Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Graphene|Silver Nanoparticle (GO|Ag-NPs) Nanocomposites
2.3. Fabrication of GO|Ag-NPs|CYP2D6||GCE Nanobiosensors
3. Results and Discussion
3.1. Optical and Structural Properties of GO|Ag-NPs Nanocomposites
3.2. Morphological Properties of GO|Ag-NPs Nanocomposites
3.3. Electrochemical Studies of GO|Ag-NPs|CYT2D6||GCE Nanobiosensors
3.4. Electrochemical Detection of EMB and PZA at GO|Ag-NPs|CYP2D6||GCE Biosensors
3.5. Stability and Repeatability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res. 2014, 13, 1169–1177. [Google Scholar] [CrossRef]
- Gou, X.C.; Liu, J.; Zhang, H.L. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal. Chim. Acta 2010, 668, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Pacławski, K.; Streszewski, B.; Jaworski, W.; Luty-Błocho, M.; Fitzner, K. Zinc oxide formation via zinc nitrate complex ions reduction with glucose in the batch and in the flow microreactor systems. Colloid Surf. A 2012, 413, 208–215. [Google Scholar] [CrossRef]
- Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; et al. Synthesis of silver nanoparticles (AgNPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. 2017, 167, 282–289. [Google Scholar] [CrossRef]
- Sharma, P.; Tuteja, S.K.; Bhalla, V.; Shekhawat, G.; Dravid, V.P.; Suri, C.R. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing. Biosens. Bioelectron. 2013, 39, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 31, 490–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbeda, S.; Pokpas, K.; Titinchi, S.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Few-layer Binder Free Graphene Modified Mercury Film Electrode for Trace Metal Analysis by Square Wave Anodic Stripping Voltammetry. Int. J. Electrochem. Sci. 2013, 8, 11125–11141. [Google Scholar]
- Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Interface science and technology. In Green Nanotechnology; Nasrollahzadeh, M., Sajjadi, M.S., Sajadi, S.M., Issaabadi, Z., Eds.; Academic Press: London, UK, 2019; Volume 28, pp. 145–198. [Google Scholar] [CrossRef]
- Li, X.; Wanga, T.; Zhou, B.; Gao, B.; Cao, J.; Huang, L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 2014, 152, 531–538. [Google Scholar] [CrossRef]
- Lee, K.H.; Cho, J.Y.; Lee, H.J.; Ma, Y.K.; Kwon, J.; Park, S.H.; Park, S.H. Hydroxycinnamoylmalic acids and their methyl esters from pear (Pyrus pyrifolia Nakai) fruit peel. J. Agric. Food Chem. 2011, 59, 10124–10128. [Google Scholar] [CrossRef]
- Ko, P.Y.; Lin, S.D.; Tu, S.T.; Hsieh, M.C.; Su, S.L.; Hsu, S.R.; Chen, Y.C. High Diabetes Mellitus Prevalence with Increasing Trend Among Newly-Diagnosed Tuberculosis Patients in an Asian Population: A Nationwide Population-Based Study. Prim. Care Diabetes 2016, 10, 148–155. [Google Scholar] [CrossRef]
- Zumla, A.; Hafner, R.; Lienhardt, C.; Hoelscher, M.; Nunn, A. Advancing the development of Tuberculosis therapy. Nat. Rev. Drug Discov. 2012, 11, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, F.; Shan, C.; Han, D.; Zhang, Q.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638. [Google Scholar] [CrossRef]
- Chinnasamy, T.; Senthilkumar, K.; Periyakaruppan, A. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical immunosensor. Anal. Biochem. 2011, 417, 73–79. [Google Scholar] [CrossRef]
- Kumar, S.; Pai, A.G.; Tungenwar, P.N.; Bhandarwar, A.H. Isolated primary tuberculosis of spleen—A rare entity in the immuno-competent patient. Int. J. Surg. Case Rep. 2017, 30, 93–96. [Google Scholar] [CrossRef]
- Galashev, A.E.; Galasheva, A.A. Mercury removal from graphene by bombardment with xenon clusters: Computer simulation. High Energy Chem. 2015, 49, 347–351. [Google Scholar] [CrossRef]
- Grossman, R.F.; Hsueh, P.R.; Gillespie, S.H.; Blasi, F. Community-acquired pneumonia and tuberculosis: Differential diagnosis and the use of fluoroquinolones. Int. J. Infect. Dis. 2014, 18, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Hassanein, H.A.; Elbadry, M.I. Selective immunoglobulin M deficiency in an adult with miliary tuberculosis: A clinically interesting coexistence. A case report and review of the literature. Int. J. Mycobacteriol. 2016, 5, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Sabooni, K.; Khosravi, M.H.; Pirmohammad, H.; Afrasiabian, S.; Moghbel, N.; Shahverdi, E.; Konjedi, M.A.; Shahverdi, A. Tuberculosis peritonitis with features of acute abdomen in HIV infection. Int. J. Mycobacteriol. 2015, 4, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Kowada, A. Cost-effectiveness of interferon-γ release assay versus chest X-ray for tuberculosis screening of employees. Am. J. Infect. Control. 2011, 39, e67–e72. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Lui, W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Mathew, P.; Kuo, Y.H.; Vazirani, B.; Eng, R.H.; Weinstein, M.P. Are three sputum acid-fast bacillus smears necessary for discontinuing tuberculosis isolation? J. Clin. Microbiol. 2002, 40, 3482–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowada, A.; Deshpande, G.A.; Takahashi, O.; Shimbo, T.; Fukui, T. Cost effectiveness of interferon-gamma release assay versus chest X-ray for tuberculosis screening of BCG-vaccinated elderly populations. Mol. Diagn. Ther. 2010, 14, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.; Choi, Y.; Kwon, D.; Kim, J. Reduced graphene oxide–silver nanoparticle nanocomposite: A potential anticancer nanotherapy. Int. J. Nanomed. 2015, 10, 6257–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chook, S.W.; Chia, C.H.; Sarani, Z.; Ayob, M.K.; Chee, K.L.; Neoh, H.M.; Huang, N.M. Silver nanoparticles-graphene oxide nanocomposite for antibacterial purpose. Adv. Mater. Res. 2012, 364, 439–443. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’Homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef]
- Chettri, P.; Vendamani, V.S.; Tripathi, A.; Singh, K.M.; Pathak, A.P.; Tiwari, A. Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Appl. Surf. Sci. 2017, 406, 312–318. [Google Scholar] [CrossRef]
- Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.; Kotyczka-Morańska, M.; Setkiewicz, M. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 2016, 16, 103. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; Thiré, R.M.S.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 11743, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Simmons, J.A. Risk of cancer from diagnostic X-rays. Lancet 2004, 363, 1908–1909. [Google Scholar] [CrossRef]
- Li, F.; Jiang, X.; Zhao, J.; Zhang, S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 2015, 16, 488–515. [Google Scholar] [CrossRef] [Green Version]
- Lin-Jun, H.; Yan-Xin, W.; Jian-Guo, T.; Yao, W.; Ji-Xian, L.; Ji-Qing, J.; Wei, W. Preparation of Graphene/Silver Nanohybrid Composite with Good Surface-Enhanced Raman Scattering Characteristics. Int. J. Electrochem. Sci. 2016, 11, 398–405. [Google Scholar]
- Zhang, H.; Liu, W.; Yang, L.; Liu, J.; Wang, Y.; Mao, X.; Wang, J.; Xu, X. Fabrication of Reduced Graphene Oxide-Ag Nanocomposites and Analysis on the Interaction with BSA. J. Nanomater. 2019, 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Anouar, E.L.; Gierschner, J.; Duroux, J.; Trouillas, P. UV/Visible spectra of natural polyphenols: A time-dependent density functional theory study. Food Chem. 2012, 131, 79–89. [Google Scholar] [CrossRef]
- Hung-Ju Chen, H.; Inbaraj, B.S.; Chen, B. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique. Int. J. Mol. Sci. 2012, 13, 260–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumaran, S.S.; Rekha, C.R.; Resmi, A.N.; Jinesh, K.B.; Gopchandran, K.G. Raman and scanning tunneling spectroscopic investigations on graphene-silver nanocomposites. J. Sci. Adv. Mater. Devices 2018, 3, 353–358. [Google Scholar] [CrossRef]
- Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef]
- Srirangam, G.M.; Parameswara Rao, K. Synthesis and charcterization of silver nanoparticles from the leaf extract of Malachra capitata (L.). Rasayan J. Chem. 2017, 10, 46–53. [Google Scholar] [CrossRef]
- Lee, J.; Shin, S.; Kang, S.; Lee, S.; Seo, J.; Lee, T. Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles. J. Nanomater. 2015, 2015, 7. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C. 2009, 113, 20214–20220. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.G.; Chen, X.; Meng, F.L.; Liu, J.H.; Huang, X.J. UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A 2013, 1, 9189–9195. [Google Scholar] [CrossRef]
- Ajayi, R.F.; Nxusani, E.; Douman, S.F.; Jonnas, A.; Baker, P.G.L.; Iwuoha, E.I. An Amperometric Cytochrome P450-2D6 Biosensor System for the Detection of the Selective Serotonin Reuptake Inhibitors (SSRIs) Paroxetine and Fluvoxamine. J. Nano Res. 2016, 44, 208–228. [Google Scholar] [CrossRef]
- Cui, D.; Mi, L.; Xu, X.; Lu, J.; Qian, J.; Liu, S. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism. Langmuir 2014, 30, 11833–11840. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.G.F.; Foster, C.W.; Peter, J.; Kelly, P.J.; Brownson, A.C.; Banks, C.E. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Thu, N.T.A.; Duc, H.V.; Hai Phong, N.; Cuong, N.D.; Hoan, N.T.V.; Quang Khieu, D. Electrochemical Determination of Paracetamol Using Fe3O4/Reduced Graphene-Oxide-Based Electrode. J. Nanomater. 2018, 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 2014, 14, 15227–15243. [Google Scholar] [CrossRef]
- Devasenathipathy, R.; Mani, V.; Chen, S. Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 2014, 124, 43–51. [Google Scholar] [CrossRef]
- Wu, L.; Song, B.; Keer, L.M.; Gu, L. Molecular Dynamics Investigation of Graphene Nanoplate Diffusion Behavior in Poly-α-Olefin Lubricating Oil. Crystals 2018, 8, 361. [Google Scholar] [CrossRef] [Green Version]
- Bostick, C.D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Protein bioelectronics: A review of what we do and do not know. Rep. Prog. Phys. 2018, 81, 026601. [Google Scholar] [CrossRef] [Green Version]
- Raoof, J.B.; Ojani, R.; Beitollahi, H.; Hosseinzadeh, R. Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone modified carbon paste electrode. Anal. Sci. 2006, 22, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Burman, W.J.; Starke, J.R.; Stambaugh, J.J.; Steiner, P.; Bulpitt, A.E.; Ashkin, D.; Auclair, B.; Berning, S.E.; Jelliffe, R.W.; et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int. J. Tuberc. Lung Dis. 2004, 8, 1360–1367. [Google Scholar] [PubMed]
- Iwuoha, E.I.; Ngece, R.; Klink, M.; Baker, P. Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: A selective serotonin reuptake inhibitor. IET Nanobiotech. 2007, 4, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Ivanov, Y.D.; Bistolas, N.; Scheller, F.W.; Archakov, A.I.; Wollenberger, U. Direct Electron Transfer of Cytochrome P450 2B4 at Electrodes Modified with Nonionic Detergent and Colloidal Clay Nanoparticles. Anal. Chem. 2004, 76, 6046–6052. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Bulko, T.V.; Bachmann, T.T.; Bilitewski, U.; Schmid, R.D.; Archakov, A.I. Electrochemical Reduction of Flavocytochromes 2B4 and 1A2 and Their Catalytic Activity. Arch. Biochem. Biophy. 2002, 377, 43–48. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [Green Version]
- Cheemalapati, S.; Devadas, B.; Chen, S.M.; Ali, M.A.; Al-Hemaid, F.M. Electrochemical determination of selected antihypertensive and antituberculosis drugs at a tyrosine-modified electrode. Anal. Methods 2014, 6, 6774–6782. [Google Scholar] [CrossRef]
- Bergamini, M.F.; Santos, D.P.; Zanoni, M.V.B. Electrochemical behavior and voltammetric determination of pyrazinamide using a poly-histidine modified electrode. J. Electroanal. Chem. 2013, 690, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Devadas, B.; Cheemalapati, S.; Chen, S.M.; Ali, M.A.; Al-Hemaid, F.M. Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs. Ionics 2015, 21, 547–555. [Google Scholar] [CrossRef]
- Ferraz, B.R.L.; Leite, F.R.F.; Malagutti, A.R. Simultaneous determination of ethionamide and pyrazinamide using poly (L-cysteine) film-modified glassy carbon electrode. Talanta 2016, 154, 197–207. [Google Scholar] [CrossRef]
Biosensor | Linear Range (µM) | LOD (nM) | References |
---|---|---|---|
Tyrosine (Tyr) modified glassy carbon electrode for electrochemical determination of Ethambutol drug. | 20–1000 | 6930 | [57] |
Determination of pyrazinamide using a poly-histidine modified electrode | 10–100 | 570 | [58] |
Sensing graphene oxide/poly-arginine-modified electrode for electrochemical determination of pyrazinamide drug. | 25–1600 | 3280 | [59] |
l-cysteine (poly(l-Cys)) on a glassy carbon electrode (GCE) for electrochemical determination of pyrazinamide drug. | 0.5–51 | 113 | [60] |
Graphene-silver biosensors for ethambutol | 200–1200 | 0.0067 | Current study |
Graphene-silver biosensors for pyrazinamide | 100–600 | 0.0029 | Current study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AjayI, R.F.; Tshoko, S.; Mgwili, Y.; Nqunqa, S.; Mulaudzi, T.; Mayedwa, N.; Iwuoha, E. Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide. Processes 2020, 8, 879. https://doi.org/10.3390/pr8070879
AjayI RF, Tshoko S, Mgwili Y, Nqunqa S, Mulaudzi T, Mayedwa N, Iwuoha E. Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide. Processes. 2020; 8(7):879. https://doi.org/10.3390/pr8070879
Chicago/Turabian StyleAjayI, Rachel Fanelwa, Siphokazi Tshoko, Yonela Mgwili, Siphamandla Nqunqa, Takalani Mulaudzi, Noluthando Mayedwa, and Emmanuel Iwuoha. 2020. "Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide" Processes 8, no. 7: 879. https://doi.org/10.3390/pr8070879
APA StyleAjayI, R. F., Tshoko, S., Mgwili, Y., Nqunqa, S., Mulaudzi, T., Mayedwa, N., & Iwuoha, E. (2020). Green Method Synthesised Graphene-Silver Electrochemical Nanobiosensors for Ethambutol and Pyrazinamide. Processes, 8(7), 879. https://doi.org/10.3390/pr8070879