Kinon D3 (Valentis AG, Agno—Lugano, Switzerland)—Tablets containing 50 µg of cholecalciferol and 100 µg of vitamin K2 (as menaquinone-7). Other ingredients: microcrystalline cellulose, calcium phosphate, cross-linked sodium carboxymethylcellulose, magnesium stearate, talc, silicon dioxide.
2.4. Instrumentation and Chromatographic Conditions
2.5. Method Validation
2.5.1. Specificity
2.5.2. Linearity
2.5.3. The Limit of Detection (LOD) and Limit of Quantification (LOQ)
2.5.4. Precision and Intermediate Precision
2.5.5. Accuracy
2.5.6. Robustness
2.5.7. Analysis of Pharmaceutical Products and Dietary Supplements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Booth, S.L.; Suttie, J.W. Dietary intake and adequacy of vitamin K. J. Nutr. 1998, 128, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Andersen, I.B.; Brasen, C.L.; Madsen, J.S.; Schmedes, A. Quantitation of vitamin K1 in serum using online SPE-LC-MS/MS and the challenges of working with vitamin K. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1117, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Peng, C.; Hu, X.; Han, Y.; Huang, H. Microbial production of vitamin K2: Current status and future prospects. Biotechnol. Adv. 2020, 39, 107453. [Google Scholar] [CrossRef] [PubMed]
- Mahdinia, E.; Demirci, A.; Berenjian, A. Production and application of menaquinone-7 (vitamin K2): A new perspective. World J. Microbiol. Biotechnol. 2017, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, C.; Shearer, M.J.; Zittermann, A.; Bolton-Smith, C.; Szulc, P.; Hodges, S.; Walter, P.; Rambeck, W.; Stöcklin, E.; Weber, P. Beyond Deficiency: Potential benefits of increased intakes of vitamin K for bone and vascular health. Eur. J. Nutr. 2004, 43, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Lu, L.-M.; Wang, L. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels. Biochem. Biophys. Res. Commun. 2016, 476, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Badave, K.D.; Khan, A.A.; Rane, S.Y. Anticancer Vitamin K3 Analogs: A Review. Anticancer. Agents Med. Chem. 2016, 16, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.J.; Booth, S.L.; Van Den Heuvel, E.G.H.M.; Stoecklin, E.; Baka, A.; Vermeer, C. The role of menaquinones (vitamin K2) in human health. Br. J. Nutr. 2013, 110, 1357–1368. [Google Scholar] [CrossRef] [Green Version]
- Ducros, V.; Pollicand, M.; Laporte, F.; Favier, A. Quantitative determination of plasma vitamin K1 by high-performance liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal. Biochem. 2010, 401, 7–14. [Google Scholar] [CrossRef]
- Gordeladze, J. Vitamin K2—Vital for Health and Wellbeing; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- van Ballegooijen, A.J.; Pilz, S.; Tomaschitz, A.; Grübler, M.R.; Verheyen, N. The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review. Int. J. Endocrinol. 2017, 2017, 7454376. [Google Scholar] [CrossRef]
- Luo, Y.; Teng, Z.; Wang, Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J. Agric. Food Chem. 2012, 60, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Hollis, B.W.; Heaney, R.P. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab. 2004, 89, 5387–5391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleet, J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Gonnet, M.; Lethuaut, L.; Boury, F. New trends in encapsulation of liposoluble vitamins. J. Control. Release 2010, 146, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Pike, J.W. Vitamin D and its analogs. In Principles of Bone Biology; Academic Press: Cambridge, MA, USA, 2019; ISBN 9780128148419. [Google Scholar]
- Shin, M.H.; Lee, Y.; Kim, M.-K.; Lee, D.H.; Chung, J.H. UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. J. Steroid Biochem. Mol. Biol. 2019, 195, 105449. [Google Scholar] [CrossRef] [PubMed]
- Booth, S.L. Vitamin K: Food composition and dietary intakes. Food Nutr. Res. 2012, 56. [Google Scholar] [CrossRef] [Green Version]
- Walther, B.; Karl, J.P.; Booth, S.L.; Boyaval, P. Menaquinones, Bacteria, and the Food Supply: The Relevance of Dairy and Fermented Food Products to Vitamin K Requirements. Adv. Nutr. 2013, 4, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Okano, T.; Shimomura, Y.; Yamane, M.; Suhara, Y.; Kamao, M.; Sugiura, M.; Nakagawa, K. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 2008, 283, 11270–11279. [Google Scholar] [CrossRef] [Green Version]
- Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: A vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 2003, 47, 107–113. [Google Scholar] [CrossRef]
- Keegan, R.-J.H.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-endocrinology 2013, 5, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Barnkob, L.L.; Argyraki, A.; Jakobsen, J. Naturally enhanced eggs as a source of vitamin D: A review. Trends Food Sci. Technol. 2020, 102, 62–70. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Dietary reference values for vitamin K. EFSA J. 2017, 15, 4780. [Google Scholar] [CrossRef]
- Rees, K.; Guraewal, S.; Wong, Y.L.; Majanbu, D.L.; Mavrodaris, A.; Stranges, S.; Kandala, N.B.; Clarke, A.; Franco, O.H. Is vitamin K consumption associated with cardio-metabolic disorders? A systematic review. Maturitas 2010, 67, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Skeie, G.; Braaten, T.; Hjartåker, A.; Lentjes, M.; Amiano, P.; Jakszyn, P.; Pala, V.; Palanca, A.; Niekerk, E.M.; Verhagen, H.; et al. Use of dietary supplements in the european prospective investigation into cancer and nutrition calibration study. Eur. J. Clin. Nutr. 2009, 63, S226–S238. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.T.; Holden, J.; Andrews, K.; Roseland, J.; Zhao, C.; Schweitzer, A.; Perry, C.R.; Harnly, J.; Wolf, W.R.; Picciano, M.F.; et al. Measuring vitamins and minerals in dietary supplements for nutrition studies in the USA. Anal. Bioanal. Chem. 2007, 389, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Kasalová, E.; Aufartová, J.; Krčmová, L.K.; Solichová, D.; Solich, P. Recent trends in the analysis of vitamin D and its metabolites in milk—A review. Food Chem. 2015, 171, 177–190. [Google Scholar] [CrossRef]
- Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Gómez-Cotín, T.; Alaoui-Ismaili, S.; Rovira, E. Simultaneous spectrophotometric determination of fat-soluble vitamins in multivitamin pharmaceutical preparations. Fresenius. J. Anal. Chem. 1995, 351, 315–319. [Google Scholar] [CrossRef]
- Pérez-Ruiz, T.; Martínez-Lozano, C.; Tomás, V.; Martín, J. Flow-injection fluorimetric determination of vitamin K1 based on a photochemical reaction. Talanta 1999, 50, 49–56. [Google Scholar] [CrossRef]
- Sýs, M.; Jashari, G.; Švecová, B.; Arbneshi, T.; Metelka, R. Determination of vitamin K1 using square wave adsorptive stripping voltammetry at solid glassy carbon electrode. J. Electroanal. Chem. 2018, 821, 10–15. [Google Scholar] [CrossRef]
- Delgado-Zamarreño, M.M.; González-Maza, I.; Sánchez-Pérez, A.; Carabias-Martinez, R. Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography. J. Chromatogr. A 2002, 953, 257–262. [Google Scholar]
- Pyka, A.; Gurak, D. Use of RP-TLC and Densitometry to Analytical Characteristic of Vitamin K 1. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 2097–2104. [Google Scholar] [CrossRef]
- Atia, N.N.; Ahmed, S. A Validated High-Throughput Chromatographic Method For Simultaneous Determination Of Vitamin K Homologues. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 484–498. [Google Scholar] [CrossRef]
- Hossu, A.-M.; Maria, M.-F.; Radulescu, C.; Ilie, M.; Magearu, V. TLC Applications on separation and quantification of fat-soluble vitamins. Rom. Biotechnol. Lett. 2009, 14, 4615–4619. [Google Scholar]
- Koivu, T.J.; Piironen, V.I.; Henttonen, S.K.; Mattila, P.H. Determination of Phylloquinone in Vegetables, Fruits, and Berries by High-Performance Liquid Chromatography with Electrochemical Detection. J. Agric. Food Chem. 1997, 45, 4644–4649. [Google Scholar] [CrossRef]
- Koivu-Tikkanen, T.J.; Ollilainen, V.; Piironen, V.I. Determination of phylloquinone and menaquinones in animal products with fluorescence detection after postcolumn reduction with metallic zinc. J. Agric. Food Chem. 2000, 48, 6325–6331. [Google Scholar] [CrossRef]
- Paroni, R.; Faioni, E.M.; Razzari, C.; Fontana, G.; Cattaneo, M. Determination of vitamin K1 in plasma by solid phase extraction and HPLC with fluorescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 351–354. [Google Scholar] [CrossRef]
- Shahdousti, P.; Aghamohammadi, M. Flotation/ultrasound-assisted microextraction followed by HPLC for determination of fat-soluble vitamins in multivitamin pharmaceutical preparations. J. Sep. Sci. 2018, 41, 1821–1828. [Google Scholar] [CrossRef]
- Tarvainen, M.; Fabritius, M.; Yang, B. Determination of vitamin K composition of fermented food. Food Chem. 2019, 275, 515–522. [Google Scholar] [CrossRef]
- Karl, J.P.; Fu, X.; Dolnikowski, G.G.; Saltzman, E.; Booth, S.L. Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 963, 128–133. [Google Scholar] [CrossRef]
- De Leenheer, A.; Lambert, W.; Van Bocxlaer, J. Modern Chromatographic Analysis of Vitamins (Third Edition, Revised and Expanded). In Chromatographic Science Series, 84; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; 616p, ISBN 0824703162. [Google Scholar]
- Yang, M.-Y.; Huang, C.-Y.; Chiu, T.H.T.; Chang, K.-C.; Lin, M.-N.; Chen, L.-Y.; Hu, A. Using gas chromatography and mass spectrometry to determine 25-hydroxyvitamin D levels for clinical assessment of vitamin D deficiency. J. Food Drug Anal. 2019, 27, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J.; Fried, B.; Fried, B. Handbook of Thin-Layer Chromatography; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2003. [Google Scholar]
- ICH. Validation of Analytical Procedures: Text and Methodology, Q2 (R1), Geneva. 2005. Available online: https://www.ich.org/page/quality-guidelines (accessed on 20 June 2020).
Substance | Rf | k | α | Rs |
---|---|---|---|---|
MK-9 | 0.08 | 11.5 | - | - |
MK-7 | 0.15 | 5.7 | 2.0 | 1.2 |
K1 | 0.24 | 3.2 | 1.8 | 1.6 |
MK-4 | 0.33 | 2.0 | 1.6 | 1.5 |
D3 | 0.36 | 1.8 | 1.1 | 0.9 |
K3 | 0.68 | 0.5 | 3.6 | 4.7 |
Parameter | MK-9 | MK-7 | K1 | MK-4 | D3 | K3 |
---|---|---|---|---|---|---|
LOD (ng/band) | 45.5 | 35.0 | 25.0 | 50.0 | 53.5 | 25.5 |
LOQ (ng/band) | 91.0 | 79.0 | 50.0 | 100.0 | 107.0 | 51.0 |
Linearity range, (μg/band) | 0.091–0.910 | 0.079–0.790 | 0.050–0.700 | 0.100–0.700 | 0.107–0.749 | 0.051–0.714 |
Slope (a ± Sa) | 5334.0 ± 105.7 | 6892.9 ± 238.8 | 9414.8 ± 319.2 | 8500.3 ± 268.1 | 7895.7 ± 50.0 | 12,918.0 ± 466.4 |
Intercept (b± Sb) | 117.1 ± 56.4 | 241.5 ± 114.0 | 181.2 ± 133.6 | 139.5 ± 112.3 | −36.578 ± 111.8 | 279.3 ± 199.2 |
t = b/Sb | 2.07 | 2.11 | 1.35 | 1.24 | -0.33 | 1.40 |
Normality of residuals (Shapiro-Wilk test) | 0.9842 (p = 0.9952) | 0.8999 (p = 0.1580) | 0.9264 (p = 0.2139) | 0.8949 (p = 0.0665) | 0.9748 (p = 0.9091) | 0.9761 (p = 0.9254) |
Correlation coefficient, R | 0.9982 | 0.9941 | 0.9921 | 0.9931 | 0.9931 | 0.9910 |
R2 value | 0.9960 | 0.9871 | 0.9830 | 0.9853 | 0.9852 | 0.9808 |
Precision (% RSD) | 1.77 | 2.20 | 1.14 | 2.70 | 2.33 | 2.30 |
Intermediate precision (% RSD) | 2.63 | 1.64 | 1.38 | 2.21 | 1.53 | 2.47 |
Recovery levels (%) n = 3 | ||||||
80% | 100.45% RSD = 2.18% | 95.78% RSD = 1.65% | 99.89% RSD = 1.87% | 99.70% RSD = 2.10% | 98.64% RSD = 1.32% | 99.13% RSD = 0.68% |
100% | 102.00% RSD = 1.60% | 101.40% RSD = 1.80% | 100.63% RSD = 2.33% | 102.20% RSD = 2.26% | 104.96% RSD = 1.96% | 100.02% RSD = 0.86% |
120% | 101.92% RSD = 1.43% | 100.29% RSD = 1.75% | 103.30% RSD = 1.59% | 101.00% RSD = 1.81% | 101.56% RSD = 1.50% | 101.97% RSD = 0.64% |
Preparation | Declared Concentration | Determined Concentration |
---|---|---|
Vigantoletten 1000 | 25 µg D3/tablet | xm = 26.24 SD = 0.54 RSD = 2.06% µ = xm ± 0.67 |
Vitacon | 10 mg K1/tablet | xm = 9.63 SD = 0.25 RSD = 2.55% µ = xm ± 0.30 |
Vitamin K2 MK-4 | 5 mg MK-4/capsule | xm = 5.11 SD = 0.14 RSD = 2.80% µ = xm ± 0.18 |
Vitamin D3 5000 IU Vitamin K2 100 mcg | 125 µg D3/tablet | xm = 118.75 SD = 3.32 RSD = 2.80% µ = xm ± 4.13 |
100 µg MK-9/tablet | xm = 102.06 SD = 1.61 RSD = 1.57% µ = xm ± 2.00 | |
Kinon | 75 µg MK-7/tablet | xm = 76.02 SD = 1.34 RSD = 1.76% µ = xm ± 1.66 |
Kinon D3 | 50 µg D3/tablet | xm = 47.17 SD = 0.79 RSD = 1.68% µ = xm ± 0.99 |
100 µg MK-7/tablet | xm = 103.23 SD = 1.09 RSD = 1.06% µ = xm ± 1.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubicka, U.; Padiasek, A.; Żuromska-Witek, B.; Szlósarczyk, M. Determination of Vitamins K1, K2 MK-4, MK-7, MK-9 and D3 in Pharmaceutical Products and Dietary Supplements by TLC-Densitometry. Processes 2020, 8, 870. https://doi.org/10.3390/pr8070870
Hubicka U, Padiasek A, Żuromska-Witek B, Szlósarczyk M. Determination of Vitamins K1, K2 MK-4, MK-7, MK-9 and D3 in Pharmaceutical Products and Dietary Supplements by TLC-Densitometry. Processes. 2020; 8(7):870. https://doi.org/10.3390/pr8070870
Chicago/Turabian StyleHubicka, Urszula, Agnieszka Padiasek, Barbara Żuromska-Witek, and Marek Szlósarczyk. 2020. "Determination of Vitamins K1, K2 MK-4, MK-7, MK-9 and D3 in Pharmaceutical Products and Dietary Supplements by TLC-Densitometry" Processes 8, no. 7: 870. https://doi.org/10.3390/pr8070870
APA StyleHubicka, U., Padiasek, A., Żuromska-Witek, B., & Szlósarczyk, M. (2020). Determination of Vitamins K1, K2 MK-4, MK-7, MK-9 and D3 in Pharmaceutical Products and Dietary Supplements by TLC-Densitometry. Processes, 8(7), 870. https://doi.org/10.3390/pr8070870