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Abstract: A common denominator in the vast majority of processes in the food industry is refrigeration.
Such systems guarantee the quality and the requisites of the final product at the expense of high
amounts of energy. In this regard, the new Industry 4.0 framework provides the required data to
develop new data-based methodologies to reduce such energy expenditure concern. Focusing in this
issue, this paper proposes a data-driven methodology which improves the efficiency of the refrigeration
systems acting on the load side. The solution approaches the problem with a novel load management
methodology that considers the estimation of the individual load consumption and the necessary
robustness to be applicable in highly variable industrial environments. Thus, the refrigeration system
efficiency can be enhanced while maintaining the product in the desired conditions. The experimental
results of the methodology demonstrate the ability to reduce the electrical consumption of the
compressors by 17% as well as a 77% reduction in the operation time of two compressors working in
parallel, a fact that enlarges the machines life. Furthermore, these promising savings are obtained
without compromising the temperature requirements of each load.

Keywords: data-driven; load management; multi-layer perceptron; partial load ratio; refrigeration
systems; compressors; energy efficiency; energy disaggregation; NILM; optimization

1. Introduction

Nowadays, energy efficiency in industrial processes is considered one of the bases for economic
competitiveness and growth [1,2]. In this regard, most of the food processes require highly consuming
refrigeration systems in order to preserve the quality and properties of products. Therefore, it is crucial
to maximize the efficiency of such refrigeration systems to save energy in the food industry.

Aligned with the energy saving strategies, the current Industry 4.0 paradigm opens new paths
towards more efficient energy management strategies for industrial processes. The data collected in
the industrial refrigeration systems can become a key asset in order to develop novel methodologies to
achieve an efficient energy management.

The improvement in terms of efficiency of refrigeration systems has multiple approaches, from the
retrofitting of the current refrigerant [3,4], to the replacement of the classical systems with hybrid
systems [5–7]. However, in scenarios where the refrigeration machinery cannot be modified due to
economical or process restrictions, the refrigeration systems are commonly improved by manipulating
the generation part, composed by the compressors and the condensers, or modifying the temperatures
of operation, the evaporation and condensation [8–12]. Nevertheless, by manipulating the load side,
composed by the evaporators of the refrigeration system, it is also possible to improve the efficiency of
the refrigeration system in an indirect way [13–15].
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In the load side approach, the thermal inertia is used to apply different load response strategies such
as load shifting and shedding in order to modify the power consumption shape [16]. However, to be
able to manage the loads of a refrigeration system arises the necessity to identify the cooling loads of
each refrigerated space. Therefore, the required methodology to tackle the load management problem
should consider the estimation of the cooling loads.

In this regard, the current manuscripts about the estimation of the loads, also called non-intrusive
load monitoring (NILM) or energy disaggregation in literature, put their efforts to estimate the electrical
consumption of the refrigeration machinery [17,18] and not into the cooling load.

Other articles divide the whole cooling load of a system into various estimated sub-items such
as the conduction, solar, air, or internal loads of a whole building [19,20], but omit the discrete
consumption of each refrigerated space or even each cooling machine.

From a load management perspective, in a common refrigeration system, the spaces to refrigerate
should maintain a certain temperature, and are typically controlled by a deadband, which means that
the evaporators turn on when the temperature reaches the upper limit and turn off when they reach
the lower limit. Hence, the cooling capacity is used randomly as well as the energy consumption in
order to supply the demand necessities [21].

To improve such operation, and avoid non-desired compressor switches, several studies are
presented; from thermal energy storages (TESs) such as phase change materials (PCMs) to accumulate
the energy [22], to model predictive control (MPC) strategies, which use forecasting information to
anticipate the demand behavior. In these approaches, most of the cooling loads are mathematically
described by the equivalent thermal parameter models [23], using software such as TRNSYS and
EnergyPlus or using data-driven techniques to model the load behavior or even to identify the
equivalent thermal parameter (ETP) equations parameters [24].

Moreover, most of the state of the art load management techniques are based on forecasting
models [13–15]. Such applications take advantage of the periodicity in the load to model the
behavior and manage the loads in consequence. However, characteristics that affect industrial
refrigeration systems, such as various spaces to refrigerate in parallel or huge cooling loads that appear
randomly due to its nature, can hinder the forecasting reliability and the subsequent load management.
These situations, hinder the application of methodologies that incorporate forecasting in delicate
refrigeration processes, since the errors associated with the forecasted signals can affect negatively the
management and compromise the product quality.

In the present article, the proposed methodology to manage the cooling loads of a refrigeration
system considers the estimation of the cooling loads, with a novel NILM strategy presented in our
previous work [25], and takes advantage of such estimation to reduce the compressors electrical
expenditure under non-scheduled processes. Such increase of the compressors operation efficiency is
achieved modulating the load by means of the switching of the evaporators allocated in the different
spaces to refrigerate. The methodology guarantees the product quality constraints while reducing the
energy consumption.

This paper is organized as follows: First, the description of the refrigeration system and the
management issue addressed is given in Section 2. Section 3 describes the basis of the proposed
methodology for AI (Artificial Intelligence) based load management. Finally, Section 4 presents the
experimental results about the application of the methodology to the industrial refrigeration system
and the corresponding discussion is given in Section 5.

2. System Description and Problems Addressed

The test system is an overfeed vapor compression refrigeration cycle. The goal of these systems
is to remove heat of a space. In order to accomplish such task, the refrigerant circulates through the
system depicted in Figure 1. This system consists of two main circuits, the first one is composed by
four condensers, two compressors, an expansion device, a low pressure separator receiver, and a high
pressure receiver. Then, the second one is composed by a low pressure separator receiver, a common
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element in both circuits, three pumps to force the liquid recirculation, and various evaporators
distributed in the eight spaces to refrigerate (S1–S8) of the facility.
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the facilities.

The refrigerant employed in the overfeed refrigeration system is the ammonia (R717), due to its
efficiency in low temperatures, its environmentally friendly properties, its heat transfer, and its low
price. In the first circuit, the refrigerant in vapor state is suctioned by the compressors from the low
pressure separator receiver to increase the refrigerant pressure. In order to perform that job and to
provide enough cooling capacity (Q) to satisfy plant demand, two screw compressors are located in
parallel. These compressors are the part of the system that consume the majority of the energy [26]
and also its performance is highly reduced when their slide valve, the mechanism used to change the
capacity, is below the nominal conditions [27]. The screw compressors are the most used in industrial
refrigeration systems with huge cooling capacities to supply [28]. Other types of compressors that
are used in some industrial applications, such as the reciprocating ones, have different performance
behavior, which are not further detailed in this article.

Currently, in the studied system, the screw compressors capacity is controlled with a classic
proportional-integral-derivative controller (PID) in order to supply the desired cooling power, switching
the second one when the desired cooling power is not reached during a specific amount of time.
To provide more detail about a typical screw compressor, a performance curve is depicted in Figure 2 [29],
where it can be appreciated that the coefficient of performance (COP), which is the ratio between the
cooling capacity and the electrical consumption, is lower in small cooling capacities. Such COP curve
of the compressor is highly influenced by the operation conditions, specifically the suction pressure and
the discharge pressure, which are the pressures at the inlet and outlet of the compressor respectively.
In the test system, these values can vary depending on the type of the load processed and the outdoor
temperature and humidity. Specifically, the suction pressure varies between 1.6 and 2 bar, and the
discharge pressure fluctuates between 8 and 12 or 13 bar in the hottest days of the summer.
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Subsequently, in the condensers, the refrigerant is cooled to change the phase from vapor to liquid
and reject the heat The aforesaid condensers block is formed by four evaporative condensers in parallel
with five fans and a water pump, each one to be able to reject the heat from the refrigerant to outdoor,
property which is highly influenced by outdoor conditions. Finally, the low-pressure receiver, which is
the common part of both circuits, contains R717 in a mixture of a vapor–liquid state. The pressure
inside the receiver is maintained by the compressors and its set point is established considering the
desired evaporation temperature.

In the second circuit, the refrigerant is suctioned by the pumps and led to the evaporators.
The pumps, are used to guarantee the refrigerant overfeed mass flow through the evaporators
distributed alongside the spaces to refrigerate of the facility. Afterwards, in the evaporators located at
the different S, the refrigerant is partially evaporated and then returned to the low pressure separator
receiver [30]. Such evaporators are turned on or off according to the specific temperature ranges of
each individual S, without considering the operation of the other S operating in parallel. When a space
to refrigerate is above the desired range, more evaporators are turned on, while when the temperature
is below the range, the evaporators are turned off. A brief description of the characteristics of each S is
depicted in Table 1.

Table 1. Characteristics of each space to refrigerate.

Id Type of Organic
Load

N◦

Evaporators
T Set Point

(◦C)
Average Working
Time Per Day (h) Area (m2)

S1 Chicken tunnel 3 −0.5 19 1164
S2 Chicken tunnel 3 −0.5 19 1407
S3 Pig tunnel/chamber 5 −2/−10 14 1246
S4 Meat chamber 4 0 24 270
S5 Meat chamber 4 0 24 575

S6 Turkey
tunnel/chamber 4 −2/1 19 754

S7 Chicken tunnel 6 −0.8 19 684
S8 Quail tunnel 1 −0.3 3 418

The described operation of the refrigeration system is constantly being monitored and controlled
by means of the different signals acquired, Figure 3. All the information collected in the system
is acquired employing different sensors such as pressure sensors (WIKA S20), temperature sensors
(WIKA T15.H), or valve positioning reeds (included in the valve itself 027H9065) and read with different
PLCs (Siemens 319-3 and various S7-200), which also control the system operation. These PLCs are
communicating minutely with a relational DDBB (MySQL) in order to store the data, basis for this
data-driven research work. The employed dataset for the study is available at the IEEE DataPort in [31].
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Challenges Improving Compressors Performance by Means of Load Management

Although the proposed management strategy is focused on the load side, in order to enhance the
comprehension of a refrigeration system particularities and highlight the challenges addressed in this
paper, a theoretical performance curve of a two screw compressors, C1 and C2, working in parallel is
explained. In this regard, Figure 4 shows the relation of the resulting coefficient of performance (COP)
versus the Q of C1 and C2 for specific operation conditions of the system.
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As it can be seen, the performance decreases substantially when the compressors are operating
under their nominal cooling capacity, the thing that happens regularly when the system works with
two compressors in parallel. Furthermore, the maximum COP of the system cannot be reached at
the maximum cooling capacity as the characteristics of the two compressors working in parallel
are different, a fact that limits the COP in such situations. Even though both compressors had the
same technical specifications, the wear associated to its operation in a real scenario would influence
the maximum reachable COP, which implies that the performance would be lower at full cooling
capacity than when the least degraded machine works alone at full load. The period of time both
compressors are working in parallel is defined as simultaneity, and since such situation implies a
significant decrease of system performance, simultaneity time should be minimized by the proposed
methodology. In this regard, the objective of this paper is to define a load management method that
increases the refrigeration system efficiency by reducing the time that the system is operating with two
compressors in parallel.

The simultaneity happens when the cooling demand increases and the second compressor is
switched. In such situation, the electrical consumption of the refrigeration system increases substantially
and, in most cases, only to provide a higher Q during a short period of time. These situations can
be reduced or eliminated if the cooling consumption of each load is properly managed. In fact,
such reduction can be performed by managing the loads, that is to increase or decrease the amount of
cooling power they are receiving from the compressors to modify the shape of the Q curve.

Accordingly, in refrigeration systems, the cooling load seen by the compressors can be adjusted
mainly in two different approaches, the first one consists on changing the configuration of the multiple
evaporators allocated in each S in order to modify the cold flow each S is receiving. The second approach
consists on modifying the final product quantity each S is trying to refrigerate. Scheduling strategies to
change the spaces occupancy are proper approaches in such issues, however, in the explained problem,
the quantity of products processed can be irregular and the stochastic nature of such processes cannot
be modified. Thus, scheduling is not viable and techniques that employ forecasting assumptions that
can induce error can be harmful for the product quality.

Hence, with all the aforementioned restrictions and particularities, the methodology should take
advantage of the intrinsic thermal storage properties of each S to reduce simultaneity among the
different S. In this regard, Figure 5 exemplifies a permissible temperature range of a specific space
to refrigerate. Such range can be used by the proposed methodology to manage the loads without
damaging the product quality.
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The proposed methodology in this paper is focused on reducing the simultaneity of operation of
the different spaces to refrigerate, it does so by stopping the evaporators of the spaces to refrigerate
that are inside the permissible range when other spaces require a higher amount of cooling power
demand. Such management should manage the load contributing to avoid the unwanted switching
of the second compressor while preserving he product temperature constraints. The creation of an
automatic methodology to perform such cooling load management is presented in this paper.
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3. Overall Load Management Methodology

The proposed load management methodology is depicted in Figure 6, which is defined in
two main blocks, the first focuses on solving the individual energy monitoring issue by means of
a disaggregation strategy and the second block manages the cooling loads in order to reduce the
compressors simultaneity. Such strategy is applied in order to increase overall energy efficiency in
terms of electricity consumption by reducing the time that a second compressor is used without
being necessary.
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The methodology begins with the generation of a model that defines the individual consumption
of each space to refrigerate (Load disaggregation). The model of each individual cooling load is fitted
using only the historical operation data and the aggregated consumption as target. Considering that
most of these systems do not have access to labelled data to train the models due to the elevated
cost of the instrumentation, and taking advantage of the benefits of having historical operation data,
a semisupervised technique is proposed to solve this NILM problem. To provide a clear following of
the description of the proposed solution, each step of the methodology is labelled with a letter (from a
to g).

First of all, in (a), a feature engineering step is employed to develop new appliance characteristics
based on its operation information, such as the elapsed time since the machine was turned on/off or
the number of machines operating. These new features are used as inputs to the subsequent step
to improve the system characterization and disaggregation capabilities. Afterwards, the algorithm
designed for the disaggregation task is trained using the aggregated consumption data as target and
the previously computed features, together with the system signals, as inputs (b). Finally, and to finish
this first disaggregation block, the model of each load is obtained separately by the proposed algorithm
structure (c).

With the disaggregation task completed, the methodology manages the demand response in order
to improve the efficiency in the generation side of the system. The real-time data acquired from the
system PLCs are used to perform the same feature engineering (d) as in the disaggregation step (b).
Thus, the same features can be used to identify the individual consumption of each load. To accomplish
such task, and besides the mentioned features, the models created in the previous step (c) are also
utilized in this step (e).
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The demand necessities of each space to refrigerate, named S, which can be e.g., a cooling tunnel,
a cooling chamber, etc., are now evaluated in regard to the temperature set point together with the
current temperature and its variation. To do such task, each S is assessed in step (f) to increase or
diminish its power consumption and also, to be able to recognize the spaces to refrigerate that can
be used to modulate the whole consumption. The aforesaid assessment is performed using the tags:
increase, when more power its necessary to refrigerate the space, decrease when the space is colder
than its necessary, or free to designate the spaces which are within its correct temperature range and
can be used to mitigate changes in the current load demands.

Thus, the product temperature conditions are guaranteed and never altered by the management
strategy as the modifications are done only with the spaces with the “free” tag. The selection of the
rules for such assessment parameters is critical for product quality, hence, they should be chosen by
process experts taking into account the kind of load that each S work with.

Finally, the last module (g) manages the loads to combine them in order to manage the demand
response, which is the final objective of this methodology. In this regard, this module is in charge of
modifying the evaporators management of the loads that are within its desired temperature bounds,
assessed as “free” in step (f), according to a defined optimization cost function. In this regard, the cost
function of the algorithm is defined to smooth as much as possible the aggregated consumption curve
Q. By smoothing Q, we are indirectly trying to preserve a single compressor operation and avoiding
switching actions, since the changes of the load that might cause the switching of a new compressor
are mitigated with the switching of the evaporators of each S that is within the temperature deadband.
Therefore, this step is able to operate the compressors in a more efficient partial load ratio (PLR) while
avoiding unnecessary and harmful switches.

3.1. Load Disaggregation

The NILM approach for cooling loads is detailed and validated, with a mathematical simulation
performed in Matlab and in a real refrigeration system, in our previous work [25]. However, as part of
the methodology presented in this article, a brief summary of the disaggregation structure is presented.

In general terms, the NILM is performed with a neural network structure. The structure uses
the inputs selected and created in the feature engineering part to model the aggregated consumption
signal. Even though the structure is trained with the aggregated consumption, it is able to estimate the
individual load of each S.

The structure is made up by three main layers: the first one composed by various multi-layer
perceptron neural networks (MLP) in charge to model the behavior of each S, the second one composed
by a neuron in charge to activate or deactivate the output and the weight update of its previous MLP,
and the third one in charge to aggregate the output of the previous layers in order to train the model
with the aggregated consumption.

The first layer contains as many MLPs as spaces to refrigerate. Each MLP can be seen as an
individual network, but they are trained together with the same aggregated consumption signal as
target due to the summation layer that connects all the previous outputs.

The second layer has the functionality to enable or disable the output of each MLP according to
the refrigeration space status (ON/OFF). This refrigeration space status is the signal of the evaporators
allocated in each S. In case that the evaporators of a specific S are OFF, its MLP should not contribute to
the total consumption. This layer helps the proposed structure to learn the load of each S.

Finally, the last layer is used to sum all the previous sub-nets output and generate the aggregated
output. Thus, the whole structure is able to be trained simultaneously with the whole consumption
signal, Q.

The mathematical expression of the proposed three-layered network structure is presented in
Equation (1):

Q′ =
N∑

n = 1

MLPn(wn; xn)(λn), (1)
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where Q′ is the estimated aggregated signal, N the number of available spaces to refrigerate, wn the
n-th MLP weights, xn the n-th MLP inputs, and λn the n-th space to refrigerate status (ON/OFF).

3.2. Load Management

Knowing the consumption of each evaporator of the refrigeration system thanks to the
disaggregation, and being aware of the operation restrictions in order to maintain the product
quality, a mathematical optimization problem arises to manage the load for reducing the compressors
simultaneity and preserving the compressors in efficient cooling capacities. The optimization algorithm
can be approached as an integer non-linear problem with the objective to find the best number of
evaporators turned ON in each S in order to minimize the consumption variability, as shown in
Equation (2).

The main concern of any optimization algorithm is the selection of its associated cost function.
Such cost function is intended to modify the demand curve progressively, and reduce the compressors
simultaneity time and the global amount of compressor switching. Therefore, the designed cost
function variates the number of operating evaporators to modify the demand shape:

argmin{G}(Qt −Q′t+1), (2)

where:

Q′t+1 =
N∑

n = 1

Gn,t+1 × Q̂n,t+1. (3)

Being Q̂ the cooling load consumed by an evaporator obtained with the disaggregation
consumption model, N the number of spaces to refrigerate, where (N = total number of S), and G the
number of active evaporators. The number of active evaporators in a space to refrigerate is modified
according to an assessment strategy. This fact can be done due to the previously explained permissible
temperature range of each space to refrigerate.

Each space evaluates the necessity of Q to preserve the set point conditions, thus, some of the spaces
to refrigerate are forced to “upgrade” or “downgrade” by means of starting or stopping evaporators.
Otherwise, if the space to refrigerate is within its deadband, assessed as “free”, the optimization solver
can choose the number of evaporators that minimizes the function. With such free spaces, the load can
be managed to achieve the desired objective. Mathematically speaking, such assessments are described
as bounds in in the G selection:

Us =


min(Gn,t+1 + 1, Bn), (εT,n,t < h1

n)∨
(
(εT,n,t < h2

n)∧ (∆Tn,t < h3
n)

)
max(Gn,t+1 − 1, 0), (εT,s,t > h4

s )∨
(
(εT,n,t > h5

n)∧ (∆Tn,t > h6
n)

)
,

Bn, otherwise
(4)

Ls =


min(Gn,t+1 + 1, Bn), (εT,n,t < h1

n)∨
(
(εT,n,t < h2

n)∧ (∆Tn,t < h3
n)

)
max(Gn,t+1 − 1, 0), (εT,s,t > h4

s )∨
(
(εT,n,t > h5

n)∧ (∆Tn,t > h6
n)

)
0, otherwise

(5)

In the displayed boundary functions Equations (4) and (5), U and L refer to the upper and lower
boundaries respectively and B is the max amount of available evaporators. The multiple h are the fixed
thresholds selected using each space to refrigerate deadband and cooling necessities. Such cooling
necessities can vary depending on the type of the product to refrigerate, the characteristics of the space
to refrigerate, or the machinery installed in each space.

Finally, εT,n is the temperature (Tn) error regarding the set point (TSPn) displayed in Equation (6)
and ∆T is the temperature difference among two consecutive timesteps, Equation (7):

εT,n,t = (Tn,t − TSPn,t), (6)



Processes 2020, 8, 1106 10 of 21

∆Tn,t = (Tn,t−1 − Tn,t). (7)

As the formulated optimization problem is non-linear, a little trick is performed in order to
transform it to linear and reduce its complexity, and hence, its computation time [32]. The trick consists
in dividing the problem into two linear optimization problems shown in Equations (8) and (9):

argmin{G}(Qt −Q′t+1) ≥ 0, (8)

argmin{G}(Q′t+1 −Qt) ≥ 0. (9)

Finally, the lowest of the two solutions is selected in order to recommend the number of evaporators
in each space.

The results of the load management methodology aim to reduce the time with two compressors
operating and increase the efficiency of the compressors by maintaining its cooling capacities in the
optimal zone.

Note that the validation of the impact of such load management strategies applied in a real
scenario is not common in the literature. For this reason, two different scores have been used in order
to quantify the impact of the proposed methodology. These scores are the simultaneity coefficient,
and the time that the compressors are operating in high efficiency cooling capacities.

Firstly, this simultaneity coefficient measures, in minutes, how much time two compressors
have been working in parallel, as shown in Equation (10). This is a key parameter that should be
minimized, since worst performances are achieved when the refrigeration system is operating with
two compressors in parallel in situations where they are not required:

Simultaneity(min) =
I∑

i = 1

C1oniANDC2oni . (10)

Being C1oni and C2oni the compressor status (ON/OFF) in the timestep i and I is the number of
minutes of a day, 1440. This metric is used as follows: in most scenarios this simultaneity happens when
a peak occurs and a second compressor is needed to supply the demand necessities, e.g., situations
where a new refrigerated space is turned on or some load is input to a refrigerated space and forces the
operation of multiple evaporators in parallel. After these situations, and due to compressors constraints,
even the peak has already passed and the second compressor is no further needed, it remains operative
to minimize the starts and stops, leading to a poor performance operation. The load management
should reduce the simultaneity time where the system operates with two compressors.

Secondly, to measure the compressors performance, the partial load ratio (PLR) is directly
employed. The compressors efficiency is highly related with its PLR, which is the percentage of
cooling capacity provided. Typically, compressors are designed to operate efficiently in its nominal
PLR conditions, which are about 90–100% of its total cooling capacity. Therefore, higher partial loads
mean higher efficiencies, hence, the PLR is used to measure the compressors efficiency. The metric is
formulated as in Equation (11), which measures the percentage of time per day that the compressors
were operating above 90% of its PLR (ρday):

ρday =

(
t>90
C1 + t>90

C2

)
× 100

tON
C1 + tON

C2

. (11)

Being tON
C1 and tON

C2 the operating time per day of compressors one and two respectively in minutes
and t>90

C1 and t>90
C2 the operating time above the 90% of PLR per day of compressors one and two

respectively in minutes.
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4. Experimental Results

The methodology is validated applying the proposed methodology in an industrial refrigeration
plant composed of two compressors in parallel and 8 spaces to refrigerate (S). However, one of the
spaces cannot be managed due to instrumentation and process constraints. Hence, the disaggregation
step is performed in S1–S8 but the management is only performed in S1–S6 and S8 excluding S7 that
cannot be controlled.

First of all, a fundamental step in the proposed load management methodology is the cooling
load disaggregation. The proposed neural network structure is developed employing a whole year of
data with a sampling rate of a minute, using 3 weeks of each month for training and the remaining one
for testing. Thus, using the minutely recorded data from each timestep and the multiple variables
from the evaporators, some features are created to train the neural network structure, listed in Table 2.

Table 2. Features employed for the disaggregation methodology.

Feature Unit Description

Tn,t
◦C Temperature of the spaces at the current timestep t.

Tn,t−1
◦C Temperature of the space s at time t-1.

Tn,t−2
◦C Temperature of the space s at time t-2.

Tn,t−3
◦C Temperature of the space s at time t-3.

τ
g
n,t Timesteps Number of timesteps elapsed since the evaporator g of the space s was switched

ON at the current timestep t.

ϕ
g
n,t Timesteps Number of timesteps elapsed since the evaporator g of the space s was switched

OFF at the current timestep t.
Gn,t Units Number of evaporators switched ON at the space s at the current timestep t.
spt Bar Suction pressure

Sstatus ON/OFF Evaporator status of each S. If multiple evaporators a logical OR is applied

From the refrigeration system signals, we obtain the aggregated cooling consumption and the
state of each space to refrigerate, depicted in Figure 7. In the situations where the state of a specific S is
OFF, such S does not contribute to the aggregated consumption. With such information, and employing
the disaggregation technique, the consumption estimation of each S is obtained as depicted in Figure 8.
The shape of the estimated individual consumptions is highly influenced by various factors such as the
dimensions of the S, the quantity of load, the type of process performed in such S, the number and
power of evaporators installed or the location and isolation of the space. Therefore, the individual
duration and contribution is different for each S depending on the aforementioned factors. For example,
S2 has the highest contribution due to the dimensions of the space to refrigerate and the quantity of
load processed in it, while the S5 is almost always ON as the space it is used as a storage where there is
load almost all the time.

Using the individual consumptions estimated, and during the evaluation of real data, each space
to refrigerate is assessed with a certain tag depending on its temperature requirements, Figure 9.
These assessments to tag the necessity are expressed in the boundary equations of the optimization
problem, formulated in the methodology description, Equations (4) and (5). The multiple h parameters
of such equations, as mentioned before, since can influence the operation of each S, are selected
according to the system experts’ opinion. Such parameters are shown in Table 3.
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Table 3. h parameters values.

h1 h2 h3 h4 h5 h6

S1 −1.5 −0.5 0 0.4 −0.2 0
S2 −1.5 −0.5 0 0.4 −0.2 0
S3 −1.5 −0.5 0 0.4 −0.2 0
S4 −2 −0.5 0 0.4 −1.2 0
S5 −2 −0.5 0 0.4 −1.2 0
S6 −1.5 −0.2 0 0.4 −0.2 0
S8 −1.5 −0.5 0 0.4 −0.2 0

Basically, the tags assigned in each space are used to force an upgrade, which means an increase
of cooling turning on more evaporators, or a downgrade, which demands a decrease of the cooling
capacity turning off some evaporators. In the case that the space is in the desired temperature range,
which can be assessed as free, the optimization algorithm can choose the number of evaporators in
order to avoid the consumption peaks.

In practice, some safety management rules have been integrated: the upgrade assessment is forced
to be at maximum of one evaporator if they are not all already on, and the downgrade is forced to be at
maximum of one evaporator also, if they are not all already off. These constraints are employed to
diminish the abrupt changes in cooling capacity and temperatures. In addition, the refrigerated spaces
which are not constrained with the upgrade or downgrade assessment are also limited regarding the
number of evaporators. The maximum modification in regard the current number of evaporators
is limited to two evaporators for the same reason as in the other assessments. These measures are
performed according to the methodology goals and with the advice of the refrigeration system experts.

At this point of the methodology, the optimization problem presented in Equation (2) is solved by
means of the default CBC solver of the PuLP library provided by [33]. Due to the online nature of the
load management approach, and without the necessity to train the methodology as the disaggregation
should be already trained, the proposed method is validated directly to the refrigeration system.
For this reason, the load management methodology is validated in real-time in the refrigeration
system within 8 consecutive days of operation. The gap between the two working weeks is due to the
eastern holidays.

To be able to compare it and validate its improvement capabilities in regard to the compressor
performance, each validation day of operation is compared with a reference day. The reference day is
the most similar day found in one year of historical operation taking into account some key parameters
or variables: the suction pressure, discharge pressure, and cooling capacity of the available historical
dataset, which are the main variables that affect the compressor performance, and can be used as
a reference to compare similar days in operational and load demands. Further information of the
importance of those variables is explained in our previous work [34].

In this regard, Table 4 shows the values of the variables from the tested day with the proposed
method against the values of the day used as a reference. As it can be seen in the table, no huge
differences in the variable values can be found between both days, the tested and the reference,
and hence, a realistic evaluation can be made.
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Table 4. Comparison between the variables of validation days and reference days.

Proposed Reference

Date Q (kWh) Suction p
(bar)

Discharge
p (bar) Date Q (kWh) Suction p

(bar)
Discharge

p (bar)

2020-04-06 29,518 1.70 8.01 2020-01-21 28,673 1.70 8.03
2020-04-07 28,101 1.69 8.02 2020-01-21 28,673 1.70 8.03
2020-04-08 30,066 1.69 8.03 2019-10-17 30,270 1.72 8.09
2020-04-09 23,099 1.78 8.00 2019-12-27 23,263 1.71 8.00
2020-04-14 35,380 1.70 8.32 2019-06-19 31,580 1.67 8.76
2020-04-15 31,948 1.71 8.35 2019-10-17 30,270 1.72 8.09
2020-04-16 33,575 1.70 8.63 2019-06-19 31,580 1.67 8.76
2020-04-17 30,264 1.70 8.59 2019-08-13 30,175 1.70 8.70

Figure 10 illustrates the effects of the proposed load management methodology measured with the
simultaneity metric, explained in the Section 3.2. As it can be appreciated in the figure, the proposed
methodology spends less time with two compressors than the reference days, which means less
simultaneity. During the tested days, a substantial reduction of about 438 min of the second compressor
operation per day is achieved, which means a reduction of about the 77% of simultaneity in regard to
the reference. These results confirm the capability of the proposed load management methodology to
modulate the consumption signal in order to reduce the usage of the second compressor.
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From Figure 11, it is observable that during the working days tested with the proposed methodology,
the compressors operate more percentage of the time with high PLRs according to the proposed metric
detailed in Section 3.2. The mean ρday of the proposed solution is about 63% while the reference is
about 46%, that means an increment of about 17% of time working in a more efficient PLR conditions.
The proposed load management methodology forces the compressors to operate in higher partial load
ratios, reducing inefficient PLRs caused by the operation of two compressors in parallel in low cooling
capacity scenarios.
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With these two measurements, it is noticeable that the proposed methodology reduces the time
with two compressors operating in parallel and increases the efficiency of each compressor while
they are operating. Once these two aspects are validated, Figure 12 illustrates how this methodology
affects the consumption in terms of electricity expenditure, which is the main goal in order to be more
efficient and save energy. The proposed management methodology allows to produce the same cooling
capacity during the tested days, reducing the electrical energy consumption and without influencing
the schedule of the process performed in each S.
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Observing such results, it can be concluded that the methodology demonstrates its effectivity
reducing the energy expenditure of the compressors by reducing the simultaneity and increasing
the PLR. By managing the evaporators of the system, hence the load, the compressors reduced its
consumption per day about 1600 kWh, which means a reduction of about a 17% compared with the
reference days.

It is confirmed that the load management affects the compressors operation, since that they are
able to supply the same Q with the expenditure of less electrical power, however, to fully ensure the
effectiveness of the methodology, it is necessary to ensure that the temperature set points of each
space to refrigerate are correctly maintained. There is no use in reducing the energy expenditure if the
desired objective, which is the proper refrigeration of the products, is not achieved.

Figure 13 depicts the mean temperature error of each day in each space to refrigerate. This error
is only measured when the S are operating, since when there is no load in them, the refrigeration is
stopped. According to experts, and following the historical control rules, each set point has 2 degrees
of deadband, one above and one below the set point, where the temperature error is admissible.
Nevertheless, the desired set point is depicted with a dashed line.
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Figure 13 demonstrates that the temperature errors of the proposed load management methodology
are similar to those of the historical control. Most of the spaces to refrigerate are within its deadband,
except the S3 which is mostly outside, both with the proposed method and with the historical one.
This situation happens due to the power limitations of the evaporators in such space.
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In addition, note that S4 and S5, although being in the green zone, they tend to be overcooled.
The management methodology uses them as a cooling battery to smooth the demand, since they are
usually assessed with the free tag. This can be done as the evaporators of these spaces are oversized.

These presented experimental results allow to validate the capability of the methodology to
increase the compressors operation efficiency while maintaining the temperature as well as with the
historical control.

5. Conclusions and Discussion

This article has demonstrated that load management is an effective indirect approach to increase
the efficiency of the refrigeration system compressors. In the proposed methodology, the estimated
individual consumption of each cooling load is employed to perform a load management strategy
suitable for stochastic loads behavior. In the results, it is shown that a reduction about 17% of the
electrical consumption of the compressors is achieved and a reduction about 77% of the operation
time with two compressors working in parallel as well. In addition, all the savings are obtained
without compromising the temperature requirements of the food stored in each space. Such results
indicate the suitability of applying data-driven approaches for improving energy efficiency in industrial
refrigeration systems.

Further discussion of the main aspects of the paper is given below, in this regard, the contributions
presented in this article can be used in any industrial refrigeration system to reduce the electrical energy
expenditure as well. The findings exposed in the experimental results are validated with a system
composed by two compressors, nevertheless, it can be also applied with more compressors operating
in parallel. The type of compressor does not affect the obtained simultaneity results, however, the
efficiency in PLR terms, can be different, depending on the compressor technology. Further studies
should be performed in order to quantify the benefits of the proposed load management with other
compressor technologies in regard with its PLR.

Moreover, the methodology can be used as well in refrigeration systems that contain different
number of spaces to refrigerate. On the one hand, more spaces to refrigerate would influence negatively
the disaggregation error, leading to an effective but less optimal solution, while less spaces would
increase the precision of the individual estimations, leading to a more optimal solution. On the
other hand, with more spaces to refrigerate, appear more possibilities to manage the load, while with
few spaces, the possible solutions are more limited. In addition, the type of space influences the
improvement capabilities, as shown in the experimental results, some spaces do not have the possibility
to modulate its load as they never reach the desired temperature deadband. Such characteristic along
with the number of spaces, can limit the optimization capabilities.

The experimental results presented, illustrate the effectiveness and the robustness of the presented
methodology. The load management has the capability to increase the system performance and it is
demonstrated via the experimental tests applied in the industrial refrigeration system. Such promising
results demonstrate the increase in system efficiency, reducing the simultaneity time with various
compressors in parallel and reducing the electrical consumption. The simultaneity savings can also
be beneficial in maintenance, since the compressors operate less hours and hence, the scheduled
preventive tasks are less frequent. Moreover, since the compressors operation is reduced, less failures
may occur, which minimize the probability of unexpected downtimes. Such results represent a
significant improvement that points out the necessity of performing a proper management of loads in
an industrial refrigeration system.

Lastly, a possible continuation of this research work is to investigate a way to parameterize the
algorithms without the help of a system’s expert. Therefore, further research is needed to deduce from
the system data the multiple optimization thresholds as well as the disaggregation parametrization.
Moreover, it should be mentioned that the potential savings of the presented load management can
be incremented combining this methodology with the compressors PLR set point recommendation
of our previous work [35]. Thus, the load management guarantees the minimum time with various
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compressors operating in parallel, and the set point recommendation guarantees a near-optimal
generation of the required cooling capacity.
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Abbreviations

Symbol Description
Agg Aggregated signal
B Number of available evaporators
C Compressor
CBC COIN-OR branch and cut
COP Coefficient of performance
ETP Equivalent thermal parameter
G Number of switched ON evaporators
h Threshold for the optimization algorithm
I Number of minutes of a day
L Lower boundary of optimization algorithm
MLP Multi-layer perceptron
MPC Model predictive control
N Number of spaces to refrigerate
NILM Non-intrusive load monitoring
p Pressure
PID Proportional-integral-derivative controller
PLC Programmable logic controller
PLR Partial load ratio
PCM Phase change material
Q Cooling capacity
Q′ Estimated aggregated cooling capacity
Q̂ Estimated cooling capacity consumed by an evaporator
U Upper boundary of optimization algorithm
R717 Ammonia
S Space to refrigerate
sp Suction pressure
T Temperature
tON
C Number of minutes with the compressor switched ON per day

t>90
C Number of minutes with the compressor above 90% of PLR per day

TES Thermal energy storage
TSP Temperature set point
∆T Temperature difference
εT Temperature error
ρday Percentage of time that a compressor is above 90% of PLR
τ Number of timesteps elapsed since the evaporator was switched ON
ϕ Number of timesteps elapsed since the evaporator was switched OFF
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w Neural network weighs
λ Space to refrigerate status
x Neural network inputs

References

1. Abdelaziz, E.; Saidur, R.; Mekhilef, S. A review on energy saving strategies in industrial sector. Renew.
Sustain. Energy Rev. 2011, 15, 150–168. [CrossRef]

2. Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO 2 emissions, and economic growth:
An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [CrossRef]

3. Banjo, S.; Bolaji, B.; Osagie, I.; Fayomi, O.; Fakehinde, O.; Olayiwola, P.; Oyedepo, S.; Udoye, N.E. Experimental
analysis of the performance characteristic of an eco-friendly HC600a as a retrofitting refrigerant in a thermal
system. J. Physics: Conf. Ser. 2019, 1378, 042033. [CrossRef]
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