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Abstract

:

The biosorption ability of Lemna gibba for removing Ni2+ and Zn2+ ions in aqueous batch systems, both individually and simultaneously, was examined. The influences of solution pH and initial single and binary metal concentrations on equilibrium Ni2+ and Zn2+ biosorption was explored. The optimal solution pH for Ni2+ and Zn2+ biosorption was 6.0, for both the single and binary metal systems. Ni2+ and Zn2+ biosorption capacities increased with increasing initial metal concentrations. The presence of Zn2+ ions more adversely affected the biosorption of Ni2+ ions in the binary metal systems than vice versa. The single and binary biosorption isotherms of Ni2+ and Zn2+ revealed that L. gibba’s affinity for Zn2+ ions was higher than that for Ni2+ ions. The Redlich–Peterson and Freundlich isotherm models fit well to the experimental equilibrium data of Ni2+ ions, whereas Redlich–Peterson and Langmuir models better described the equilibrium data of Zn2+ ions in single metal systems. The modified Sips isotherm model best fit the competitive biosorption data of Ni2+-Zn2+ on L. gibba. FTIR analyses suggest the involvement of hemicellulose and cellulose in the biosorption of Ni2+ and Zn2+. The presence of Ni2+ and Zn2+ on the L. gibba surface was validated by SEM-EDX.






Keywords:


competitive biosorption; divalent nickel; divalent zinc; pH and metal concentration effect; Lemna gibba; single and binary metal biosorption isotherm












1. Introduction


Soil, surface water, and groundwater pollution by divalent nickel (Ni2+) and zinc (Zn2+) ions can occur by natural processes, but is predominantly due to anthropogenic activities [1], especially the Ni2+- and Zn2+-contaminated discharges from industrial and commercial processes, including mining; mineral processing; electroplating; production of paints, batteries, coins, and electronic commodities; and many other applications [2,3].



Ni2+ and Zn2+ are essential minerals for some living beings [4]. However, at high concentrations, they are of serious environmental, public health, human well-being, and economic concern due to their toxic effects on cell physiology and metabolism, which can decrease the viability of living organisms or even cause their death [5]. Human exposure to high Ni2+ and Zn2+ levels has been associated with serious acute and chronic health effects. Ni2+ induces hematotoxic, inmunotoxic, hepatotoxic, pulmonary toxic, nephrotoxic, and embryotoxic effects, allergic reactions, and contact dermatitis. In addition, Ni2+ impairs the natural balance of essential minerals and is a carcinogenic and teratogenic agent [6,7]. Zn2+ may cause nausea, anemia, vomiting, diarrhea, depression, and lethargy, and circulatory, liver, renal, and neurological disorders [4,8]. Furthermore, it has been reported that the toxicity of binary mixtures of Ni2+ and Zn2+ is higher than expected from that of individual heavy metals in the mixture. Ni2+ and Zn2+ exert additive or synergistic negative effects on physiological and biochemical processes of organisms [1,9,10]. Therefore, it is crucial to effectively remove Ni2+ and Zn2+ ions from industrial and domestic wastewater in order to guarantee that the quality of the treated wastewater meets the recommended standards for its intended use, and to protect aquatic and terrestrial environments and species, human health, welfare, and safety.



Biosorption technology offers potential advantages over traditional methods for the bioremediation of heavy metal-contaminated industrial and domestic wastewater, including an enhanced efficiency for removing heavy metals from diluted or concentrated aqueous solutions, faster removal rates, low operating costs and capital investment, high flexibility, lack of secondary pollution, ease of operation, simplicity of design, and the possibility of recovering the heavy metals and regenerating the biosorbents [11,12]. The competitive advantage of this technology increases when cheap, green, abundant, and widely available biosorbents are used [4].



However, most of the heavy metal biosorption studies have been performed in single metal component systems, and comparatively fewer studies have been conducted in multi-metal component systems. However, wastewater produced by many anthropogenic activities contains several heavy metal ions and other chemical species that may hinder the biosorption process [13,14]. Therefore, studies on the biosorption of heavy metals in multi-element systems are necessary and crucial to understand real systems because these systems resemble more closely the chemical compositions and physicochemical characteristics of industrial effluents than the single-metal systems [13].



Lemna gibba is a free-floating aquatic angiosperm plant. It is a member of the Araceae family and the Lemnoideae subfamily, also known as duckweed. L. gibba grows in tropical and temperate zones throughout a wide range of pH, temperature, and nutrient levels [9]. L. gibba is found abundantly throughout the year in many freshwater systems, such as lakes, lagoons, ponds, stream pools, slow flowing rivers, and stagnant waters [15,16,17]. Duckweeds are considered troublesome because they reproduce rapidly, thereby quickly covering the surfaces of water bodies with a dense layer of small plants. This prevents sunlight penetration and oxygen transfer, affecting the photosynthetic and respiratory activities of aquatic organisms [18]. Nevertheless, L. gibba is one of the most productive plants on Earth [15,19] and therefore represents a valuable biomass resource for a variety of useful practical applications.



A promising alternative use for this readily available biomass of L. gibba is as a biosorbent for removing toxic, inorganic, and organic contaminants from water and wastewaters. This is because the cell wall of Lemnaceae has carbohydrates (cellulose, hemicellulose, etc.), proteins, lipids, lignin, etc., which contain a variety of chemical functional groups, such as carboxyl, hydroxyl, amino, phosphate, sulfate, etc., which can act as binding sites for the biosorption of organic and/or inorganic contaminants [15,20]. Furthermore, L. gibba can be used effectively in several biosorption-desorption cycles of contaminants, thereby decreasing process treatment costs [21]. Additionally, L. gibba requires minimal processing (washing, drying, grinding), thereby reducing treatment costs. Likewise, L. gibba has no economic value; thus, the costs and risks involved in treatment are vastly reduced.



Nevertheless, there is scant information regarding heavy metal biosorption from aqueous solutions by L. gibba [15]. Moreover, to the best knowledge of the authors, no information exists regarding the biosorptive removal of Ni2+ and Zn2+ ions from aqueous solutions in single and binary metal systems by L. gibba.



The present work aimed to assess the potential performance of L. gibba for the individual and simultaneous biosorption of Ni2+ and Zn2+ ions, and to model the single and binary equilibrium biosorption of Ni2+ and Zn2+ of the duckweed. Furthermore, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and Fourier transform infrared spectroscopy (FTIR) analyses were conducted to confirm the biosorption of Ni2+ and Zn2+ ions onto L. gibba.




2. Materials and Methods


2.1. Ni2+ and Zn2+ Stock and Test Solutions


Some 40 mM Ni2+ and Zn2+ stock solutions were produced by accurately weighing the required amount of NiSO4·6H2O (J.T. Baker®, Monterrey, Mexico; purity >99.1%) or ZnSO4·7H2O (J.T. Baker®, Monterrey, Mexico; purity >99.9%) and dissolving it in distilled deionized water. For the single and binary metal biosorption experiments, different initial concentrations of each heavy metal ion were obtained by diluting the stock Ni2+ and Zn2+ solutions.




2.2. Preparation of Biosorbent


L. gibba was harvested in Xochimilco Lake, Mexico City, Mexico. The macrophyte was exhaustively washed with tap and distilled deionized water to completely remove aquatic plants, other than L. gibba, dead insects, garbage, and debris. The duckweed samples were then dried at 60 ℃ until reaching a dry weight constant; thereafter, the macrophyte was ground using a hammer mill, and the obtained powder was sifted through U.S. ASTM sieves to collect the fraction with particle sizes ranging from 0.3 to 0.5 mm, which was employed further in biosorption experiments.




2.3. Proximate Chemical Analysis of Biosorbent


Proximate chemical analysis of L. gibba samples was performed in triplicate, following the procedures described in the AOAC handbook [22]. We applied the Soxhlet method to quantify ether extract (EE). Total protein (TP) was determined using the Kjeldahl method, with 6.25 as the conversion factor from total nitrogen to total protein. Crude fiber (CF) was analyzed in terms of the loss in ignition of dried lipid-free residues, following digestion with H2SO4 and NaOH standard solutions. Ash (A) was verified by burning samples in a muffle furnace at 600 ℃, until the weight was constant. Nitrogen-free extract (NFE) was quantified as the difference between dry matter and the sum of ash, total protein, ether extract, and crude fiber (Equation (1)):


  % N F E = 100 − % A − % T P − % E E − % C F  



(1)








2.4. Biosorption Studies


Biosorption tests were conducted to examine the effects of metal solution pH and the initial concentrations of Ni2+ and Zn2+ ions on equilibrium metal biosorption by L. gibba. Previous kinetic studies showed that equilibrium times for Ni2+ and Zn2+ biosorption were less than 48 h (data not shown). Thus, contact time between L. gibba and Ni2+ or Zn2+, or mixtures of Ni2+ and Zn2+ solutions, of 48 h was used in equilibrium biosorption studies.



All single and binary equilibrium biosorption tests were conducted in Erlenmeyer flasks (500 mL) containing 1 g (dry weight) L−1 of L. gibba biomass and 100 mL of metal solution, with a constant agitation (Cole Parmer®, Vernon Hills, IL, USA) of 180 rpm and a temperature of 20 ℃.



In the single metal biosorption systems, the effects of the solution pH level on L. gibba Ni2+ and Zn2+ biosorption were explored in metal solutions at 2 mM initial Ni2+ or Zn2+ concentration, with solution pH values ranging from 1.0 to 6.0. Similar experiments covering the same range of solution pH values were performed to explore the influence of metal solution pH levels on the simultaneous biosorption of Ni2+ and Zn2+ ions onto L. gibba, using an equimolar initial concentration of 2 mM of both heavy metals. Metal solution pH values higher than 6.0 were not assayed to prevent the precipitation of insoluble Zn(OH)2 in the single and binary metal biosorption experiments [23]; 0.1 M NaOH or HCl solutions were used to adjust the pH of each monometal and bimetal solution to the desired value.



To investigate the influences of initial Ni2+ or Zn2+ concentration on their removal by L. gibba in single-metal systems, the initial concentrations of Ni2+ or Zn2+ ions were varied over the 0.2–30 mM range (0.2, 0.4, 1, 2, 4, 6, 10, 20, and 30 mM). For the two-metal systems, a series of tests were conducted with a constant concentration of the first metal within the interval from 0.2 to 10 mM (0.2, 0.4, 1, 2, 4, 6, and 10 mM), while varying the concentration of the second metal (0.2, 0.4, 1, 2, 4, 6, and 10 mM). A total of 49 different bimetallic systems were assayed combining the two heavy metals studied. In the two-metal systems, no experiments were performed at initial concentrations of each heavy metal greater than 10 mM due to interferences in the quantification of the two metals.



The flasks were taken out from the shaker bath (Cole Parmer®, Vernon Hills, IL, USA) at the end of the batch biosorption experiments, and the biosorbent was separated from the aqueous solutions by filtration (Whatman® grade 42, St. Louis, MI, USA). Filtrates were further used to quantify residual Ni2+ and/or Zn2+ concentrations.



Control experiments without L. gibba biomass were carried out simultaneously using the same conditions as those employed for the Ni2+ and/or Zn2+ biosorption tests to determine the loss of heavy metal ions by precipitation and/or adsorption onto the glass wall. No statistically significant differences were encountered in the Ni2+ and/or Zn2+ concentrations of the controls without L. gibba biomass, thereby corroborating that the removal of Ni2+ and/or Zn2+ ions in the experiments using L. gibba was caused solely by the macrophyte biosorbent.



The equilibrium Ni2+ and Zn2+ biosorption capacities (qe, mmol g−1) were quantified according to the following equation (Equation (2)):


   q e  =    C 0  −  C e   M   



(2)




where C0 and Ce are the initial and equilibrium Ni2+ or Zn2+ concentrations of the liquid phase (mmol L−1), respectively; and M is the L. gibba concentration (g L−1).



The quantitative simultaneous biosorption effect of both the heavy metals on L. gibba was evaluated according to global index of behavior (ξ), and ratio of biosorption capacities (Rq), which were estimated as follows:


   ξ  N i   = 100     (    ∫    C  0 N i   = 0    C  0 N i   =  C  0 N i      q  e N i   d C o N i  )  b  −   (    ∫    C  0 N i   = 0    C  0 N i   =  C  0 N i      q  e N i   d C o N i  )  m      (    ∫    C  0 N i   = 0    C  0 N i   =  C  0 N i      q  e N i   d C o N i  )  m     



(3)






   ξ  Z n   = 100     (    ∫    C  0 Z n   = 0    C  0 Z n   =  C 0  Z n    q  e Z n   d C o Z n  )  b  −   (    ∫    C  0 Z n   = 0    C  0 Z n   =  C  0 Z n      q  e Z n   d C o Z n  )  m      (    ∫    C  0 Z n   = 0    C 0  Z n =  C  0 Z n      q  e Z n   d C o Z n  )  m     



(4)






   R  q N i   =    q  e N i , b      q  e N i , m      



(5)






   R  q Z n   =    q  e Z n , b      q  e Z n , m      



(6)




where ξNi and ξZn are the global indexes of behavior for Ni2+ and Zn2+ biosorption at different initial concentrations of Zn2+ and Ni2+, respectively; (qeNidC0Ni)m and (qeNidC0Ni)b are the variations of the equilibrium biosorption capacity for Ni2+ over initial Ni2+ concentration in single and binary metal experiments, respectively; (qeZndC0Zn)m and (qeZndC0Zn)b are the variations of the equilibrium Zn2+ biosorption capacity over initial Zn2+ concentration in single and binary metal experiments, respectively; qeNi,m and qeZn,m are the equilibrium Ni2+ and Zn2+ biosorption capacities in the single metal systems respectively; and qeNi,b and qeZn,b are the equilibrium Ni2+ and Zn2+ biosorption capacities in the binary metal systems, respectively.



The experimental curves represented by (qeNidC0Ni)m, (qeNidC0Ni)b, (qeZndC0Zn)m, and (qeZndC0Zn)b were integrated using scientific and statistical software (GraphPad Prism 8.4, GraphPad Software, San Diego, CA, USA, 2020). ξ = 0 indicates that the biosorption of one heavy metal is not affected by the other heavy metal present in the binary metal solution; if ξ > 0, that signifies an improvement in the biosorption of a heavy metal in the bimetal system as compared to the monometal system (i.e., positive or synergic effect); and if ξ < 0, that denotes a diminution in the biosorption of a heavy metal in the bimetal system compared to the monometal system (i.e., negative or antagonist effect). Furthermore, Rq = 1.0 indicates that the biosorption of each heavy metal is independent (i.e., non-interaction between Ni2+ and Zn2+ ions); if Rq > 1.0, that indicates that the biosorption of one heavy metal is enhanced by the presence of the other heavy metal (i.e., synergic effect); and if Rq < 1.0, it denotes that the biosorption of one heavy metal is suppressed by the other heavy metal present in the metal mixture (i.e., antagonist effect).




2.5. Modeling of Single and Binary Equilibrium Biosorption Isotherms of Ni2+ and Zn2+ Ions


Modeling experimental equilibrium biosorption isotherm data is an essential tool for trustworthy derivation of design parameters, the comparison of quantitative biosorption performances of distinct biosorption systems, and for diverse conditions in each biosorption system. These equilibrium biosorption isotherm parameters frequently provide some understanding of the affinity and surface characteristics of the biosorbent, in addition to the interactions between the biosorbent and adsorbate, and are consequently required to understand the biosorption mechanism [24]. Therefore, it is critical to establish the most suitable biosorption isotherm model that can be used for optimizing the operation conditions and designing of future large-scale biosorption facilities [24].



2.5.1. Mono-Component Isotherm Models


Equilibrium data for biosorption of single components can be commonly interpreted by the Freundlich, Langmuir, Redlich–Peterson, and Sips isotherms.



Freundlich Isotherm Model


The Freundlich model describes non-ideal, multi-layer biosorption onto heterogeneous surfaces, indicating that biosorption sites are neither independent nor equivalent [25,26]. The Freundlich isotherm model is provided below (Equation (7)):


   q e  =  K F   C F      1   n F       



(7)




where the Freundlich parameters 1/nF and KF are relative indicators of intensity and capacity of biosorption, respectively [25].




Langmuir Isotherm Model


This isotherm model has the following assumptions: (1) each biosorption site can adsorb only one molecule of adsorbate, and consequently, only one layer of biosorbed molecules can be formed on the biosorbent surface; (2) there are no interactions between biosorbed species; (3) all the biosorption sites are identical; (4) the capability of a molecule to be biosorbed onto a given biosorption site is not dependent on the occupancy of its neighboring sites; and (5) the biosorptive forces are similar to those found in chemical interactions [26,27]. The Langmuir equation can be expressed as follows (Equation (8)):


   q e  =    q  m a x    B L   C e    1 +  B L   C e     



(8)




where qmax is the theoretical maximum biosorption capacity of the biosorbent; qe is the biosorption capacity at the equilibrium; Ce is the equilibrium adsorbate concentration in the liquid phase; and BL is the Langmuir constant that represents the reciprocal of the adsorbate concentration at which half saturation of the biosorbent is reached [25].




Sips Isotherm Model


The Sips equation is a hybrid model of the Freundlich and Langmuir isotherms, used extensively to interpret equilibrium biosorption data. It has the following form (Equation (9)) [28]:


   q e  =    q  m a x    B S   C e      n S      1 + (  B S   C e      n S    )    



(9)




where qmax is the maximum biosorption capacity; Bs is the Sips constant; and ns is the Sips parameter that characterizes the system’s heterogeneity.




Redlich–Peterson Isotherm Model


The Redlich–Peterson isotherm equation is shown in Equation (10) [27]:


   q e  =    K  R P    C e    1 + (  A  R P    C e      b  R P     )   ,   0 ≤  b  R P   ≤ 1  



(10)




where KRP, ARP, and bRP are the model parameters. This model reduces to the Langmuir isotherm when bRP = 1, to the Freundlich isotherm at high concentration of the adsorbate, and to a linear isotherm at low surface coverage.





2.5.2. Multi-Component Isotherm Models


In the case of binary metal or multi-metal systems, as is representative of industrial wastewaters, there may be interference and competition between different components for biosorption binding sites, resulting in a more complex mathematical description of the dynamic equilibrium state [29]. Therefore, the isotherm models proposed for single-component biosorption equilibrium have been modified and extended to represent the binary component and multi-component biosorption equilibria over a wide range of solution concentrations [30]. However, despite its great significance for the design of treatment systems, the equilibrium modeling of binary component and multi-component biosorption has largely been neglected [29].



Seven different multi-component isotherm models were applied to describe the simultaneous biosorption of Ni2+ and Zn2+ ions onto L. gibba, namely, non-modified competitive Langmuir, modified competitive Langmuir, modified Langmuir with an interaction factor, extended Freundlich, non-modified competitive Redlich–Peterson, modified Redlich–Peterson with interaction factor, and modified Sips isotherm models.



Non-Modified Competitive Langmuir Isotherm Model


This model has the same assumptions as the monocomponent Langmuir isotherm equation and can be expressed for components Ni2+ and Zn2+ in a mixture of both heavy metals as follows [31]:


   q  e N i   =    q  m a x N i    B  N i    C  e N i     1 +  B  N i    C  e N i   +  B  Z n    C  e Z n      



(11)






   q  e Z n   =    q  m a x Z n    B  Z n    C  e Z n     1 +  B  N i    C  e N i   +  B  Z n    C  e Z n      



(12)




where qeNi and qeZn are the equilibrium biosorption capacities of Ni2+ and Zn2+ in the bimetal system; CeNi and CeZn are the equilibrium Ni2+ and Zn2+ concentrations in binary metal solution; BNi and BZn are the constants of the Langmuir model for Ni2+ and Zn2+ biosorption in monometal systems; and qmaxNi and qmaxZn are the theoretical maximum biosorption capacities of Ni2+ and Zn2+ in the single metal systems, respectively [32].




Modified Competitive Langmuir Isotherm


Assuming the active biosorption sites are distributed uniformly on the biosorbent surface, and all the adsorbates in the liquid phase compete for the same biosorption sites of the biosorbent, the Langmuir model for single-component systems was extended for multicomponent systems as follows [30]:


   q  e N i   =    q  m a x N i     ′   B  N i     ′     C  e N i     1 +  B  N i     ′   C  e N i   +  B  Z n     ′   C  e Z n      



(13)






   q  e Z n   =    q  m a x Z n     ′   B  Z n     ′   C  e Z n     1 +  B  N i     ′   C  e N i   +  B  Z n     ′   C  e Z n      



(14)




The parameters qmaxNi′, qmaxZn′, BNi′, and BZn′ can be obtained from the fitting of Equations (13) and (14) with the experimental equilibrium biosorption data of Ni2+ and Zn2+ in the binary metal system [30].




Modified Langmuir Isotherm with an Interaction Factor η


In multicomponent biosorption systems, the biosorbent affinity for the adsorbates changes due to biosorbent-adsorbate interactions and the competition of the heavy metal ions species for biosorption binding sites. Considering these effects, an interaction term (η) for each adsorbate has been introduced into Equations (11) and (12) to yield Equations (15) and (16) [31].


   q  e N i   =    q  m a x N i    B  N i      C  e N i      η  N i       1 +  B  N i      C  e N i      η  N i     +  B  Z n      C  e Z n      η  Z n        



(15)






   q  e Z n   =    q  m a x Z n    B  Z n      C  e Z n      η  Z n       1 +  B  N i      C  e N i      η  N i     +  B  Z n      C  e Z n      η  Z n        



(16)




where ηNi and ηZn are characteristic of Ni2+ and Zn2+ ions and dependent on the concentrations of the other components in the solution [30]. These characteristic parameters can be obtained from the experimental competitive biosorption data of Ni2+ and Zn2+ ions.




Extended Freundlich Isotherm


The single-component Freundlich equation has been extended to represent the binary component biosorption system, and is expressed according to Equations (17) and (18) for each heavy metal of the binary mixture of adsorbates [30]:


   q  e N i   =    K  F N i    C  e N i       1   n  F N i     +  x  N i        C  e N i       x  N i     +  y  N i    C  e Z n       z  N i        



(17)






   q  e Z n   =    K  F Z n    C  N Z n       1   n  F Z n     +  x  Z n        C  e Z n       x  Z n     +  y  Z n    C  e N i       z  Z n        



(18)




where KFNi, KFZn, nFNi, and nFZn are Freundlich parameters that are obtained from the corresponding single-component Freundlich isotherm models; whereas xNi, yNi, zNi, and xZn, yZn, and zZn are the competitive Freundlich biosorption parameters for Ni2+ and Zn2+ ions, respectively.




Modified Sips Isotherm


The single-component Sips isotherm model can be extended to describe the biosorption in binary-component systems [32]:


   q  e N i   =    q  m a x N i    B  s N i    C  e N i       n  s N i       1 +  B  s N i    C  e N i       n  s N i     +  B  s Z n    C  e Z n       n  s Z n        



(19)






   q  e Z n   =    q  m a x Z n    B  s Z n    C  e Z n       n  s Z n       1 +  B  s N i    C  e N i       n  s N i     +  B  s Z n    C  e Z n       n  s Z n        



(20)




where the modified Sips model parameters qmaxNi, qmaxZn, BsNi, BsZn, nsNi, and nsZn are obtained from binary component biosorption data [32].




Non-Modified Competitive Redlich-Peterson Isotherm


The competitive Redlich–Peterson isotherm models for binary component biosorption systems are given in Equations (21) and (22):


   q  e N i   =    K  R P N i    C  e N i     1 +  A  R P N i    C  e N i       b  R P N i     +  A  R P Z n    C  e Z n       b  R P Z n        



(21)






   q  e Z n   =    K  R P Z n    C  e Z n     1 +  A  R P N i    C  e N i       b  R P N i     +  A  R P Z n    C  e Z n       b  R P Z n        



(22)




where KRPNi, KRPZn, ARPNi, ARPZn, bRPNi, and bRPZn are the single-component Redlich–Peterson model parameters for the Ni2+ and Zn2+ ions components [33].




Modified Redlich-Peterson Isotherm with Interaction Factor η


The competitive Redlich–Peterson isotherm model can be extended with an interaction factor η, in a manner analogous to that of the modified Langmuir isotherm model, and can be expressed for components Ni2+ and Zn2+ in a bimetal system [34] as follows:


   q  e N i   =    K  R P N i      C  e N i      η  N i       1 +  A  R P N i          C  e N i      η  N i          b  R P N i     +  A  R P Z n          C  e Z n      η  Z n          b  R P Z n        



(23)






   q  e Z n   =    K  R P Z n      C  e Z n      η  Z n       1 +  A  R P N i          C  e N i      η  N i          b  R P N i     +  A  R P Z n          C  e Z n      η  Z n          b  R P Z n        



(24)




where ηNi and ηZn are the correction coefficients for Ni2+ and Zn2+ ions estimated from binary metal biosorption data; and KRPNi, KRPZn, ARPNi, ARPZn, bRPNi, and bRPZN are derived from the corresponding single-component biosorption data [34].






2.6. Determination of Isotherm Parameters and Statistical Analysis


Batch biosorption experiments were conducted in triplicate to confirm the reproducibility of the results and for statistical analysis. The data reported herein represent the mean values ± standard deviations. Biosorption data of Ni2+ and Zn2+ were analyzed by variance analysis and Tukey’s test (p < 0.05), using GraphPad Prism 8.4 (GraphPad Software, San Diego, CA, USA, 2020).



The isotherm parameters of all the single-metal and binary-metal models were obtained by nonlinear regression analysis using the software MATLAB® (version 2020a; The Mathworks, Inc., Natick, MA, USA, 2020). The standard deviation of the residuals (RMSE and Sy.x), the sum of squares error (SSE), and the coefficient of determination (R2) were used to determine the adequacy and accuracy of the fit of the various isotherm models assayed with the experimental data. Small RMSE, Sy.x, SSE values, and a value of R2 near 1.0 indicate a better description of experimental biosorption data by a particular model [28].




2.7. FTIR Analysis


FTIR spectroscopy was employed to gain information about the main chemical functional groups present on the L. gibba surface, and to detect possible modifications of active biosorption sites on the L. gibba surface during the biosorption of Ni2+, Zn2+, or the binary mixture of Ni2+ and Zn2+ ions.



L. gibba (1 g L−1) samples were mixed with aqueous solutions of 10 mM Ni2+, 10 mM Zn2+, or with 10 mM solutions of equimolar mixtures of Ni2+ and Zn2+ ions at pH 6.0 ± 0.1 for 24 h, with constant agitation at 180 rpm and 20 ± 1 ℃ to saturate the active biosorption sites with Ni2+, Zn2+, or with both Ni2+ and Zn2+ ions. The resulting suspensions were subsequently centrifuged for 5 min at 5000 rpm to pellet the L. gibba biomass. The pellets collected were washed thoroughly with distilled deionized water to remove the unbound heavy metals. After centrifuging the resulting suspensions, the obtained heavy metal-loaded L. gibba biomass was dried at 105 ℃ to remove any retained water which could interfere with the detection of hydroxyl functional groups on the L. gibba surface [35].



Finely ground raw (i.e., not loaded with Ni2+ and/or Zn2+ ions) and heavy metal-loaded L. gibba samples were mixed with dried potassium bromide (Merck™, Germany; spectroscopic grade) in a ratio of 1:5 and examined by diffuse reflectance FTIR spectroscopy in a Perkin–Elmer FTIR spectrophotometer (Spectrum 2000, Perkin-Elmer, Inc., Waltham, MA, USA). FTIR spectra data were collected over the wavenumber range of 4000–400 cm−1, at a resolution of 4 cm−1, for a total of 16 scans.




2.8. SEM and SEM-EDX Analysis


The surface structures of L. gibba samples, prior to and following saturation with Ni2+ and/or Zn2+ ions, were studied using a scanning electron microscope (SEM; FEI Quanta Dual Beam Instrument, FEI Company, Hillsboro, OR, USA) with an accelerated voltage of 15 kV. The analysis of chemical elements was conducted by energy dispersive X-ray spectrometry (EDX) using an Apollo X detector (EDAX, AMETEK, Inc., Berwyn, PA, USA). For the analysis, samples remained uncoated at low vacuum conditions to improve electron conductivity and image quality.




2.9. Analytical Techniques


Ni2+ and Zn2+ concentrations in liquid solution were assessed colorimetrically using a UV-Vis Evolution 201 (Thermo Fisher Scientific, Whaltman, MA, USA) spectrophotometer, following the methodology outlined in the Hach Water Analysis Handbook [36]. Ni2+ and Zn2+ concentrations were determined from calibration curves established for each heavy metal with a minimum of seven concentration levels.





3. Results and Discussion


3.1. Proximate Composition of L. gibba


The analysis results of the proximate chemical composition of L. gibba are as follows (on a dry matter basis): total carbohydrates, 46.57 ± 1.5%; total proteins, 26.29 ± 0.51%; total ashes, 19.04 ± 0.41%; and total lipids, 8.10 ± 0.05%. It is apparent that L. gibba is rich in carbohydrates and proteins and has a low fat content. These findings concur with those reported for the Lemnaceae by Schmid and Landolt [37] and Landesman [38]. The polymeric compounds present in L. gibba biomass have many chemical functional groups that can be binding sites for the biosorptive removal of toxic metal ions from aqueous solutions.




3.2. Influences of Metal Solution pH on the Individual and Simultaneous Biosorption of Ni2+ and Zn2+ onto L. gibba


The pH of a metal ion solution is among the crucial environmental factors that affect heavy metal biosorption from liquid solutions due to its ability to influence the chemical speciation, degree of ionization, and aqueous solubility of heavy metals. Metal ion solution pH also influences competition with other heavy metal ions present in the liquid phase and the dissociation degree of chemical functional groups present on the surface of biosorbents [11,12].



To find the optimum value of solution pH for Ni2+ and Zn2+ biosorption onto L. gibba for the single metal and binary metal systems, biosorption tests with the solution pH varying from 1.0 to 6.0 were performed. The influences of the pH of the aqueous metal solution on the equilibrium Ni2+ and Zn2+ biosorption capacities for the single and binary heavy metal systems are illustrated in Figure 1.



It is apparent that the equilibrium biosorption capacities of Ni2+ and Zn2+ ions increased as the solution pH increased and reached its highest value at pH 6.0, both for the mono-metal and bi-metal systems. This biosorption behavior may be due to the fact that at low solution pH levels, the active binding sites available on the L. gibba surface are mostly protonated, resulting in electrostatic repulsion between the Ni2+ and Zn2+ cationic species and the positive electrical surface charges of L. gibba, and the competition between H+ ions and Ni2+ and Zn2+ ions for occupancy of the binding sites. Contrastingly, the extent of Ni2+ and Zn2+ biosorption increases with increasing solution pH presumably due to a decrease in competition between H+ ions and Ni2+ and Zn2+ ions for the biosorption binding sites, and also due to an increase in the number of negative electrical charges on the L. gibba surface, which results in a greater electrostatic attraction between the L. gibba surface and Ni2+ and Zn2+ ions [11].



Previous studies have reported an optimal solution pH of 6.0 for Ni2+ and Zn2+ biosorption in single metal systems [39,40,41]. However, to the best knowledge of the authors, no works have investigated the influence of pH of the metal solution on the simultaneous biosorption of Ni2+ and Zn2+ ions from an aqueous solution.



The capacities of Zn2+ biosorption were higher than those of Ni2+ at pH values greater than 3.0 and 4.0, for the single metal and binary metal systems, respectively. At solution pH values of 5.0 and 6.0, no statistically significant difference was observed in Zn2+ biosorption capacities between single and binary metal systems, which indicates that Zn2+ biosorption onto L. gibba was not significantly affected by the presence of Ni2+ ions at the studied conditions. Contrastingly, a noticeable decrease in biosorption capacity of Ni2+ was observed when Zn2+ ions were present in the metal solution with pH values between 3.0 and 6.0.



The results show that the solution pH of 6.0 is most suitable for the single and binary Ni2+ and Zn2+ biosorption onto L. gibba. Consequently, all subsequent experiments were conducted with a solution pH of 6.0.




3.3. Influence of Initial Metal Concentration in the Single and Binary Biosorption Systems of Ni2+ and Zn2+ onto L. gibba


The influences of initial concentrations of Ni2+ and Zn2+ on the L. gibba equilibrium biosorption capacities of the heavy metals in monometal and bimetal systems are displayed in Figure 2 and Figure 3, respectively. The capacity of metal biosorption of L. gibba increased as the initial concentration of Ni2+ or Zn2+ in single (Figure 2) and binary metal systems increased (Figure 3).



These results can be attributed to the fact that the greater the initial concentration of Ni2+ or Zn2+ ions, the greater the number of Ni2+ or Zn2+ ions in the aqueous metal solution, which results in a greater number of interactions between the metal ions and the L. gibba biomass. Additionally, a higher initial Ni2+ or Zn2+ concentration also causes metal concentration gradient increases, resulting in a faster transfer of Ni2+ or Zn2+ ions from the bulk of the liquid phase to the L. gibba surface due to an enhanced mass transfer coefficient, along with providing the driving force to overwhelm the mass transfer resistances of Ni2+ or Zn2+ ions between the liquid phase and the L. gibba biomass [11,12].



Figure 2 shows that L. gibba’s Zn2+ biosorption capacity was higher than Ni2+ biosorption capacity up to a 15 mM initial metal concentration in the single metal systems. At higher initial metal concentrations, the Ni2+ and Zn2+ biosorption capacities were similar. However, the initial slope of the curve that relates Zn2+ biosorption capacity as a function of initial Zn2+ concentration was higher than the initial slope of the curve relating biosorption capacity of Ni2+ ions to initial Ni2+ concentration (Figure 2), which indicates that L. gibba biomass has a greater affinity for Zn2+ ions than for Ni2+ ions.



Similarly, the results of simultaneous biosorption of Ni2+ and Zn2+ ions also show that the biosorption of a heavy metal was affected to a differing extent by the other heavy metal present in the metal solution, and that L. gibba biosorption capacity for Zn2+ ions was higher than that for Ni2+ ions (Figure 3).



Regardless of the initial concentration of Ni2+ assayed, the L. gibba Ni2+ biosorption capacity at equilibrium decreased with the increasing of initial Zn2+ concentration (Figure 3a). Similarly, the global behavior index for the biosorption of Ni2+ ions decreased from −2.1% to −60.3% as the initial concentration of Zn2+ ions increased from 0.2 to 10 mM (Table 1). This indicates that the greater the initial Zn2+ concentration, the higher the adverse effect on Ni2+ biosorption.



Furthermore, Table 2 displays that RqNi values are far less than 1.0 at almost all initial Zn(II) concentrations, indicating that Zn2+ interfered with Ni2+ biosorption onto L. gibba. These results show that Zn2+ inhibited biosorption of Ni2+ ions.



Similarly, Figure 3b and global behavior index data (Table 3) of Zn2+ biosorption in the presence of Ni2+ ions revealed that the initial concentrations of Ni2+ in the range of 0.2 to 2.0 mM have a far lower adverse effect on Zn2+ biosorption onto L. gibba than initial Ni2+ concentrations higher than 2.0 mM.



Furthermore, the inhibitory influence of Ni2+ on Zn2+ biosorption was only evident when the initial concentration of Ni2+ was greater than the equimolar ratio (Table 4).



Hence, these results confirm that L. gibba biomass has a higher preference for Zn2+ ions than for Ni2+ ions, and that Zn2+ biosorption was almost free from interferences from Ni2+ ions at concentration ratios lower than or equal to the equimolar ratio, at the reported working conditions.



The higher biosorption preference of L. gibba for Zn2+ ions over Ni2+ ions could be attributed to the higher ionic radius (Zn, 74 pm; Ni, 69 pm) and atomic weight (Zn, 65.4; Ni, 58.7) of Zn2+ than of Ni2+. Generally, the higher the ionic size and atomic weight of a heavy metal, the higher the affinity of a biosorbent for the heavy metal [42,43]. Consequently, the preference of a biosorbent for biosorbing the heavy metal will be maximum [44]. This may be due to the fact that the motion of a heavy metal has a greater atomic mass generating a greater energy of momentum, which can facilitate the binding of the heavy metal to the biosorbent by increasing the probability of interaction between the binding sites of the biosorbent and the heavy metal, leading to a higher biosorption preference by a biosorbent [44].



A higher affinity for the biosorption of Zn2+ ions than for Ni2+ ions has been previously reported [45].




3.4. Isotherms and Their Modeling


3.4.1. Single-Metal Biosorption Systems


The equilibrium biosorption isotherm provides important information on the interactions between the biosorbent and the adsorbate (e.g., heavy metal) and is consequently needed to understand the mechanism of biosorption [25]. Figure 4 presents the experimental biosorption isotherm of Ni2+ (Figure 4a) and Zn2+ (Figure 4b) ions at pH 6.0 and at 20 ℃, for the single metal systems.



It is evident that the biosorption capacities at the equilibrium of Ni2+ and Zn2+ increased as the equilibrium concentrations of Ni2+ and Zn2+ ions in the solution increased. The initial slopes of the Ni2+ and Zn2+ biosorption isotherms steadily decrease with increasing equilibrium metal concentrations because metal ions have more difficulty finding vacant active biosorption sites with the progressive covering of the L. gibba surface. This dynamic indicates a progressive occupation of L. gibba’s active sites by Ni2+ or Zn2+ ions [11]. In addition, the initial slope of the Zn2+ isotherm was steeper than that of the Ni2+ isotherm, which is indicative of a higher affinity of L. gibba biomass for Zn2+ ions than for Ni2+ ions.



Furthermore, the analysis of biosorption equilibrium data is essential to establish the most suitable isotherm equation that characterizes precisely the process of biosorption, which can also be employed to optimize the design and operating conditions of a biosorption system [11,25].



Isotherm models with two (Freundlich and Langmuir) and three (Redlich–Peterson and Sips) parameters were assessed for their ability to fit the experimental data of Ni2+ and Zn2+ equilibrium biosorption onto L. gibba. The biosorption parameters for each metal ion obtained from the non-linear regression analysis of the isotherm models employed in this work are shown in Table 5, together with the values of R2, Sy.x, RMSE, and SSE. Likewise, Figure 4 displays the isotherm curves predicted by the four isotherm models.



The Freundlich, Redlich-Peterson, and Sips isotherm equations best described Ni2+ biosorption data, as evidenced by the lowest Sy.x, RMSE, and SSE and the highest R2 values of these models. Nonetheless, the Sips model was not capable of predicting the experimental maximum Ni2+ biosorption capacity (qmax = 0.91 mmol g−1). Therefore, the Sips model is unsuitable for interpreting the experimental equilibrium isotherm for the biosorption of Ni2+ ions onto L. gibba. The Freundlich model parameter nF, which is related to the biosorption intensity, was found to be 2.59. This value is within the range of 1 to 10, which suggests that Ni2+ biosorption by L. gibba is favorable at the conditions being studied [11].



Furthermore, according to the error function (R2, RMSE, Sy.x, and SSE) values, the Langmuir, Redlich–Peterson, and Sips isotherm equations better represented the experimental equilibrium data of Zn2+ biosorption onto L. gibba than the Freundlich model. However, the Sips model was unable to adequately predict the maximum equilibrium Zn2+ biosorption capacity obtained experimentally (0.88 mmol g−1). Thus, the Sips model is not appropriate for describing the biosorption isotherm of Zn2+ ions onto L. gibba. Contrastingly, the Langmuir model predicted a maximum biosorption capacity of Zn2+ ions of 0.852 mmol g−1, which closely matched the experimental value. Similarly, the exponent value of the Redlich–Peterson (bRP = 0.885) model was close to 1.0. In this case, the Redlich–Peterson model is transformed to the Langmuir equation [28].



Considering these results, it is concluded that the Freundlich and Redlich–Peterson models provided the most suitable representations of the biosorption isotherm of Ni2+ ions by L. gibba, whereas the Langmuir and Redlich–Peterson models best described the equilibrium biosorption pattern for Zn2+ biosorption.



Furthermore, the values of the constants BL of Langmuir equation and nF of Freundlich equation for Zn2+ biosorption are higher than those for Ni2+ biosorption. These results confirm that L. gibba has a greater affinity for Zn2+ ions than for Ni2+ ions, as the higher the values of BL and nF, the higher the affinity between the adsorbate and biosorbent [30,40].




3.4.2. Binary-Metal Biosorption Systems


For the purpose of representing the equilibrium data of binary biosorption of Ni2+ and Zn2+ on L. gibba in a suitable graphical method, three-dimensional biosorption surfaces were built, plotting the capacity of Ni2+ or Zn2+ biosorption at equilibrium (z-axis) versus the Ni2+ and Zn2+ concentrations at equilibrium (x- and y-axis). Figure 5 displays the three-dimensional biosorption isotherm surfaces of the Ni2+-Zn2+ bimetal system.



3D plots confirmed that biosorption of Ni2+ ions was negatively influenced to a great extent by Zn2+ ions present in aqueous solution (Figure 5a), whereas the presence of Ni2+ in the liquid phase had a less pronounced influence on Zn2+ biosorption (Figure 5b). This difference can be attributed to the competition between Ni2+ and Zn2+ ions for the same active biosorption sites on the L. gibba biomass surface and to the higher affinity of L. gibba for Zn2+ than for Ni2+. Moreover, these results clearly show that an antagonistic competitive effect occurs in the biosorption of each single heavy metal ion (Figure 5a,b), particularly at the high concentration range.



Table 6 reports the calculated parameter values of the different multicomponent isotherm models assayed in this work for the binary biosorption of Ni2+ and Zn2+ ions onto L. gibba, together with the corresponding error functions (i.e., R2, Sy.x, RMSE, and SSE values).



The comparative analysis of the error function values indicates that several of the applied models can be used for the estimation of the biosorption behavior of Ni2+-Zn2+ binary mixtures on L. gibba. However, the modified Sips model gives the best fitting for this binary metal system. The agreement between experimental results and those calculated by the modified Sips model is shown in Figure 5 (points and mesh surfaces, respectively). The modified Sips model predicted maximum capacities for Ni2+ and Zn2+ biosorption of 0.75 and 0.764 mmol g−1, respectively, for the binary metal system.





3.5. FTIR Analysis


FTIR spectroscopy analyses were performed on raw (i.e., not loaded with Ni2+ or Zn2+ ions), Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded L. gibba samples to determine the chemical functional groups present on the L. gibba surface that might play a key role in the biosorptive removal of Ni2+ and Zn2+ ions from the liquid phases. To achieve this purpose, the FTIR spectrum of raw biosorbent was compared with that of Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded L. gibba (Figure 6).



The abundant infrared absorption bands within the range of 4000–400 cm−1 in the FTIR spectrum of raw L. gibba is indicative of the complex chemical composition of its surface. The broad FTIR band at 3800–2800 cm−1, with a minimum at 3294 cm−1, corresponds to the stretching vibration of hydrogen-bonded –OH and –NH functional groups. This infrared absorption band is associated with the vibrations of the linked -OH groups in lignin, cellulose, and hemicellulose, which are present in Lemnaceae, and water adsorbed on the surface of lignocellulosic biomass [35,46]. Likewise, the -NH stretching vibration band in the FTIR spectrum of raw L. gibba indicated the presence of amino acids in the duckweed biomass, which are the building blocks of proteins. These polymeric compounds constitute approximately 29.26% of the dry biomass of L. gibba.



At approximately 2921 cm−1, the absorption band is attributed to the stretching vibration of CH2 and C-H functional groups found in lignin [35]. The absorption bands at approximately 1656 cm−1 and 1544 cm−1 are indicative of C=O stretching and N-H bending of amide I and amide II functional groups, respectively [35]. The C-O stretching of cellulose, hemicellulose, and proteins, and the -SO3 stretching vibration of hemicelluloses, were detected at 1448 and 1240 cm−1, respectively [35]. The absorption band of C-H vibration of cellulose and hemicellulose at approximately 1321 cm−1 [35,47] was also found in the FTIR spectrum of raw L. gibba. In addition, the FTIR band at 1092 cm−1 was assigned to the vibrations of O-H and C-O-C groups of polysaccharides [41].



After loading Ni2+, Zn2+, or (Ni2+ + Zn2+) ions onto the raw L. gibba biosorbent, the FTIR spectra displayed several changes related to the polysaccharides present in the biosorbent. Among these changes was the shifting of the absorption band from 1448 to 1434, 1433, and 1418 cm−1 in the FTIR spectra of Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded L. gibba, respectively. Furthermore, the FTIR band at 1092 cm−1 shifted to 1104, 1107, and 1104 cm−1 in the FTIR spectra of Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded biosorbent, respectively. Likewise, the absorption band at 3294 cm−1 shifted to 3353, 3351, and 3310 cm−1 in the FTIR spectra of Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded L. gibba, respectively. It is well known that shifts in FTIR bands after metal biosorption are suggestive of interactions between the biosorbent’s functional groups and metal ions [35]. Furthermore, another important change was the disappearance of the absorption band at 1321 cm−1 in the absorption spectra of Ni2+-loaded, Zn2+-loaded, and (Ni2+ + Zn2+)-loaded L. gibba. Considering the aforementioned assignments, these changes clearly denote the involvement of hemicellulose and cellulose of L. gibba in the biosorption of Ni2+ and Zn2+ ions.




3.6. SEM-EDX Analysis


SEM was employed to examine the physical morphology of the L. gibba surface before and after metal biosorption. SEM micrographs (Figure 7) displayed differences in surface morphology between the raw (Figure 7a) and the heavy metal-loaded L. gibba (Figure 7b–d).



The raw biosorbent showed a relatively regular surface morphology. Contrastingly, the morphology of the biosorbent surface changed after metal biosorption, becoming heterogeneous and smooth. These results are in agreement with other studies that have also found differences between the surface morphology of metal-unloaded and metal-loaded biosorbents [48,49].



Results of EDX analysis showed the presence of carbon, oxygen, nitrogen, sodium, magnesium, silicon, sulfur, chlorine, and potassium, and the absence of nickel and/or zinc on the L. gibba surface before interacting with heavy metals (Figure 7a). However, new Ni (Figure 7b), Zn (Figure 7c), and (Ni + Zn) (Figure 7d) peaks were observed on the biosorbent surface after interacting with Ni2+, Zn2+, and (Ni2+ + Zn2+) ions.



Furthermore, SEM and elemental mappings of Ni2+ and Zn2+ on a particular surface spot after heavy metal biosorption are provided in Figure 8.



Bright spots denote the presence of nickel (Figure 8a,c) or zinc (Figure 8b,d) on the L. gibba surface. It is apparent that the biosorbed Ni and Zn ions were not distributed uniformly on the L. gibba surface, indicating that only some chemical functional groups present on the L. gibba surface were capable of biosorbing the divalent metal ions from the aqueous solutions. Therefore, SEM-EDX analysis confirmed the biosorption of Ni2+ and Zn2+ ions onto L. gibba.





4. Conclusions


This study demonstrates that L. gibba is an effective and promising biosorbent for the simultaneous removal of Ni2+ and Zn2+ ions from liquid solutions. Solution pH value has a significant influence on Ni2+ and Zn2+ biosorption by L. gibba, both in the single and in binary metal systems. The maximum levels of divalent heavy metal biosorption occurred at pH 6.0. In both the single and binary metal biosorption systems, the affinity of L. gibba for Zn2+ ions was greater than for Ni2+ ions. In the binary metal biosorption systems, it was observed that Zn2+ ions exhibited a strong antagonistic effect on Ni2+ biosorption. Contrastingly, the interference of Ni2+ ions on Zn2+ biosorption was less significant. Redlich–Peterson and Freundlich models were found to better fit Ni2+ equilibrium data, whereas Redlich–Peterson and Langmuir models provided the best fit of the Zn2+ equilibrium data in single metal biosorption systems. The simultaneous biosorption of Ni2+ and Zn2+ ions onto the L. gibba was adequately and satisfactorily described by the modified competitive Sips model. FTIR results suggest that Ni2+ and Zn2+ ions bind to L. gibba’s polysaccharides, and SEM-EDX analysis validated the presence of the heavy metals on the surface of duckweed. Both Ni2+ and Zn2+ ions could be desorbed easily from heavy metal-loaded L. gibba using acid solutions, and facilitate heavy metal recovery and biosorbent regeneration.
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Figure 1. The effects of solution pH on Ni2+ and Zn2+ biosorption from aqueous solutions by Lemna gibba in single (●— Ni2+, —■— Zn2+) and binary (---○--- Ni2+, ---□--- Zn2+) metal systems. 
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Figure 2. The effects of initial metal concentration on Ni2+ and Zn2+ biosorption from aqueous solutions in single metal systems. 
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Figure 3. The effects of initial metal concentration on Ni2+ (a) and Zn2+ (b) biosorption from aqueous solutions in binary metal systems. 
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Figure 4. Isotherms of Ni2+ (a) and Zn2+ (b) biosorption on Lemna gibba in single metal systems. 
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Figure 5. Isotherms of Ni2+ (a) and Zn2+ (b) biosorption on Lemna gibba in binary metal systems (● experimental data; — (mesh surface), modified Sips model prediction). 
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Figure 6. FTIR spectra of raw (a), Ni2+-loaded (b), Zn2+-loaded (c), and (Ni2+ + Zn2+)-loaded (d) Lemna gibba. 
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Figure 7. SEM-EDX micrographs of raw (a), Ni2+-loaded (b), Zn2+-loaded (c), and (Ni2+ + Zn2+)-loaded (d) Lemna gibba. 
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Figure 8. SEM/X-ray mapping of Lemna gibba loaded with Ni2+ (a) and Zn2+ (b) in single metal systems, and with Ni2+ (c) and Zn2+ (d) in binary metal systems. 
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Table 1. The global index of behavior for Ni2+ biosorption (ξNi) at different initial Zn2+ concentrations.
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	Initial Zn2+ Concentration

(mM)
	ξNi

(%)





	0.2
	−2.096



	0.4
	−8.474



	1
	−19.157



	2
	−30.772



	4
	−43.319



	6
	−52.371



	10
	−60.335
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Table 2. The ratio of Ni2+ biosorption capacity (RqNi) at different initial Zn2+ concentrations.
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C0Zn

(mM)

	
C0Ni (mM)




	
0.2

	
0.4

	
1

	
2

	
4

	
6

	
10






	
0.2

	
0.69

	
0.68

	
0.79

	
0.98

	
0.99

	
0.99

	
0.98




	
0.4

	
0.52

	
0.42

	
0.67

	
0.90

	
0.95

	
0.92

	
0.94




	
1

	
0.43

	
0.31

	
0.61

	
0.76

	
0.86

	
0.84

	
0.79




	
2

	
0.26

	
0.24

	
0.49

	
0.63

	
0.74

	
0.74

	
0.68




	
4

	
0.12

	
0.10

	
0.36

	
0.54

	
0.61

	
0.59

	
0.55




	
6

	
0.02

	
0.07

	
0.24

	
0.40

	
0.55

	
0.50

	
0.47




	
10

	
0.01

	
0.05

	
0.16

	
0.30

	
0.44

	
0.44

	
0.39








C0Ni = Initial Ni2+ concentration; C0Zn = Initial Zn2+ concentration.
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Table 3. The global index of behavior for Zn2+ biosorption (ξZn) at different initial Ni2+ concentrations.
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	Initial Ni2+ Concentration

(mM)
	ξZn

(%)





	0.2
	−0.127



	0.4
	−0.374



	1
	−2.171



	2
	−2.507



	4
	−8.548



	6
	−12.079



	10
	−16.536
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Table 4. The ratio of Zn2+ biosorption capacity (RqZn) at different initial Ni2+ concentrations.
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C0Ni

(mM)

	
C0Zn (mM)




	
0.2

	
0.4

	
1

	
2

	
4

	
6

	
10






	
0.2

	
0.93

	
0.96

	
0.96

	
1.00

	
1.00

	
1.00

	
1.00




	
0.4

	
0.50

	
1.00

	
0.98

	
0.97

	
1.00

	
1.00

	
0.99




	
1

	
0.32

	
0.88

	
0.96

	
0.98

	
0.95

	
1.00

	
1.00




	
2

	
0.24

	
0.68

	
0.94

	
0.99

	
0.94

	
1.00

	
1.00




	
4

	
0.19

	
0.61

	
0.74

	
0.80

	
0.91

	
0.97

	
0.99




	
6

	
0.04

	
0.48

	
0.54

	
0.71

	
0.89

	
0.95

	
1.00




	
10

	
0.02

	
0.33

	
0.44

	
0.61

	
0.80

	
0.94

	
1.00








C0Ni = Initial Ni2+ concentration; C0Zn = initial Zn2+ concentration.
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Table 5. Isotherm model parameters for Ni2+ and Zn2+ biosorption in single metal systems.
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Model

	
Ni2+

	
Zn2+




	
Langmuir






	
qmax (mmol g−1)

	
0.982 ± 0.074

	
0.852 ± 0.022




	
BL (L mmol−1)

	
0.231 ± 0.053

	
0.875 ± 0.112




	
R2

	
0.965

	
0.9885




	
SSE

	
0.029

	
0.011




	
Sy.x

	
0.060

	
0.0352




	
RMSE

	
0.057

	
0.0333




	
Freundlich




	
KF (mmol g−1) (mmol L−1)−1/nF

	
0.253 ± 0.007

	
0.382 ± 0.028




	
nF

	
2.587 ± 0.069

	
3.705 ± 0.388




	
R2

	
0.997

	
0.961




	
SSE

	
0.002

	
0.037




	
Sy.x

	
0.017

	
0.064




	
RMSE

	
0.016

	
0.061




	
Sips




	
qmax (mmol g−1)

	
2.849 ± 0.744

	
0.974 ± 0.040




	
Bs (mmol L−1)-nS

	
0.095 ± 0.026

	
0.677 ± 0.061




	
nS

	
0.476 ± 0.03

	
0.710 ± 0.051




	
R2

	
0.999

	
0.997




	
SSE

	
0.001

	
0.003




	
Sy.x

	
0.011

	
0.019




	
RMSE

	
0.010

	
0.017




	
Redlich–Peterson




	
KRP (L g−1)

	
1.886 ± 0.523

	
1.234 ± 0.098




	
ARP (mmol L−1)-BRP

	
6.456 ± 2.038

	
2.028 ± 0.222




	
bRP

	
0.655 ± 0.012

	
0.885 ± 0.011




	
R2

	
0.999

	
0.999




	
SSE

	
0.001

	
0.001




	
Sy.x

	
0.010

	
0.011




	
RMSE

	
0.009

	
0.010
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Table 6. Isotherm model parameters for Ni2+ and Zn2+ biosorption in binary metal systems.
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Ni2+

	
Zn2+

	

	
Ni2+

	
Zn2+




	
Non-modified competitive Langmuir

	
Modified Sips






	
qmaxNi

	
0.982 ± 0.074

	

	
qmax Ni

	
0.750 ± 0.048

	




	
qmaxZn

	

	
0.852 ± 0.022

	
BS Ni

	
0.488 ± 0.063

	
0.306 ± 0.115




	
BLNi

	
0.231 ± 0.053

	
0.231 ± 0.053

	
nS Ni

	
0.903 ± 0.048

	
0.970 ± 0.165




	
BLZn

	
0.875 ± 0.112

	
0.875 ± 0.112

	
qmax Zn

	

	
0.764 ± 0.018




	
R2

	
0.935

	
0.985

	
BS Zn

	
0.941 ± 0.151

	
1.202 ± 0.123




	
SSE

	
0.122

	
0.067

	
nS Zn

	
0.785 ± 0.050

	
1.195 ± 0.059




	
Sy.x

	
0.045

	
0.033

	
R2

	
0.988

	
0.989




	
RMSE

	
0.044

	
0.032

	
SSE

	
0.022

	
0.050




	

	

	

	
Sy.x

	
0.019

	
0.029




	
Modified Langmuir with interaction factor η

	
RMSE

	
0.018

	
0.028




	
qmaxNi

	
0.982 ± 0.074

	

	

	

	




	
qmaxZn

	

	
0.852 ± 0.022

	
Non-modified competitive Redlich-Peterson




	
BLNi

	
0.231 ± 0.053

	
0.231 ± 0.053

	
KRP Ni

	
1.886 ± 0.523

	




	
BLZn

	
0.875 ± 0.112

	
0.875 ± 0.112

	
ARP Ni

	
6.456 ± 2.038

	
6.456 ± 2.038




	
η Ni

	
1.076 ± 0.049

	
1.237 ± 0.161

	
bRP Ni

	
0.655 ± 0.012

	
0.655 ± 0.012




	
η Zn

	
1.809 ± 0.206

	
1.041 ± 0.046

	
KRP Zn

	

	
1.234 ± 0.098




	
R2

	
0.960

	
0.986

	
ARP Zn

	
2.028 ± 0.222

	
2.028 ± 0.222




	
SSE

	
0.075

	
0.063

	
bRP Zn

	
0.885 ± 0.011

	
0.885 ± 0.011




	
Sy.x

	
0.035

	
0.032

	
R2

	
0.903

	
0.440




	
RMSE

	
0.034

	
0.031

	
SSE

	
0.182

	
2.526




	

	

	

	
Sy.x

	
0.055

	
0.207




	
Modified competitive Langmuir

	
RMSE

	
0.054

	
0.200




	
qmax Ni′

	
0.675 ± 0.02

	

	

	

	




	
qmax Zn′

	

	
0.832 ± 0.015

	
Modified Redlich–Peterson with interaction




	
BNi′

	
0.523 ± 0.045

	
0.194 ± 0.026

	
factor η

	




	
BZn′

	
0.74 ± 0.066

	
0.908 ± 0.063

	
KRP Ni

	
1.886 ± 0.523

	




	
R2

	
0.985

	
0.986

	
ARP Ni

	
6.456 ± 2.038

	
6.456 ± 2.038




	
SSE

	
0.028

	
0.061

	
bRP Ni

	
0.655 ± 0.012

	
0.655 ± 0.012




	
Sy.x

	
0.021

	
0.032

	
KRP Zn

	

	
1.234 ± 0.098




	
RMSE

	
0.021

	
0.031

	
ARP Zn

	
2.028 ± 0.222

	
2.028 ± 0.222




	

	

	

	
bRP Zn

	
0.885 ± 0.011

	
0.885 ± 0.011




	
Extended Freundlich

	
η Ni

	
1.019 ± 0.04

	
28.292 ± 6.56




	
KF Ni

	
0.253 ± 0.007

	

	
η Zn

	
0.382 ± 0.036

	
0.868 ± 0.054




	
nF Ni

	
2.587 ± 0.069

	

	
R2

	
0.984

	
0.983




	
KF Zn

	

	
0.382 ± 0.028

	
SSE

	
0.031

	
0.077




	
nF Zn

	

	
3.705 ± 0.388

	
Sy.x

	
0.022

	
0.035




	
xNi

	
0.687 ± 0.067

	

	
RMSE

	
0.022

	
0.034




	
yNi

	
0.759 ± 0.075

	

	

	

	




	
zNi

	
0.823 ± 0.055

	

	

	

	




	
xZn

	

	
2.142 ± 0.285

	

	

	




	
yZn

	

	
0.074 ± 0.027

	

	

	




	
zZn

	

	
1.249 ± 0.211

	

	

	




	
R2

	
0.980

	
0.978

	

	

	




	
SSE

	
0.037

	
0.095

	

	

	




	
Sy.x

	
0.025

	
0.040

	

	

	




	
RMSE

	
0.024

	
0.039

	

	

	












© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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