A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of FeNPs, CuNPs and Fe@Cu Nanoparticles
2.2. Characterization of FeNPs, CuNPs and Fe@Cu Nanoparticles
2.3. Flocculation Activity of CuNPs, FeNPs and Fe@Cu Nanoparticles
2.4. Application of Nanoparticles in Wastewater Treatment
2.5. Application of Nanoparticles in Dyes Removal
2.6. Cytotoxicity of Nanoparticles
2.7. Antimicrobial Effect of Nanoparticles
2.7.1. Bacterial Strains Resuscitation
2.7.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.8. Biodegradability of the Synthesized Nanoparticles
2.9. Experimental, Software and Statistical Analysis
3. Results
3.1. Characterization of Nanoparticles
3.2. Effect of Nanoparticles Concentration on Flocculation Activity
3.3. Effect of Cations on Flocculation Activity
3.4. The Effect of pH on Flocculation Activity of Nanoparticles
3.5. Effect of Temperature on Flocculation Activity of Nanoparticles
3.6. Application of Nanoparticles in Dye Removal
3.7. Removal of Nutrients from Model Waters by Nanoparticles
3.8. COD and BOD Removal From Coal Mine Wastewater and Mzingazi River Water
3.9. Effect of the Type of Water on Flocculation Activity of Nanoparticles
3.10. Antimicrobial Effect of Nanoparticles
3.11. In-Vitro Cytotoxicity of Nanoparticles
3.12. Biodegradation of Nanoparticles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.M.; Qian, C.D.; Jiang, X.H.; Wu, X.C. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, E.; Al-Deyab, S.S. Removal of heavy metals from their aqueous solutions through adsorption onto natural polymers. Carbohydr. Polym. 2011, 84, 454–458. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Shih, I.; Van, Y.T.; Yeh, L.C.; Lin, H.G.; Chang, Y.N. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 2001, 78, 267–272. [Google Scholar] [CrossRef]
- Moussavi, G.; Mahmoudi, M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 2009, 168, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, R.V. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. Int. J. Environ. Res. Public Health 2019, 16, 2185. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Alvarez, P.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Kolář, M.; Urbánek, K.; Látal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Antimicrob. Agents 2001, 17, 357–363. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Simonis, J.; Pullabhotla, R.V. Biosynthesis of bioflocculant passivated copper nanoparticles, characterization and application. Phys. Chem. Earth Parts A/B/C 2020, 102898. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, R.V. Wastewater treatment by a polymeric bioflocculant and iron nanoparticles synthesized from a bioflocculant. Polymers 2020, 12, 1618. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Chen, G.M.; Zeng, G.M.; Xu, P.; Yan, M.; Lai, C.; Zhang, C.; Li, N.J.; Cheng, M.; He, X.X.; et al. Synthesis and application of modified zero-valent iron nanoparticles for removal of hexavalent chromium from wastewater. Water Air Soil Pollut. 2015, 226, 375. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.; Huang, D.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total. Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Devatha, C.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 2016, 139, 1425–1435. [Google Scholar] [CrossRef]
- Khatami, M.; Alijani, H.Q.; Nejad, M.S.; Varma, R.S. Core@shell nanoparticles: Greener synthesis using natural plant products. Appl. Sci. 2018, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Thakur, R.; Malwal, H.; Manuja, A.; Chaudhury, A. Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology. Biocatal. Agric. Biotechnol. 2018, 14, 189–197. [Google Scholar] [CrossRef]
- Bhaumik, A.; Haque, A.; Karnati, P.; Taufique, M.F.N.; Patel, R.; Ghosh, K. Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 2014, 572, 126–133. [Google Scholar] [CrossRef]
- Vasireddi, R.; Paul, R.; Mitra, A.K. Green synthesis of agcorecushell nanoparticles: Structural and optical characterization. J. Green Sci. Technol. 2013, 1, 85–90. [Google Scholar] [CrossRef]
- Korbekandi, H.; Jouneghani, R.M.; Mohseni, S.; Pourhossein, M.; Iravani, S. Synthesis of silver nanoparticles using biotransformations by Saccharomyces boulardii. Green Process. Synth. 2014, 3, 385–406. [Google Scholar] [CrossRef]
- Tsolanku, S.M.; Basson, A.K.; Dlamini, N.G. Removal of pollutants in mine wastewater by a non-cytotoxic polymeric bioflocculant from alcaligenes faecalis HCB2. Int. J. Environ. Res. Public Health 2019, 16, 4001. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R.R. Biosynthesis and characterization of copper nanoparticles using a bioflocculant extracted from alcaligenis faecalis HCB2. Adv. Sci. Eng. Med. 2019, 11, 1064–1070. [Google Scholar] [CrossRef]
- Nkosinathi, D.G.; Albertus, B.K.; Jabulani, S.S.E.; Siphephelo, M.S.; Pullabhotla, R.V. Biosynthesis, characterization, and application of iron nanoparticles: In dye removal and as antimicrobial agent. Water Air Soil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Yu, X.; Li, J.; Shi, T.; Cheng, C.; Liao, G.; Fan, J.; Li, T.; Tanga, Z. A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics. J. Alloys Compd. 2017, 724, 365–372. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Emmanuel, S.J.S.; Pullabhotla, R.V. Optimization of Fe@Cu core–Shell nanoparticle synthesis, characterization, and application in dye removal and wastewater treatment. Catalysts 2020, 10, 755. [Google Scholar] [CrossRef]
- Nomoev, A.; Bardakhanov, S.; Schreiber, M.; Bazarova, D.G.; Romanov, N.A.; Baldanov, B.B.; Radnaev, B.R.; Syzrantsev, V.V. Structure and mechanism of the formation of core–Shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J. Nanotechnol. 2015, 6, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Lan, S.; Li, X.; Xie, Y.; Liang, Y.; Yan, P.; Chen, Z.; Xing, Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere 2018, 206, 701–708. [Google Scholar] [CrossRef]
- Agunbiade, M.; Pohl, C.; Ashafa, A.O.T. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz. J. Microbiol. 2018, 49, 731–741. [Google Scholar] [CrossRef]
- Daniels, A.N.; Singh, M. Sterically stabilized siRNA:gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019, 14, 1387–1401. [Google Scholar] [CrossRef]
- Maliehe, T.S.; Shandu, J.S.; Basson, A.K.; Sidney, M.T.; Siyabonga, S.J.; Kotze, B.A. The antibacterial and antidiarreal activities of the crude methanolic Syzygium cordatum [S.Ncik, 48 (UZ)] fruit pulp and seed extracts. J. Med. Plants Res. 2015, 9, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. A Sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Mittal, H.; Mishra, S.B.; Mishra, A.K.; Kaith, B.; Jindal, R.; Kalia, S. Preparation of poly (acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydr. Polym. 2013, 98, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Lu, Z.H.; Li, J.; Zhu, A.; Yao, Q.; Huang, W.; Zhou, R.; Zhou, R.; Chen, X. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage. Int. J. Hydrogen Energy 2013, 38, 5330–5337. [Google Scholar] [CrossRef]
- Bish, D.L.; Post, J.E. Modern Powder Diffraction; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; Volume 20. [Google Scholar]
- Ban, Z.; Barnakov, Y.A.; Li, F.; Golub, V.; O’Connor, C.J. The synthesis of core–shell iron@gold nanoparticles and their characterization. J. Mater. Chem. 2005, 15, 4660–4662. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.X.; Wang, S.G.; Sun, X.F.; Liu, X.W.; Yue, Q.Y.; Gao, B. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour. Technol. 2008, 99, 4668–4674. [Google Scholar] [CrossRef]
- El-Salam, A.E.A.; Abd-El-Haleem, D.; Youssef, A.S.; Zaki, S.; Abu-Elreesh, G.; El-Assar, S.A. Isolation, characterization, optimization, immobilization and batch fermentation of bioflocculant produced by Bacillus aryabhattai strain PSK1. J. Genet. Eng. Biotechnol. 2017, 15, 335–344. [Google Scholar] [CrossRef]
- Zaki, A.; Elkady, M.F.; Farag, S.; Abd-El-Haleem, D. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J. Environ. Biol. 2013, 34, 51. [Google Scholar]
- Devi, K.K.; Natarajan, K. Production and characterization of bioflocculants for mineral processing applications. Int. J. Miner. Process. 2015, 137, 15–25. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, C.; Zhao, L.; Zhang, Y.; Yang, J.; Song, L.; Yang, S. Bioflocculant produced by Chlamydomonas reinhardtii. Environ. Biol. Fishes 2011, 24, 1245–1251. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Z.; Wang, X.; Yang, A.; Chen, L.; Zhao, J.; Leonard, D.; Jaffrezic-Renault, N. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresour. Technol. 2008, 99, 6520–6527. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Miao, X.; Zhou, J. Preparation and characteristics of bioflocculants from excess biological sludge. Bioresour. Technol. 2012, 126, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Salehizadeh, H.; Shojaosadati, S. Extracellular biopolymeric flocculants. Recent trends and biotechnological importance. Biotechnol. Adv. 2001, 19, 371–385. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Huang, C.; Huang, Z.; Zhen, W.K. Surface/interface influence on specific heat capacity of solid, shell and core-shell nanoparticles. Appl. Therm. Eng. 2017, 127, 884–888. [Google Scholar] [CrossRef]
- Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroglu, A.E.; Scott, T.; Hallam, K. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266. [Google Scholar] [CrossRef]
- Puri, A.; Kumar, M. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.V.; Patil, C.D.; Salunke, B.K.; Salunkhe, R.B.; Bathe, G.A.; Patil, D.M. Studies on characterization of bioflocculant exopolysaccharide of azotobacter indicus and its potential for wastewater treatment. Appl. Biochem. Biotechnol. 2010, 163, 463–472. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere 2017, 173, 474–484. [Google Scholar] [CrossRef]
- Exley, C.; Korchazhkina, O.; Job, D.; Strekopytov, S.; Polwart, A.; Crome, P. Non-invasive therapy to reduce the body burden of aluminium in Alzheimer’s disease. J. Alzheimers Dis. 2006, 10, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef]
- Vlasova, I.I.; Kapralov, A.A.; Michael, Z.P.; Burkert, S.C.; Shurin, M.R.; Star, A.; Shvedova, A.A.; Kagan, V.E. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol. Appl. Pharmacol. 2016, 299, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Petersen, E.J.; Habteselassie, M.Y.; Mao, L.; Huang, Q. Degradation of multiwall carbon nanotubes by bacteria. Environ. Pollut. 2013, 181, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Karmakar, G.P.; Rath, S.K.; Karmakar, N.C.; Pandey, S.R.; Tripathy, T.; Panda, J.; Kanan, K.; Jain, S.K.; Lan, N.T. Biodegradable drag reducing agents and flocculants based on polysaccharides: Materials and applications. Polym. Eng. Sci. 2000, 40, 46–60. [Google Scholar] [CrossRef]
Flocculant Type | Cations FA(%) ± SD * | |||
---|---|---|---|---|
Control | Na+ | Ca2+ | Fe3+ | |
CuNPs | 96 ± 0.0 a | 86 ± 0.1 b | 94 ± 0.0 a,b | 97 ± 0.2 a |
FeNPs | 42 ± 0.1 d | 73 ± 0.0 c | 82 ± 0.1 b,c | 85 ± 0.3 b |
Fe@Cu | 95 ± 0.3 a | 97 ± 0.2 a | 99 ± 0.2 a | 97 ± 0.0 a |
Flocculants | Wastewater Type | Water Quality before Treatment (Control) | Water Quality after Treatment (Flocculants) | Removal Efficiency (%) | |||
---|---|---|---|---|---|---|---|
Phosphate | Total Nitrogen | Phosphate | Total Nitrogen | Phosphate | Total Nitrogen | ||
CuNPs | Vulindlela | 3.38 ± 0.0 | 0.127 ± 0.0 | 1.62 ± 0.1 | 0.022 ± 0.0 | 52 | 83 |
Mzingazi | 85.7 ± 0.0 | 0.223 ± 0.0 | 7.521 ± 0.1 | 0.108 ± 0.0 | 92 | 52 | |
FeNPs | Vulindlela | 3.38 ± 0.0 | 0.127 ± 0.0 | 1.64 ± 0.0 | 0.019 ± 0.0 | 51 | 85 |
Mzingazi | 85.7 ± 0.0 | 0.223 ± 0.0 | 9.102 ± 0.0 | 0.127 ± 0.0 | 90 | 45 | |
Fe@Cu | Vulindlela | 3.38 ± 0.0 | 0.127 ± 0.0 | 0.09 ± 0.0 | 0.020 ± 0.0 | 97 | 84 |
Mzingazi | 85.7 ± 0.0 | 0.223 ± 0.0 | 0.109 ± 0.0 | 0.014 ± 0.0 | 99 | 94 |
Flocculant | Types of Waste Water | Types of Pollutants in Water | Water Quality before Treatment (mg/L) | Water Quality after Treatment (mg/L) | Removal Efficiency (%) |
---|---|---|---|---|---|
CuNPs | Coal mine water | COD | 842 ± 0.0 | 103 ± 0.0 | 88 |
BOD | 123.2 ± 0.0 | 4.12 ± 0.0 | 96 | ||
Mzingazi river water | COD | 3.30 ± 0.0 | 0.28 ± 0.0 | 92 | |
BOD | 136 ± 0.0 | 14 ± 0.0 | 89 | ||
FeNPs | Coal mine water | COD | 842 ± 0.0 | 204 ± 0.0 | 76 |
BOD | 123.2 ± 0.0 | 23 ± 0.0 | 81 | ||
Mzingazi river water | COD | 3.30 ± 0.0 | 1.70 ± 0.0 | 48 | |
BOD | 136 ± 0.0 | 24 ± 0.0 | 82 | ||
Fe@Cu | Coal mine water | COD | 842 ± 0.0 | 71 ± 0.0 | 92 |
BOD | 123.2 ± 0.0 | 3.41 ± 0.0 | 97 | ||
Mzingazi river water | COD | 3.30 ± 0.0 | 0.79 ± 0.0 | 76 | |
BOD | 136 ± 0.0 | 7.70 ± 0.0 | 94 |
Bacterial Strain | Antimicrobial Agent | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|---|
E. coli | FeNPs | - | - |
CuNPs | 3.125 | 3.125 | |
Fe@Cu | 1.563 | 1.563 | |
Ciprofloxacin | 12.5 | 12.5 | |
B. subtilis | FeNPs | - | - |
CuNPs | 3.125 | 3.125 | |
Fe@Cu | 1.563 | 1.563 | |
Ciprofloxacin | 6.25 | 6.25 |
Samples | Initial Weight (g) | Weight of Samples Remaining per Week (g) ± SD | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
CuNPs | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.17 ± 0.00 | 0.1 ± 0.00 | 0.03 ± 0.00 | 0.00 ± 0.00 |
FeNPs | 0.21 ± 0.00 | 0.21 ± 0.00 | 0.19 ± 0.00 | 0.12 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 |
Fe@Cu | 0.23 ± 0.00 | 0.23 ± 0.00 | 0.06 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.01 | 0.00 ± 0.00 |
Control (soil only) | 4.00 ± 0.00 | 4.00 ± 0.00 | 4.00 ± 0.00 | 4.00 ± 0.00 | 4.00 ± 0.00 | 4.00 ± 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety. Processes 2020, 8, 1125. https://doi.org/10.3390/pr8091125
Dlamini NG, Basson AK, Pullabhotla VSR. A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety. Processes. 2020; 8(9):1125. https://doi.org/10.3390/pr8091125
Chicago/Turabian StyleDlamini, Nkosinathi Goodman, Albertus Kotze Basson, and Viswanadha Srirama Rajasekhar Pullabhotla. 2020. "A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety" Processes 8, no. 9: 1125. https://doi.org/10.3390/pr8091125
APA StyleDlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. (2020). A Comparative Study between Bimetallic Iron@copper Nanoparticles with Iron and Copper Nanoparticles Synthesized Using a Bioflocculant: Their Applications and Biosafety. Processes, 8(9), 1125. https://doi.org/10.3390/pr8091125