Improvement of Polymer Grade L-Lactic Acid Production Using Lactobacillus rhamnosus SCJ9 from Low-Grade Cassava Chips by Simultaneous Saccharification and Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Isolation, Identification and Inoculum Preparation
2.3. Effect of Enzyme Concentration on LGC Hydrolysis
2.4. Statistical Medium Optimization of Two-Step Fermentation (TSF) Strategy
2.4.1. Preparation of Low-Grade Cassava Chip Hydrolysate
2.4.2. Plackett–Burman Design (PBD)
2.4.3. Central Composite Design
2.5. Optimization of Enzyme Dosages for the Simultaneous Saccharification and Fermentation Process
2.6. Large Scale of L-Lactic Acid Production by SSF Strategy in a 10-L Fermenter
2.7. Analytical Method
3. Results and Discussion
3.1. Identification of L-Lactic Acid Producing Bacterium
3.2. Effect of Enzyme Concentration on LGC Hydrolysis Efficacy
3.3. Statistical Optimization of Medium Composition for Lactic Acid Production by TSF Strategy
3.4. Process Optimization of Enzyme Dosages for SSF of L-Lactic Acid Production
3.5. Scale-Up of L-Lactic Acid Production by SSF Strategy in a 10-L Fermenter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dumbrepatil, A.; Adsul, M.; Chaudhari, S.; Khire, J.; Gokhale, D.V. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 2007, 74, 333–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofvendahl, K.; Hahn-Hägerdal, B. Factors affecting the fermentative lactic acid production from renewable resources1. Enzym. Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, D.; Wang, L.; Rhee, M.S.; Wang, Q.; Chauliac, D.; Ingram, L.O.; Shanmugam, K.; Rhee, L.W.M.S. Metabolic engineering of Bacillus subtilis for production of D-lactic acid. Biotechnol. Bioeng. 2017, 115, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Karamanlioglu, M.; Preziosi, R.; Robson, G. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab. 2017, 137, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, M.A.; Sonomoto, K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 2016, 236, 176–192. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Liu, B.; Yang, C.; Yu, B.; Li, Q.; Ma, C.; Xu, P.; Ma, Y. Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresour. Technol. 2010, 101, 7895–7901. [Google Scholar] [CrossRef]
- Lu, Z.; He, F.; Shi, Y.; Lu, M.; Yu, L. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresour. Technol. 2010, 101, 3642–3648. [Google Scholar] [CrossRef]
- Reddy, L.V.; Park, J.H.; Wee, Y.J. Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1. Biotechnol. Bioprocess Eng. 2015, 20, 1099–1105. [Google Scholar] [CrossRef]
- Da Cunha, M.C.; Masotti, M.T.; Mondragón-Bernal, O.L.; Alves, J.G.L.F. Highly efficient production of L (+)-lactic acid using medium with potato, corn steep liquor and calcium carbonate by Lactobacillus rhamnosus ATCC 9595. Braz. J. Chem. Eng. 2018, 35, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Okano, K.; Uematsu, G.; Hama, S.; Tanaka, T.; Noda, H.; Kondo, A.; Honda, K. Metabolic engineering of Lactobacillus plantarum for direct L-lactic acid production from raw corn starch. Biotechnol. J. 2018, 13, 1700517. [Google Scholar] [CrossRef]
- Unban, K.; Kanpiengjai, A.; Takata, G.; Uechi, K.; Lee, W.C.; Khanongnuch, C. Amylolytic Enzymes acquired from L-lactic acid producing Enterococcus faecium K-1 and improvement of direct lactic acid production from cassava starch. Appl. Biochem. Biotechnol. 2017, 183, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Panesar, P.S.; Saini, M.S. L (+)-lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste Biomass Valorization 2017, 10, 1119–1129. [Google Scholar] [CrossRef]
- Unban, K.; Khanongnuch, R.; Kanpiengjai, A.; Shetty, K.; Khanongnuch, C. Utilizing gelatinized starchy waste from rice noodle factory as substrate for L(+)-lactic acid production by amylolytic lactic acid bacterium Enterococcus faecium K-1. Appl. Biochem. Biotechnol. 2020, 1–14. [Google Scholar] [CrossRef]
- Ghofar, A.; Ogawa, S.; Kokugan, T. Production of L-lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis. J. Biosci. Bioeng. 2005, 100, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xie, L.; Yin, Z.; Khanal, S.K.; Zhou, Q. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. Bioresour. Technol. 2016, 215, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K. Cassava post-harvest processing and storage in Nigeria: A review. Afr. J. Agric. Res. 2014, 9, 3853–3863. [Google Scholar]
- Thailand Board of Investment. Leading the world in cassava production. Thail. Invest. Rev. 2017, 27, 1–12. [Google Scholar]
- Piyachomkwan, K.; Tanticharoen, M. Cassava industry in Thailand: Prospects. J. R. Inst. Thail. 2011, 3, 160–170. [Google Scholar]
- Chetchuda, C. Thailand Industry Outlook 2018–2020: Cassava Industry. Available online: https://www.krungsri.com/bank/getmedia/57ef4f9d-2dcc-4b12-b3a2-3d0ae268471c/IO_Cassava_180807_EN_EX.aspx (accessed on 1 September 2020).
- Thai Feedmill Association. Tapioca Chip/Pellet Usage Trend In Thailand’s Feed Industry; The Thai Tapioca Trade Association: Bangkok, Thailand, 2007. [Google Scholar]
- AOAC. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Holt, J.G.; Krieg, N.R.; Sneath, P.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinate Bacteriology; Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Kanpiengjai, A.; Rieantrakoonchai, W.; Pratanaphon, R.; Pathom-Aree, W.; Lumyong, S.; Khanongnuch, C. High efficacy bioconversion of starch to lactic acid using an amylolytic lactic acid bacterium isolated from Thai indigenous fermented rice noodles. Food Sci. Biotechnol. 2014, 23, 1541–1550. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Clonging: A Laboratory Mannual; Cold Spring Harbor Press: New York, NY, USA, 2001. [Google Scholar]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Mechanisms of probiotic actions–a review. Int. J. Med Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Quinto, E.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic lactic acid bacteria: A review. Food Nutr. Sci. 2014, 5, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Tao, J.-H.; Pan, H.-F. Probiotic bacteria: A viable adjuvant therapy for relieving symptoms of rheumatoid arthritis. Inflammopharmacology 2016, 24, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.P.; Coelho, L.F.; Sass, D.C.; Contiero, J. L-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Braz. J. Microbiol. 2016, 47, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Haki, G. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 2003, 89, 17–34. [Google Scholar] [CrossRef]
- De Souza, P.M.; Magalhães, P.O. Application of microbial α-amylase in industry–a review. Braz. J. Microbiol. 2010, 41, 850–861. [Google Scholar] [CrossRef]
- Unban, K.; Kanpiengjai, A.; Khatthongngam, N.; Saenjum, C.; Khanongnuch, C. Simultaneous Bioconversion of gelatinized starchy waste from the rice noodle manufacturing process to lactic acid and maltose-forming α-amylase by Lactobacillus plantarum S21, using a low-cost medium. Fermentation 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Linko, Y.Y.; Javanainen, P. Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch. Enzym. Microb. Technol. 1996, 19, 118–123. [Google Scholar] [CrossRef]
- Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J. Biosci. Bioeng. 2015, 119, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hetényi, K.; Németh, Á.; Sevella, B. Examination of medium supplementation for lactic acid fermentation. Hung. J. Ind. Chem. 2008, 36, 49–53. [Google Scholar]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 2009, 27, 145–152. [Google Scholar] [CrossRef]
- John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic acid production using Lactobacilli. Appl. Biochem. Biotechnol. 2006, 134, 263–272. [Google Scholar] [CrossRef]
- Nakano, S.; Ugwu, C.U.; Tokiwa, Y. Efficient production of D-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour. Technol. 2012, 104, 791–794. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T.; Vandenberghe, L.P.S.; Mohan, R. Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Bioresour. Technol. 2000, 74, 81–87. [Google Scholar] [CrossRef]
- Ayad, A.A.; El-Rab, D.A.G.; Ibrahim, S.A.; Williams, L. Nitrogen Sources Effect on Lactobacillus reuteri growth and performance cultivated in date palm (Phoenix dactylifera L.) by-products. Fermentation 2020, 6, 64. [Google Scholar] [CrossRef]
Variable Code | Factors | Unit | Range and Levels | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
A | LGC hydrolysate | g/L | 55.85 | 80 | 140 | 200 | 224.85 |
B | YE | g/L | 5.86 | 10 | 20 | 30 | 34.14 |
Variable Code | Factors | Unit | Range and Levels | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
X | AA | U/g DW | 1.72 | 19.60 | 62.78 | 105.96 | 123.84 |
Y | GA | U/g DW | 0.80 | 12.46 | 40.60 | 68.74 | 80.40 |
Run | A: LGC Hydrolysate (g/L) | B: YE (g/L) | C: Tween80 (g/L) | D:(NH4)2HPO4 (g/L) | E: CH3COONa∙3H2O (g/L) | F: (NH4)2H C6H5O7(g/L) | G: MgSO4∙7H2O (g/L) | H: MnSO4∙H2O (g/L) | L-Lactic Acid (g/L) |
---|---|---|---|---|---|---|---|---|---|
1 | 80 | 10 | 1 | 2 | 6 | 2 | 0.1 | 0.1 | 73.4 |
2 | 40 | 10 | 2 | 0.5 | 6 | 2 | 0.5 | 0.1 | 37.5 |
3 | 80 | 2 | 2 | 2 | 2 | 2 | 0.5 | 0.5 | 37.1 |
4 | 40 | 10 | 1 | 2 | 6 | 0.5 | 0.5 | 0.5 | 36.1 |
5 | 40 | 2 | 2 | 0.5 | 6 | 2 | 0.1 | 0.5 | 33.2 |
6 | 40 | 2 | 1 | 2 | 2 | 2 | 0.5 | 0.1 | 37.7 |
7 | 80 | 2 | 1 | 0.5 | 6 | 0.5 | 0.5 | 0.5 | 35.1 |
8 | 80 | 10 | 1 | 0.5 | 2 | 2 | 0.1 | 0.5 | 68.9 |
9 | 80 | 10 | 2 | 0.5 | 2 | 0.5 | 0.5 | 0.1 | 74.1 |
10 | 40 | 10 | 2 | 2 | 2 | 0.5 | 0.1 | 0.5 | 35.0 |
11 | 80 | 2 | 2 | 2 | 6 | 0.5 | 0.1 | 0.1 | 35.6 |
12 | 40 | 2 | 1 | 0.5 | 2 | 0.5 | 0.1 | 0.1 | 27.5 |
13 | 60 | 6 | 1 | 1.25 | 4 | 1.25 | 0.3 | 0.3 | 55.5 |
14 | 60 | 6 | 1 | 1.25 | 4 | 1.25 | 0.3 | 0.3 | 56.3 |
15 | 60 | 6 | 1 | 1.25 | 4 | 1.25 | 0.3 | 0.3 | 55.4 |
Run | A-LGC Hydrolysate (g/L) | B-YE (g/L) | L-Lactic Acid (g/L) | |
---|---|---|---|---|
Experimental Values | Predicted Values | |||
1 | 80(−1) | 10(−1) | 65.8 | 60.9 |
2 | 200(+1) | 10(−1) | 110.6 | 108.5 |
3 | 80(−1) | 30(+1) | 70.2 | 70.6 |
4 | 200(+1) | 30(+1) | 136.2 | 139.4 |
5 | 55.15(−α) | 20(0) | 46.6 | 49.4 |
6 | 224.85(+α) | 20(0) | 133.0 | 131.7 |
7 | 140(0) | 5.86(−α) | 80.3 | 84.8 |
8 | 140(0) | 34.14(+α) | 116.6 | 113.5 |
9 | 140(0) | 20(0) | 123.0 | 120.4 |
10 | 140(0) | 20(0) | 117.8 | 120.4 |
11 | 140(0) | 20(0) | 121.5 | 120.4 |
12 | 140(0) | 20(0) | 118.3 | 120.4 |
13 | 140(0) | 20(0) | 121.6 | 120.4 |
Run | X-AA (U/g DW) | Y-GA (U/g DW) | L-Lactic Acid (g/L) | |
---|---|---|---|---|
Experimental Values | Predicted Values | |||
1 | 19.60(−1) | 12.46(−1) | 95.5 | 96.40 |
2 | 105.96(+1) | 12.46(−1) | 100.1 | 105.46 |
3 | 19.60(−1) | 68.74(+1) | 117.2 | 117.69 |
4 | 105.96(+1) | 68.74(+1) | 115.2 | 120.07 |
5 | 1.72(−α) | 40.60(0) | 103.3 | 103.57 |
6 | 123.84(+α) | 40.60(0) | 117.7 | 111.65 |
7 | 62.78(0) | 0.80(−α) | 102.7 | 99.51 |
8 | 62.78(0) | 80.40(+α) | 127.5 | 124.90 |
9 | 62.78(0) | 40.60(0) | 127.3 | 130.19 |
10 | 62.78(0) | 40.60(0) | 128.5 | 130.19 |
11 | 62.78(0) | 40.60(0) | 134.3 | 130.19 |
12 | 62.78(0) | 40.60(0) | 128.4 | 130.19 |
13 | 62.78(0) | 40.60(0) | 132.5 | 130.19 |
Strategies | Fermentation Time (h) | L-Lactic Acid (g/L) | Yield * (g/g) | Production Efficiency (%) | Productivity (g/L/h) |
---|---|---|---|---|---|
TSF | 36 | 107.30 ± 3.50 b | 0.92 ± 0.06 a | 71.54 ± 2.33 b | 2.98 ± 0.10 a |
TSF | 60 | 134.60 ± 0.20 a | 0.95 ± 0.05 a | 89.73 ± 0.13 a | 2.24 ± 0.00 b |
SSF | 36 | 125.79 ± 3.67 a | 0.93 ± 0.04 a | 83.86 ± 2.45 a | 3.49 ± 0.10 a |
SSF | 60 | 127.00 ± 2.00 a | 0.96 ± 0.03 a | 84.64 ± 1.69 a | 2.12 ± 0.04 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unban, K.; Puangkhankham, N.; Kanpiengjai, A.; Govindarajan, R.K.; Kalaimurugan, D.; Khanongnuch, C. Improvement of Polymer Grade L-Lactic Acid Production Using Lactobacillus rhamnosus SCJ9 from Low-Grade Cassava Chips by Simultaneous Saccharification and Fermentation. Processes 2020, 8, 1143. https://doi.org/10.3390/pr8091143
Unban K, Puangkhankham N, Kanpiengjai A, Govindarajan RK, Kalaimurugan D, Khanongnuch C. Improvement of Polymer Grade L-Lactic Acid Production Using Lactobacillus rhamnosus SCJ9 from Low-Grade Cassava Chips by Simultaneous Saccharification and Fermentation. Processes. 2020; 8(9):1143. https://doi.org/10.3390/pr8091143
Chicago/Turabian StyleUnban, Kridsada, Narongsak Puangkhankham, Apinun Kanpiengjai, Rasiravathanahalli Kaveriyappan Govindarajan, Dharman Kalaimurugan, and Chartchai Khanongnuch. 2020. "Improvement of Polymer Grade L-Lactic Acid Production Using Lactobacillus rhamnosus SCJ9 from Low-Grade Cassava Chips by Simultaneous Saccharification and Fermentation" Processes 8, no. 9: 1143. https://doi.org/10.3390/pr8091143
APA StyleUnban, K., Puangkhankham, N., Kanpiengjai, A., Govindarajan, R. K., Kalaimurugan, D., & Khanongnuch, C. (2020). Improvement of Polymer Grade L-Lactic Acid Production Using Lactobacillus rhamnosus SCJ9 from Low-Grade Cassava Chips by Simultaneous Saccharification and Fermentation. Processes, 8(9), 1143. https://doi.org/10.3390/pr8091143