Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System
Abstract
:1. Introduction
2. Formulation of Gradient Estimator
3. PEMFC Potential-Current Behavior
4. Application of Oxygen Pressure Estimator to a PEMFC System
5. Simulations and Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sopian, K.; Daud, W.R.W. Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 2006, 31, 719–727. [Google Scholar] [CrossRef]
- Shen, M.; Scott, K. Power loss and its effect on fuel cell performance. J. Power Sources 2005, 148, 24–31. [Google Scholar] [CrossRef]
- Leonardi, S.G.; Bonavita, A.; Donato, N.; Neri, G. Development of a hydrogen dual sensor for fuel cell applications. Int. J. Hydrogen Energy 2018, 43, 11896–11902. [Google Scholar] [CrossRef]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Chapter one-background and introduction. In Control Fuel Cell Power System; Advances in Industrial Control; Grimble, M.J., Johnson, M.A., Eds.; Springer: London, UK, 2004; pp. 1–13. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; Chapter 1; pp. 1–24. [Google Scholar] [CrossRef]
- Daud, W.; Rosli, R.; Majlan, E.; Hamid, S.; Mohamed, R.; Husaini, T. PEM fuel cell system control: A review. Renew. Energy 2017, 113, 620–638. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L.; Huang, W.; Li, Z.; Davies, B. Polymer electrolyte membrane fuel cell fault diagnosis and sensor abnormality identification using sensor selection method. J. Power Sources 2020, 447, 227394. [Google Scholar] [CrossRef]
- Wee, J.-H. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 2007, 11, 1720–1738. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Chen, W. Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning. Int. J. Hydrogen Energy 2020, 45, 13483–13495. [Google Scholar] [CrossRef]
- Abbaspour, A.; Yen, K.K.; Forouzannezhad, P.; Sargolzaei, A. An Adaptive Resilient Control Approach for Pressure Control in Proton Exchange Membrane Fuel Cells. IEEE Trans. Ind. Appl. 2019, 55, 6344–6354. [Google Scholar] [CrossRef]
- Li, S.; Aitouche, A.; Wang, H.; Christov, N. Sensor fault estimation of PEM fuel cells using Takagi Sugeno fuzzy model. Int. J. Hydrogen Energy 2020, 45, 11267–11275. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Péra, M.-C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Higgins, S.R.; Ewan, J.; St-Pierre, J.; Severa, G.; Davies, K.; Bethune, K.; Goodarzi, A.; Rocheleau, R. Environmental sensor system for expanded capability of PEM fuel cell use in high air contaminant conditions. Int. J. Hydrogen Energy 2018, 43, 22584–22594. [Google Scholar] [CrossRef]
- Arama, F.Z.; Mammar, K.; Laribi, S.; Necaibia, A.; Ghaitaoui, T. Implementation of sensor based on neural networks technique to predict the PEM fuel cell hydration state. J. Energy Storage 2020, 27, 101051. [Google Scholar] [CrossRef]
- Jung, S.-W.; Lee, E.K.; Kim, J.H.; Lee, S.-Y. High-concentration nafion-based hydrogen sensor for fuel-cell electric vehicles. Solid State Ion. 2020, 344, 115134. [Google Scholar] [CrossRef]
- Xiao, N.; Wu, R.; Huang, J.J.; Selvaganapathy, P.R. Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand. Sens. Actuators Chem. 2019, 127432. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lin, J.-T.; Chen, C.-H.; Lee, S.-J.; Wang, Y.-S. Development of a four-in-one sensor for low temperature fuel cell. Renew. Energy 2019, 135, 1452–1465. [Google Scholar] [CrossRef]
- He, L.; Liu, Q.; Zhang, S.; Zhang, X.; Gong, C.; Shu, H.; Wang, G.; Liu, H.; Wen, S.; Zhang, B. High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application. Electrochem. Commun. 2018, 94, 18–22. [Google Scholar] [CrossRef]
- Montpart, N.; Baeza, M.; Baeza, J.A.; Guisasola, A. Low-cost fuel-cell based sensor of hydrogen production in lab scale microbial electrolysis cells. Int. J. Hydrogen Energy 2016, 41, 20465–20472. [Google Scholar] [CrossRef]
- Lavanya, N.; Sekar, C.; Fazio, E.; Neri, F.; Leonardi, S.; Neri, G. Development of a selective hydrogen leak sensor based on chemically doped SnO2 for automotive applications. Int. J. Hydrogen Energy 2017, 42, 10645–10655. [Google Scholar] [CrossRef]
- Hayakawa, I.; Iwamoto, Y.; Kikuta, K.; Hirano, S. Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sens. Actuators Chem. 2000, 62, 55–60. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Chen, Z. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer. Int. J. Hydrog. Energy 2020, 45, 13508–13522. [Google Scholar] [CrossRef]
- Astolfi, A.; Ortega, R. Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Control. 2003, 48, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles. Automatica 2013, 49, 2160–2167. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, H.; Yin, G.; Ding, Z. High performance nonlinear adaptive control of temperature in cryogenic wind tunnel. Int. J. Robust Nonlinear Control 2019, 25, 5118–5136. [Google Scholar] [CrossRef]
- Ortega, R.; Nikiforov, V.; Gerasimov, D. On modified parameter estimators for identification and adaptive control, A unified framework and some new schemes. Annu. Rev. Control. 2020. [Google Scholar] [CrossRef]
- Liu, X.; Ortega, R.; Su, H.; Chu, J. Immersion and invariance adaptive control of nonlinearly parameterized nonlinear systems. IEEE Trans. Autom. Control 2010, 55, 2209–2214. [Google Scholar] [CrossRef]
- Ortega, R.; Liu, X.; Su, H.; Chu, J. Immersion and invariance adaptive control of nonlinearly parameterized nonlinear systems *. IFAC Proc. Vol. 2010, 43, 641–646. [Google Scholar] [CrossRef]
- Liu, X.; Ortega, R.; Su, H.; Chu, J. On adaptive control of nonlinearly parameterized nonlinear systems: Towards a constructive procedure. Syst. Control Lett. 2011, 60, 36–43. [Google Scholar] [CrossRef]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Chapter three-fuel cell system model: Fuel cell stack. In Control Fuel Cell Power System; Advances in Industrial Control; Grimble, M.J., Johnson, M.A., Eds.; Springer: London, UK, 2004; pp. 31–56. [Google Scholar] [CrossRef]
- Musio, F.; Tacchi, F.; Omati, L.; Stampino, P.G.; Dotelli, G.; Limonta, S.; Brivio, D.; Grassini, P. PEMFC system simulation in matlab-simulink® environment. Int. J. Hydrogen Energy 2011, 36, 8045–8052. [Google Scholar] [CrossRef]
- Sankar, K.; Aguan, K.; Jana, A.K. A proton exchange membrane fuel cell with an airflow cooling system: Dynamics, validation and nonlinear control. Energy Convers. Manag. 2019, 183, 230–240. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer electrolyte fuel cell model. J. Electrochem. Soc. 1991, 138, 2334–2342. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Chapter Five-Problemas de Valor Inicial Para Ecuaciones de Diferenciales Ordinarias. Available online: https://latinoamerica.cengage.com/ls/analisis-numerico-2/ (accessed on 27 August 2020).
- Shen, M.; Meuleman, W.; Scott, K. The characteristics of power generation of static state fuel cells. J. Power Sources 2003, 115, 203–209. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
Cell Active Area | 100 cm | |
Reference Potential | 1229 V | |
Maximum Current Density | 2.2 A·cm | |
Atmospheric Pressure | 1 atm | |
Cathode Pressure | 2 atm | |
Hydrogen Pressure | 1 atm | |
Water Pressure | atm | |
Membrane Thickness | cm | |
Initial Temperature | K | |
Initial Potential Drop | V | |
Membrane Humidity Function | cm | |
Constant | 350 K | |
Constant | SO H cm | |
Constant | cm | |
Constant | 10 A | |
Constant | 2 (-) | |
Temperature and Potential Function | V·K | |
Temperature and Potential Function | V· K | |
Temperature and Potential Function | T V· K+ V | |
Temperature and Potential Function | T V·K V | |
Temperature and Potential Function | T V· K V | |
Temperature Function | T K | |
Temperature Function | T K | |
Temperature Function | T K | |
Temperature Function | T K | |
Membrane Humidity | 14 HO· (SO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Gómez, Á.; Ramirez, V.; Saldivar, B. Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System. Processes 2020, 8, 1095. https://doi.org/10.3390/pr8091095
Hernández-Gómez Á, Ramirez V, Saldivar B. Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System. Processes. 2020; 8(9):1095. https://doi.org/10.3390/pr8091095
Chicago/Turabian StyleHernández-Gómez, Ángel, Victor Ramirez, and Belem Saldivar. 2020. "Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System" Processes 8, no. 9: 1095. https://doi.org/10.3390/pr8091095
APA StyleHernández-Gómez, Á., Ramirez, V., & Saldivar, B. (2020). Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System. Processes, 8(9), 1095. https://doi.org/10.3390/pr8091095