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Abstract: Coal mining produces large quantities of discard that is stockpiled in large dumps.
This stockpiled material, termed coal discard, poses an environmental threat emphasising the need for
appropriate bioremediation. Here, metagenomic analysis of the 16S rRNA from ten coal-degrading
strains previously isolated from coal slurry from discard dumps and from the rhizosphere of
diesel-contaminated sites was used to establish genetic relatedness to known plant growth-promoting
(PGP) bacteria in the NCBI database. Measurement of indole and ammonium production and
solubilisation of P and K were used to screen bacteria for PGP characteristics. BLAST analysis
revealed ≥ 99% homology of six isolates with reference PGP strains of Bacillus, Escherichia, Citrobacter,
Serratia, Exiguobacterium and Microbacterium, while two strains showed 94% and 91% homology with
Proteus. The most competent PGP strains were Proteus strain ECCN 20b, Proteus strain ECCN 23b and
Serratia strain ECCN 24b isolated from diesel-contaminated soil. In response to L-trp supplementation,
the concentration of indolic compounds (measured as indole-3-acetic acid) increased. Production of
ammonium and solubilisation of insoluble P by these strains was also apparent. Only Serratia
strain ECCN 24b was capable of solubilising insoluble K. Production of indoles increased following
exposure to increasing aliquots of coal discard, suggesting no negative effect of this material on indole
production by these coal-degrading bacterial isolates and that these bacteria may indeed possess
PGP characteristics.

Keywords: coal discard; diesel-contaminated soil; discard dumps; biodegradation; phylogeny;
plant growth-promoting bacteria

1. Introduction

Coal is a hydrophobic, highly porous and heterogeneous sedimentary rock mined for its
energy content. It is classified according to the degree of aromaticity and ranked as either lignite,
(sub)-bituminous coal or anthracite [1,2]. Physically, it is a material with a hardness scale of up to 3
Mohs for anthracite and classified as naturally recalcitrant [3,4]. Chemically, it is a complex mixture of
aromatic, heterocyclic and aliphatic carbonaceous constituents, hence the high calorific value. In South
Africa, residual coal and other materials of very low energy content are stockpiled in discard dumps.
These discard dumps are numerous and a major source and contributor of pollutants (e.g., particulate
matter, heavy metals, acid leachate, etc.) to the surrounding environment including the atmosphere
and water bodies and, as a consequence, threaten the environment, human health and quality of
life [5,6]. Not surprisingly, there is an urgent need for intervention [7]. Although attempts to stabilise
these dumps by cultivation of cover crops does occur once mining is complete [8], a major oversight in
developing rehabilitation strategies has been the apparent omission of biotic factors that underpin
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successful and sustainable revegetation. Recently, it was demonstrated that successful rehabilitation
and vegetation of discard dumps can be achieved by exploiting the mutualism between coal-degrading
microorganisms, mycorrhizal fungi and grasses [8].

Coal mining not only visibly disrupts the aesthetics of a landscape but also disrupts all of
the soil components including soil horizons, structure, microorganisms and nutrient cycles that
are crucial to sustaining a healthy ecosystem [9,10]. While a number of fungi show potential as
rehabilitation biocatalysts and degrade coal into a soil-like humic-rich material [11–18], the only
candidate enzymes identified and functionally characterised from coal-degrading fungi so far are
laccase and esterase. Heterologous expression of Fusarium oxysporum laccase in Pichia pastoris was
shown to depolymerise and liquefy solubilised brown coal with the release of humic and fulvic
acids [18]. By comparison, the Penicillium decumbens P6 esterase depolymerised lignite resulting in
increased formation of low-molecular mass humic acids with lower-percentage aromatic carbon but
higher-percentage aliphatic carbon [19].

Bacterial conversion of coal, by comparison, has typically been to derive clean fuels and
chemicals by developing environmentally sound energy-saving processes that do not cause secondary
pollution [20,21]. While numerous studies on bacterial solubilisation and degradation of coal by different
species of bacteria have been forthcoming, the underlying biochemical and molecular mechanisms
involved are not yet fully understood [22,23]. Even so, numerous studies have revealed a role for bacteria
in the degradative assimilation of petroleum hydrocarbons such as polynuclear aromatic hydrocarbons
(PAHs), naphthalene, the monoaromatic hydrocarbons such as toluene and aliphatic hydrocarbons
such as the n-alkanes [24,25]. These hydrocarbons are well represented in the naturally complex
and highly aromatic coal structure and are also readily available in petroleum-contaminated soil
environments [7]. Indeed, several recent extensive reviews on the subject have been published [26,27]
and the potential for plant–bacteria partnerships in the remediation of hydrocarbon-contaminated soil
has been proposed [28,29]. Bacterial conversion and utilisation of coal, though generally influenced
by environmental conditions such as temperature and pH, are dependent mainly on the type of
coal and microorganism used [29] and similar to fungal biodegradation, the mechanisms seem
to involve solubilisation, depolymerisation and degradative assimilation [7]. Bio-solubilisation is
by alkaline substances, chelators and/or surfactants, whereas depolymerisation and liquefication
likely entail oxidoreductases such as peroxidases and laccases, and hydrolases [30]. Under aerobic
conditions, coal is oxidised by both biotic and abiotic processes to a weathered material rich in
humic substances [31]. Under anaerobic conditions, a sequence of primary and secondary bacterial
fermenters depolymerise and metabolise coal, providing a diverse range of short-chain organic acids
and alcohols [32]. These low-molecular weight organic compounds serve as substrates for other
consortia of microorganisms such as acetogens and methanogens [33–36]. In spite of many studies
on the coal-degrading potential of bacteria, there remain limitations in phenotypic identification and
the identification of other beneficial properties of these bacteria such as plant growth promotion.
Modern molecular approaches, including analysis of PCR-amplified 16S rRNA gene sequences,
have provided some insight into the identity, characterisation and phylogenetic classification of
microorganisms capable of degrading and/or utilising coal [37–39]. To our knowledge, bacterial isolates
from South African environments with coal-degrading capability have neither been extensively
explored nor characterised genotypically.

An earlier bioprospecting study allowed for selected bacterial isolates with coal biodegradation
potential to be characterised [40], but a more detailed biochemical and genetic analysis has yet to
be described. Furthermore, screening of these coal-degrading bacteria for plant growth-promoting
(PGP) characteristics has not previously been the subject of study. Defined as a class of microorganism
that occupy the rhizosphere to promote plant growth, PGP bacteria are from diverse genera, display
properties such as phytohormone production, siderophore and phosphate solubilisation activity,
ACC deaminase activity and enhance plant productivity [41]. Typical uses are as inoculants for
biostimulation, biocontrol and biofertilisation in agriculture and phytoremediation. In light of this
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background, the present study sought to establish, first, the genetic relatedness of these isolates to the
diverse array of PGP bacteria contained in the established NCBI database and, second, screen these
coal-degrading strains for characteristics typically displayed by PGP bacteria. An ability to mineralise
phosphate and potassium and to produce ammonium and indoles (including the phytohormone,
indole-3-acetic acid) was the criteria used in this study to determine bacterial PGP potential.

2. Materials and Methods

2.1. Bacterial Strains

Bacterial strains used in this study were previously isolated from coal slurry obtained from coal
discard dumps at coal mines in Emalahleni (26◦0′0” S; 29◦10′0” E), Mpumalanga Province, South Africa,
and slurries of material from diesel-contaminated sites (at a depth of ~15 cm) collected either from
soil at mechanical workshops in Makhanda (33◦17′0” S; 26◦31′0” E) or from old tractor engines at
a farm in the Makana Local Municipality, Eastern Cape Province, South Africa (Table 1). Details of
strain isolation, molecular characterisation, coal biodegrading activity and deposit into an international
repository are recounted elsewhere [40].

Table 1. Bacterial strains with coal biodegrading activity isolated either from coal slurry (CS) or
diesel-contaminated sites (DCS).

Source Bacterial Isolates and Assigned
Strain Number

Identity
(%)

Microbial Culture
Collection No.

GenBank Accession
No.

Length
(bp)

CS Citrobacter strain ECCN 19b 99 MCC0033 KC700328 372
CS Escherichia strain ECCN 25b 99 MCC0041 KC700329 382
CS Bacillus strain ECCN 26b 99 MCC0062 KC700330 450

DCS Bacillus strain ECCN 18b 98 MCC0034 KC620473 560
DCS Proteus strain ECCN 20b 94 MCC0027 KC620475 553
DCS Exiguobacterium strain ECCN 21b 99 MCC0016 KC620476 551
DCS Microbacterium strain ECCN 22b 99 MCC0042 KC620477 543
DCS Proteus strain ECCN 23b 91 MCC0022 KC620478 439
DCS Serratia strain ECCN 24b 99 MCC0021 KC620474 525
DCS Bacillus strain ECCN 41b 99 MCC0039 KC758162 392

2.2. Culture Conditions

Coal-degrading bacterial isolates, listed in Table 1, were resurrected from glycerol stock by culture
in nutrient broth (NB; 5 g L−1 peptone, 3 g L−1 yeast extract and 8 g L−1 NaCl) at 30 ◦C on a rotary
shaker (120 rpm) for 72 h. Then, aliquots of NB were transferred to nutrient agar (NA; 5 g L−1 peptone,
3 g L−1 yeast extract and 8 g L−1 NaCl and 15 g L−1 agar) plates and incubated at 30 ◦C for 24 to 48 h
to establish strain purity. Individual but distinct colonies were picked and inoculated into 40 mL of
freshly prepared NB, grown at 30 ◦C, and maintained in log phase.

2.3. Extraction and PCR Amplification of Genomic DNA

Extraction of total DNA was achieved using the ZR Fungal/Bacterial DNA Kit™ (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instructions. Target 16S rRNA regions were amplified
using DreamTaq™ DNA polymerase (Thermo Scientific™, Thermo Fisher Scientific, Waltham, MA,
USA) with the bacterial universal primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R
(5′-CGGTTACCTTGTTACGACTT-3′) as described by Lane et al. [42] and Turner et al. [43].

Sanger sequencing of the purified PCR products was carried out by Inqaba Biotechnical Industries
(Pty) Ltd., Hatfield, South Africa using the PRISM™ Ready Reaction Dye Terminator Cycle sequencing
kit using chain termination by the dideoxy-nucleotides methodology and electrophoresed on an
ABI PRISM® 3500XL DNA Sequencer (Applied Biosystems, Foster City, CA, USA) following the
manufacturer’s instructions. Resultant chromatograms were analysed (Chromas version 2.6.6) as
outlined in Technelysium [44], followed by pairwise alignment in BioEdit Sequence Alignment
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Editor, version 7.0.5.3 [45], and the resultant gene sequences compared with those already deposited
(https://www.ncbi.nlm.nih.gov/).

2.4. Phylogenetic Analysis

Phylogenetic analysis using the 16S rRNA sequences of the nine isolates and 32 reference nucleotide
sequences for PGP bacteria from the NCBI GenBank database was conducted. Multiple alignment
of nucleotide sequences was achieved using CLUSTALW as implemented in the BioEdit Sequence
Alignment Editor. A phylogenetic tree was constructed from the neighbour-joining method using
MEGA6 (Molecular Evolutionary Genetics Analysis Version 6.0) after calculating distances via the
Jukes–Cantor method [46]. Trees were bootstrapped using 1000 replications.

2.5. Screening for Plant Growth Promoting Characteristics

2.5.1. Ammonium Production

Production of ammonium (NH4
+) by the coal-degrading bacterial strains was determined using

peptone water and Nessler’s reagent (HgI4K2) as indicator. Peptone water containing 10 g of peptone
(Sigma-Aldrich, Millipore Sigma, St. Louis, MO) and 5 g of NaCl was prepared in 1 L distilled water
and autoclaved at 121 ◦C and 1.5 kg cm−2 for 15 min. Nessler’s reagent was prepared by suspending
in 100 mL of distilled water, 10 g of HgCl2, 7 g of KI and 16 g of NaOH. The bacterial inoculants
were added to flasks containing 40 mL PW and incubated on a rotary shaker at 30 ◦C for 3 d. After
incubation, 4 mL of each culture was harvested by centrifugation (3920× g for 3 min) and NH4

+

concentration of the supernatant quantified spectrophotometrically. For colorimetric assay of NH4
+,

to 2 mL aliquots of supernatant from each sample was added 0.2 mL of Nessler’s reagent and colour
development allowed to proceed for 5 min. Development of a brown colour was taken as a positive
indicator of NH4

+. For quantification, 1 mL was transferred to a cuvette and absorbance measured at
430 nm and results interpolated from a standard curve prepared using NH4Cl [47].

2.5.2. Indole-3-Acetic Acid Production

To determine the ability of the isolated bacterial strains to produce indole-3-acetic acid (IAA),
NB was supplemented with L-trp and the concentration of indolic compounds produced by
coal-degrading bacterial isolates determined using Salkowski’s reagent [48–50].

Aliquots, equivalent to 40 µL of bacterial suspension, were inoculated into NB supplemented
with L-trp (at either 0, 0.1, 0.5 and 1 g L−1) and incubated at 30 ◦C on a rotary shaker (120 rpm) for
72 h. After incubation, 4 mL of each culture was sedimented by centrifugation (3920× g for 3 min)
and the cell-free supernatant used for colorimetric quantification of IAA which was carried out as
follows: Two drops of 10 mM of orthophosphoric acid and 4 mL of Salkowski’s reagent (50 mL 35%
perchloric acid; and, 1.0 mL 0.5 M FeCl3 solution) were added to 2 mL cell-free supernatant, the mixture
incubated at room temperature for 20 min and absorbance measured at 530 nm. The quantity of indolic
compounds (expressed as IAA equivalents) was determined by interpolation from a standard curve of
authentic IAA (Sigma-Aldrich) and background subtracted to account for any interference from the
culture medium.

2.5.3. Solubilisation of Insoluble Phosphate and Potassium

Phosphate and potassium solubilisation activity was initially determined using pour plates of
either Pikovskayas agar (PVK) supplemented with tri-calcium phosphate (Ca3(PO4)2) or Aleksandrow
medium (AM) containing AlKO6Si2 as the respective substrates. Modified PVK agar was prepared
using 0.5 g of yeast extract, 10 g of glucose, 5 g of Ca3(PO4)2, 0.5 g of (NH4)2SO4, 0.2 g of KCl, 0.1 g
of MgSO4, 0.0001 g of MnSO4.H2O, 0.0001 g of FeSO4.7H2O and 15 g of agar in a total volume of
1 L of distilled water [46]. For the solubilisation of potassium by coal-degrading bacteria, AM was
prepared containing 0.5 g of MgSO4.7H2O, 0.1 g of CaCO3, 2 g of AlKO6Si2, 5 g of glucose, 0.005 g of

https://www.ncbi.nlm.nih.gov/
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FeCl3.6H2O, 2 g of Ca3 (PO4)2 and 20 g of agar in 1 L of distilled water. An aliquot (5 µL) of bacterial
cell suspension was placed at 4 equidistant positions on either PVK or AM plates which were incubated
at 30 ◦C for periods up to 14 d. After incubation, Ca3(PO4)2 and AlKO6Si2 solubilising activity was
determined by observation of clear zones around active bacterial colonies [51,52]. Phosphate and
potassium solubilising activity was quantified after inoculation of either liquid PVK or AM, prepared
as above but without agar, with equal quantities of bacterial suspension from cells in exponential phase.

Following incubation at 30 ◦C on a rotary shaker (120 rpm), cell suspensions were sedimented
by centrifugation (3920× g for 3 min) and the supernatant recovered for analysis. Ortho-phosphate
concentration was determined spectrophotometrically using a Phosphate Test kit (Merck KGaA,
Darmstadt, Germany) after 14 d while potassium concentration was measured after 9 d using sodium
tetra-phenylborate as described by Pflaum and Howick [53]. The final concentration of phosphate and
or potassium was determined by interpolation from standard curves prepared using ortho-phosphate
and KCl, respectively.

2.6. Effect of Coal Discard on Production of IAA

Geologically weathered coal was sourced and prepared to yield particles of approximately
0.2–0.5 mm in diameter and sterilised by freeze-thawing using liquid nitrogen as described earlier by
Olawale et al. [40]. Aliquots of dry sterilised coal (0–1 g) were added directly to seed cultures prepared
from stationery phase cells (i.e., OD600 0.4 after 3 d at 30 ◦C) of the specified coal-degrading strains.
Nutrient broth (40 mL) supplemented with L-trp and incubated at 30 ◦C on a rotary shaker (120 rpm)
for 3 d. Concentration of indolic compounds in solution was determined as described above after
background subtraction to account for any coal-derived indoles.

2.7. Statistical Analysis

All data were computed using the statistical function in Sigma Plot version 11 (Systat Software
Inc., San Jose, CA, USA). Where necessary, results were analysed by one-way analysis of variance
and significant differences between measurements for each treatment were determined (Holm–Sidak
method; p < 0.05). Data are presented as the mean of at least three determinations ± standard error (SE).

3. Results

3.1. Bacterial Genomes and Their Identification

Partial 16S rRNA genomes of varying lengths ranging from 372 to 560 bp were amplified and
sequenced from each of the resurrected coal-degrading bacterial strains previously isolated from coal
slurry and diesel-contaminated soil. The ten strains represent seven genera from three families. The most
abundant were Bacilliaceae and Enterobacteriaceae, each with four strains and one Microbacteriaceae
representative. Six isolates showed 99% sequence homology to reference strains that were confirmed
as Exiguobacterium (KC620476), Serratia (KC620474), Citrobacter (KC700328), Bacillus (KC758162 and
KC700330), Escherichia (KC700329) and Microbacterium (KC620477). One isolate, Bacillus (KC620473),
showed 98% sequence homology, whereas KC620475 and KC620478 were 94% and 91% homologous to
Proteus, respectively (Table 1). In this suite of previously identified coal-degrading bacterial strains,
the most prevalent genus was Bacillus, accounting for 30%. Strains of Proteus comprising 20% of the
isolates were the next most abundant and were from diesel-contaminated soil. Remaining strains were
confirmed to belong to the genera Escherichia, Citrobacter, Exiguobacterium, Serratia and Microbacterium.

3.2. Nucleotide Sequence and Phylogenetic Analysis

The coal-degrading bacterial isolates were further characterised following phylogenetic analysis
of sequence relatedness to PGP reference strain sequences within GenBank. Together with the selected
32 reference sequences from GenBank, our sequences revealed six distinct but associated clusters.
Eight (8) sequences clustered individually with their respective PGP bacteria relatives, with virtually
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all showing 100% bootstrap support at the corresponding major nodes (Figure 1). However, strain
ECCN 19b (KC700328) which was from a coal environment, was the stand-out within a major cluster
consisting of the genera Proteus, Serratia and Citrobacter. Other sequences from strains within the same
cluster (KC620475 and KC620478) formed a distinct cluster with Proteus, and KC620474 clustered
distinctly within the Serratia clade (Figure 1). Although most clusters in the phylogenetic tree showed
high bootstrap values, strain ECCN 25b (KC700329) was excluded from the constructed phylogenetic
tree as it did not match closely with any of the available GenBank PGP reference sequences in relation
to source.
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Figure 1. Phylogenetic tree showing relation between coal-degrading bacterial isolates (•) and
reference PGP strains contained in the NCBI GenBank database. GenBank accession numbers and the
corresponding taxonomic annotations are shown to the right of the strains. Bootstrap values of ≥70%
are shown at the nodes.

3.3. Plant Growth Promoting Characteristics

Production of ammonium and indolic compounds (measured as IAA equivalents) by the
coal-degrading bacterial strains Citrobacter ECCN 19b (KC700328), Proteus ECCN 20b (KC620475),
Exiguobacterium ECCN 21b (KC620476), Microbacterium ECCN 22b (KC620477), Proteus ECCN 23b
(KC620478), Serratia ECCN 24b (KC620474), Bacillus ECCN 26b (KC700330) and Bacillus ECCN 41b
(KC758162) and solubilisation of P and K were determined spectrophotometrically and the results are
shown in Figure 2.
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Figure 2. Screening of coal-degrading bacterial isolates for plant growth-promoting characteristics.
Estimates of ammonium production (a), indole production (b), phosphate (c) and potassium
solubilisation (d) by these bacterial isolates in stationary phase (OD600 = 0.4 at 30 ◦C) were determined
spectrophotometrically. Results are expressed as the mean ± S.E. Means denoted by a different letter
indicate significant differences relative to a negative control (p < 0.05).

Ammonium production appeared to be a common trait of the coal-degrading bacterial strains
evaluated for PGP characteristics (Figure 2a). Furthermore, whereas all of the strains produced above
background levels of indolic compounds (Figure 2b), Proteus ECCN 20b, Proteus ECCN 23b and Serratia
ECCN 24b produced substantial quantities in response to L-trp (0.5 g L−1) supplementation (Figure 2b).
Further, while it is accepted that mineral solubilisation can sometimes depend on the medium used [54],
results from this study show that while phosphate solubilisation was low for these coal-degrading
isolates, only one coal-degrading strain was unable to solubilise Ca3(PO4)2 (Figure 2c). By comparison,
Serratia strain ECCN 24b, and to a much lesser extent Citrobacter strain ECCN 19b and Exiguobacterium
strain ECCN 21b, were the only coal-degrading bacteria able to solubilise potassium from AlKO6Si2
(Figure 2d).

Indole-3-acetic acid is a common, naturally occurring plant hormone of the auxin class, is derived
from L-trp and is characteristically produced by many different PGP bacterial strains [55]. In an effort
to gain further insight into the relationship between IAA production and the PGP potential of these
coal-degrading bacterial strains, L-trp-activated IAA production by Proteus ECCN 20b, Proteus ECCN
23b and Serratia ECCN 24b was examined, firstly, in response to increasing concentrations of this indole
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precursor and, secondly, following exposure of L-trp-supplemented cultures to increasing amounts of
coal discard.

Results in Figure 3 clearly show that by increasing the concentration of L-trp supplied to cultures
of Proteus ECCN 20b, Proteus ECCN 23b and Serratia ECCN 24b, production of indolic compounds
including IAA, increased. Furthermore, these coal-degrading strains seemed equally competent in
terms of indole production in response to activation by L-trp supplementation. Mean medium indolic
compound concentration for the three strains increased from a mean minimum of 5.91 µg mL−1 in the
absence of L-trp to a mean maximum of 83.49 µg mL−1 IAA (equivalents) in response to 1 g L−1 L-trp
supplementation. The almost linear increase in medium indolic compound concentration (R2 = 0.93),
concomitant with increasing concentration of L-trp supplementation, appears to support the operation
of an L-trp-dependent pathway for indole/IAA production by these bacterial isolates.
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ECCN 24b in response to increasing L-trp concentration. Results are from three experiments and
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In view of the already established coal-biodegrading property of these strains, it was of interest to
examine the effect of coal discard on production of indolic compounds by cultures of Proteus strain
ECCN 20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b. Increasing quantities of coal
discard were supplied to these isolates in liquid culture and the effect on L-trp-supplemented indolic
compound accumulation is shown in Figure 4.
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Proteus ECCN 23b and Serratia ECCN 24b in response to L-trp supplementation. Results are from three
experiments and expressed as the mean ± S.E. Means denoted by a different letter indicate significant
differences within treatments (p < 0.05).
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Typically, screening for production of IAA by putative PGP bacteria is carried out using an
L-trp-supplemented medium [56,57]. Here, too, a L-trp-supplemented medium was used, and results
show that in the presence of coal discard, production of indoles was enhanced for all three of the
coal-degrading strains tested (Figure 4). In this experiment, coal was added to NB supplemented
with L-trp at 0.5 g L−1. In the absence of coal discard, formation of indoles averaged 53.34 µg mL−1

IAA for the three strains tested, an observation that was similar to and corroborated initial screening
studies (cf. Figure 2b). For strain ECCN 20b however, indole formation increased to 76.05, 82.96 and
82.33 µg mL−1 IAA in response to addition of 0.25, 0.5 and 1 g of coal discard, respectively (Figure 4).
A similar, albeit less dramatic, response was observed for strains ECCN 23b and ECCN 24b. Indeed,
coal discard above 0.5 g appeared to slow accumulation of indoles in all bacterial isolates tested.
Maximum IAA was thus achieved in response to 0.5 g-added coal discard, while competence for
production of indolic compounds by these strains appeared to be ECCN 20b > ECCN 23b > ECCN 24b.

4. Discussion

Molecular ecological studies involve separation of amplicons based on differences in DNA
nucleotide sequences and most often the 16S rRNA gene, which can then be analysed from complex
environments such as soil [58]. Databases thus generated yield invaluable information about
indicator species [59]. To determine the phylogenetic relationship between coal-degrading bacteria
isolated earlier [40] and the diverse array of PGP bacteria contained in the NCBI GenBank database,
basic bioinformatics was used to determine the genetic relatedness of the 16S rRNA gene sequences
while conventional biochemical assays were used to screen for putative PGP characteristics. Strains
from seven genera of coal-degrading bacterial isolates utilised in the present study showed ≥ 99%
homology with reference gene sequences of PGP bacteria contained in the NCBI GenBank database.
A < 1% deviation was attributed to the diversity of ecological niches from where the coal-degrading
isolates and reference PGP strains were sourced.

Biochemical screening for traits typically associated with PGP showed that the most competent
strains were those sourced from diesel-contaminated soil. These isolates were Proteus strain ECCN
20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b. Interestingly, Serratia strain ECCN
24b, either alone or in consort with Citrobacter strain ECCN 19b and Exiguobacterium strain ECCN
21b, was previously shown to be most effective in coal bioconversion [40]. Furthermore, and in
corroboration with results from other studies, Serratia strain ECCN 24b was able to solubilise insoluble
phosphate [60,61] and potassium [62]. Recent studies have shown that the mineral-solubilising activity
for promotion of plant growth is typically associated with the production of organic acids which,
for strains of Serratia spp., appears to include gluconic and lactic acid [63].

In addition to the liberation of mineral nutrients, production of indolic compounds by Proteus
strain ECCN 20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b in L-trp-supplemented
medium was substantial relative to the other coal-degrading bacterial isolates screened and increased
linearly with an increase in L-trp concentration. Production of the plant hormone IAA and other
indoles by bacteria is a long held and accepted view, in particular for microorganisms that inhabit
subterranean plant surfaces [64–67]. Indeed, bacterial IAA biosynthesis can be either trp-dependent or
independent [68] and results from the present study would seem to support the formation of indolic
compounds by Proteus strain ECCN 20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b via
L-trp. Coal-degrading isolates that display a weak response to L-trp supplementation may either
be non-responsive or produce indole by a trp-independent route. In higher plants like Arabidopsis
thaliana and Zea mays, the major biosynthetic pathway to IAA is not via trp but seems to be from an
earlier intermediate such as anthranilate [69]. Further, several studies have confirmed formation by
bacteria of methyl anthranilate via chorismite in a single-step conversion of anthranilate to its methyl
ester metabolite catalysed by an S-adenosyl-L-methionine (SAM)-dependent methyltransferase [70,71].
Whether a similar pathway operates in the coal-degrading strains that were unresponsive to L-trp
supplementation in the present study is currently unknown.
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Additionally, exposure of Proteus strain ECCN 20b, Proteus strain ECCN 23b and Serratia strain
ECCN 24b to coal discard resulted in an apparent dose-dependent increase in the formation of
indolic compounds. While indoles are a component of carbonised coal, e.g., coal tar and coke [72],
and pyrolysates of Leonardite humic acids [73], they are not readily liberated from hard coal or coal
discard, and in this study were undetectable in samples used to background correct for possible
contribution to spectrophotometric quantitation using Salkowski’s reagent.

In addition to the well-established PGP properties of Serratia spp. [74–77] and their ability to
degrade the coal distillation product creosote [78], several promising PGP rhizobacterial strains of
Proteus spp. have been isolated from the rhizosphere of rice [79–81], wild grass [82], a halophytic
glasswort [83,84] and a nematocidal strain of P. penneri obtained from cow dung [85]. This genus
was also relatively well represented (20%) among the coal-degrading isolates utilised in this study
and strains ECCN 20b and ECCN 23b, isolated from diesel-contaminated soil. There are numerous
reports of hydrocarbon-degrading strains of Proteus spp. from soils [86–88], whereas, to our knowledge,
the strains described here represent the first reported Proteus isolates with PGP potential capable
of degrading coal. While there is reported evidence for isolation of Proteus spp. from diverse
soil environments including isolates with heavy metals tolerance [89–91] and xenobiotic-degrading
capability [92,93], no coal-degrading strains have been documented. However, at least one report
indicates that a strain isolated from two different ranks of coal was unable to degrade lignin [94].

5. Conclusions

Our goal in the present study was to determine the genetic relatedness of coal-degrading
bacterial strains isolated from the rhizosphere of grasses growing on coal discard dumps and from
diesel-contaminated sites to sequences of known PGP isolates contained in the NCBI GenBank database.
We then determined the potential functionality of this relatedness by screening for PGP characteristics.
Analysis of PCR-amplified 16S rRNA gene sequences from the seven genera of coal-degrading bacteria
showed >99% homology to 32 sequences of known PGP strains from the NCBI GenBank database
representing three families viz. four strains from each of the Bacilliaceae and Enterobacteriaceae
and one strain from the Microbacteriaceae. The Gram-negative isolates Proteus strain ECCN 20b,
Proteus strain ECCN 23b and Serratia strain ECCN 24b, all from Enterobacteriaceae and isolated from
diesel-contaminated soil, were shown to be competent for PGP characteristics using the biochemical
parameters described in this study. Thus, while all strains were competent for ammonium and indole
compound production, and solubilisation of insoluble phosphate, only Proteus strain ECCN 20b,
Proteus strain ECCN 23b and Serratia strain ECCN 24b responded to the L-trp-supplemented medium
by substantial accumulation of indolic compounds. Further, for these strains, indole compound
accumulation in response to L-trp supplementation was linear with increasing L-trp concentration and
not negatively affected in the presence of coal discard. Even so, it remains to be determined whether
bioconversion of coal can occur with simultaneous production of indole compounds and in particular
the auxin, IAA.

Further screening is therefore needed to expand our knowledge of the suite of PGP properties of
the coal-degrading isolates. Using a combination of genome mining and metabolomics, possible target
characteristics could include auxin and siderophore production, nitrogen fixation and potential
phyto-protective mechanisms. It is also important to determine any direct effect of the isolated
PGP coal-degrading bacteria on plant growth and development. A better understanding of the
plant–bacteria relation may lead eventually to candidate strains for the development of a biological
process with which to treat, stabilise and even rehabilitate disturbed soils.
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17. Kwiatos, N.; Jędrzejczak-Krzepkowska, M.; Krzemińska, A.; Delavari, A.; Paneth, P.; Bielecki, S. Evolved

Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae. Sci. Rep. 2020, 10, 3244. [CrossRef] [PubMed]
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