Effect of Heavy Metals in the Performance of Anaerobic Digestion of Olive Mill Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock
2.2. Experimental Setup
- For Fe, Ni, Pb, Zn, Cu, and Cr, a stepwise technique was used.
- For Mn and Cd, the pulse feeding technique was used, because the concentration level of Mn and Cd was very small <0.001.
3. Results and Discussion
3.1. Anaerobic Digestion Tests without Any Heavy Metal
3.2. Anaerobic Digestion Tests with the Addition of Heavy Metals
3.2.1. Addition of Iron (Fe) and Nickel (Ni)
3.2.2. Addition of Lead (Pb) and Zinc (Zn)
3.2.3. Addition of Copper (Cu) and Chromium (Cr)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.; Zhang, J.; Zhang, L.; Cheng, B. Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure. Environ. Sci. Pollut. Res. 2017, 24, 12328–12337. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Majeed, S.; Xu, R.; Zhang, K.; Kakade, A.; Khan, A.; Hafeez, F.Y.; Mao, C.; Liu, P.; Li, X. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manag. 2019, 240, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Skrypski-Mantele, S.; Bridle, T.R. Environmental sound disposal of tannery sludge. Water Resour. 1995, 29, 1033–1039. [Google Scholar]
- Alrawashdeh, K.A. Improving anaerobic co-digestion of sewage sludge with thermal dried olive mill wastewater. Waste Biomass Valorization 2018, 10, 2113–2119. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic co-digestion of waste activated sludge and OFMSW: The experiences of viareggio and treviso plants (Italy). Water Sci. Technol. 2016, 53, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Petousi, I.; Manios, T. Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 2010, 30, 1849–1853. [Google Scholar] [CrossRef]
- Cavinato, C.; Bolzonella, D.; Pavan, P.; Fatone, F.; Cecchi, F. Mesophilic and thermophilic anaerobic co-digestion of waste active sludge and source sorted biowaste in pilot and full scale reactors. Renew. Energy 2013, 55, 260–265. [Google Scholar] [CrossRef]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2015, 5, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, L.; Merlin Christy, P.; Mahesh, K.; Bhuvaneswari, R.; Divya, D. Identification and evaluation of effective bacterial consortia for efficient biogas production. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 80–86. [Google Scholar] [CrossRef]
- Zeng, K.; Xie, H.; Liu, S.; Zhang, H.; Cui, Y. Influences of chlorides on VFA distillation determination in anaerobic reaction. Appl. Ecol. Environ. Res. 2017, 15, 153–161. [Google Scholar] [CrossRef]
- Zheng-Bo, Y.; Yu, H.Q.; Wang, Z.L. Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Bioresour. Technol. 2014, 98, 781–786. [Google Scholar]
- Abdel-Shafy, H.I.; Hindy, K.T.; Abdel-Sabour, M.F. Heavy metals in the environment of Ismailia city Egypt. Int. Environ. Stud. 1992, 39, 279–289. [Google Scholar] [CrossRef]
- Cadillo-Quiroz, H.; Yavitt, J.B.; Zinder, S.H. Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int. J. Syst. Evol. Microbiol. 2009, 59, 928–935. [Google Scholar] [CrossRef]
- Villaescusa, I.; Martínez, M.; Miralles, N. Heavy metal uptake from aqueous solution by cork and yohimbe waste. J. Chem. Technol. Biotechnol. 2000, 75, 812–816. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z. Biosorption of heavy metals. Biotechnol. Prog. 1995, 11, 235–250. [Google Scholar] [CrossRef]
- Shukla, S.R.; Pai, R.S. Adsorption of Cu(II), Ni(II) andZn(II) on modified jute fibres. Bioresour. Technol. 2005, 96, 1430–1438. [Google Scholar] [CrossRef]
- Ajmal, M.; Khan Rao, R.A.; Anwar, S.; Ahmad, J.; Ahmad, R. Adsorption studies on rice husk: Removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 2003, 86, 147–149. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Tan, T.; Xiao, G. Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass. J. Hazard. Mater. 2011, 193, 1–9. [Google Scholar] [CrossRef]
- Kratochvil, D.; Volesky, B. Advances in the biosorption of heavy metals. Trends Biotechnol. 1998, 16, 291–299. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Toro, L.; Vegliò, F. Olive mill solide resdidues as heavy metal sorbent: A preliminary study. Waste Manag. 2002, 22, 901–907. [Google Scholar] [CrossRef]
- Keskinkan, O.; Goksu, M.Z.L.; Yuceer, A.; Basibuyuk, M.; Forster, C.F. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem. 2003, 39, 179–183. [Google Scholar] [CrossRef]
- Lovley, D.R.; Nevin, K.P. A shift in the current: New applications and concepts for microbe-electrode electron exchange. Curr. Opin. Biotechnol. 2011, 22, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Alrawashdeh, K.A.; Pugliese, A.; Slopiecka, K.; Pistolesi, V.; Massoli, S.; Bartocci, P.; Bidini, G.; Fantozzi, F. Codigestion of untreated and treated sewage sludge with the organic fraction of municipal solid wastes. Fermentation 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Alrawashdeh, K.A.; Slopiecka, K.; Alshorman, A.A.; Bartocci, P.; Fantozzi, F. Pyrolytic degradation of Olive Waste Residue (OWR) by TGA: Thermal decomposition behavior and kinetic study. J. Energy Power Eng. 2017, 11, 497–510. [Google Scholar]
- Liu, Y.; Lam, M.C.; Fang, H.H. Adsorption of heavy metals by EPS of activated sludge. Water Sci. Technol. 2001, 43, 59–66. [Google Scholar] [CrossRef]
- APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater; APHA American Public Health Association: Washington, DC, USA, 1998; Volume 20. [Google Scholar]
- Alrawashdeh, K.A.; Al-Essa, A. Anaerobic co-digestion olive mill wastewater—activated sludge: Effect of aerobic pretreatment on the performance of OMW anaerobic digestion. Waste Biomass Valorization 2019. [Google Scholar] [CrossRef]
- Esposito, G.; Frunzo, L.; Liotta, F.; Panico, A.; Pirozzi, F. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. Open Environ. Eng. J. 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Kim, M.; Ahn, Y.H.; Speece, R.E. Comparative process stability and efficiency of anaerobic digestion: Mesophilic versus thermophilic. Water Res. 2002, 36, 4369–4385. [Google Scholar] [CrossRef]
- Gonzalez-Gil, G.; Kleerebezem, R.; Lettinga, G. Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Appl. Environ. Microbiol. 1999, 65, 1789–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Miglani, P.; Gupta, R.K.; Bhattacharya, T.K. Impact of Ni(II); Zn(II) and Cd(II) on biogasification of potato waste. J. Environ. Biol. 2006, 27, 61–66. [Google Scholar] [PubMed]
- Lang, X.M.; Shi, X.C.; Wang, G.G. New micro-electrolytic and bioenhancing processing technology in treating nitrobenzene sewage. J. Saf. Environ. 2007, 7, 66. [Google Scholar]
- Aziz, M.A.; Ng, W.J.; Jinadasa, K.B.S.N. Inhibitory effects of zinc on acidogenic–anaerobic biotreatment of wastewaters. IE(I) J.–EN 2004, 84, 39–42. [Google Scholar]
- Bartacek, J.; Fermoso, F.G.; Baldó-Urrutia, A.M.; van Hullebusch, E.D.; Lens, P.N.L. Cobalt toxicity in anaerobic granular sludge: Influence of chemical speciation. J. Ind. Microbiol. Biotechnol. 2008, 35, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.R.; Bharati, K.; Sethunathan, N.; Adhya, T.K. Effects of heavy metals on methane production in tropical rice soils. Ecotoxicol. Environ. Saf. 1999, 44, 129–136. [Google Scholar] [CrossRef]
- Fantozzi, F.; Buratti, C. Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester. Bioresour. Technol. 2009, 100, 5783–5789. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—the prospects for practical application. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Bixio, D.; Wintgens, T. Water Reuse System Management Manual AQUARIC; Office for Official Publication of the European Commission: Luxembourg, 2006. [Google Scholar]
- Hmmaini, A. Simultaneous uptake of metals by activated sludge. Miner. Eng. 2003, 16, 723–729. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.H.P.; Yu, H.Q. Effect of HRT on mesophilic acidogenesis of dairy wastewater. J. Environ. Eng. 2000, 126, 1145–1148. [Google Scholar] [CrossRef] [Green Version]
- Baath, E. Effects of heavy metals in soil on microbial processes and populations: A review. Water Air Soil Pollut. 1989, 47, 335–379. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Bayer, E.A.; Lamed, R.; Himmel, M.E. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 2007, 18, 237–245. [Google Scholar] [CrossRef]
- Cirne, D.G.; Paloumet, X.; Björnsson, L.; Alves, M.M.; Mattiasson, B. Anaerobic digestion of lipid-rich waste: Effects of lipid concentration. Renew. Energy 2007, 32, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Fang, H.H.P. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 2007, 67, 668–673. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Toxic effects of heavy metals on germination and physiological processes of plants. Toxic Heavy Met. Legumes Bioremediation 2012, 2, 45–66. [Google Scholar]
- Jiang, N.J.; Liu, R.; Du, Y.J.; Bi, Y.Z. Microbial induced carbonate precipitation for immobilizing Pb contaminants: Toxic effects on bacterial activity and immobilization efficiency. Sci. Total Environ. 2019, 672, 722–731. [Google Scholar] [CrossRef]
- Peng, L.; Lifang, R.; Hongyu, X.; Li, X.; Zhang, C. Study on the toxic effect of lead(II) ion on Escherichia coli. Biol. Trace Elem. Res. 2007, 115, 195–202. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Mamais, D.; Thomaidis, N.S.; Lekkas, T.D. Effect of chromium(VI) on bacterial kinetics of heterotrophic biomass of activated sludge. Water Res. 2002, 36, 3341–3349. [Google Scholar] [CrossRef]
Substrate | Moisture (%) | Total Solids (%) | Volatile Solids (%) | Ash (%) | Fixed Carbon (%) | pH |
---|---|---|---|---|---|---|
OMW | 86.57 ± 0.8 | 13.43 ± 1.3 | 6.5 ± 0.9 | 4.42 ± 2.5 | 2.51 ± 1.2 | 4.9 ± 0.24 |
Parameters (mg/L) | OMW | Inoculum |
---|---|---|
Fe | 1.45 | 4504 |
Ni | 0.041 | <0.001 |
Pb | 0.17 | 332.9 |
Mn | <0.001 | 960.6 |
Zn | 0.29 | 28.77 |
Cu | 1125 | 0.28 |
Cd | <0.001 | 197 |
Total COD | 116.62 ± 0.61 | 88.9 ± 1.08 |
Soluble COD | 61.53 ± 2.16 | 37.01 ± 0.04 |
Polyphenols | 4.51 ± 1.13 | - |
Organic acids load | 190 | - |
HM | HM Concentration in Feed Substrate (mg/L) | BF * | HM | HM Concentration in Feed Substrate (mg/L) | BF * |
---|---|---|---|---|---|
Fe | 0.362 | 0.25 | Zn | 0.072 | 0.25 |
0.725 | 0.5 | 0.145 | 0.5 | ||
1.087 | 0.75 | 0.217 | 0.75 | ||
1.45 | 1 | 0.29 | 1 | ||
Ni | 0.010 | 0.25 | Cu | 281.25 | 0.25 |
0.020 | 0.5 | 562.5 | 0.5 | ||
0.031 | 0.75 | 843.75 | 0.75 | ||
0.041 | 1 | 1125 | 1 | ||
Pb | 0.042 | 0.25 | Cr | 0.173 | 0.25 |
0.085 | 0.5 | 0.346 | 0.5 | ||
0.127 | 0.75 | 0.519 | 0.75 | ||
0.17 | 1 | 0.692 | 1 |
HM | Inhibiting Level (mg/L) | Toxic Limit (mg/L) |
---|---|---|
Fe | >0.87 | >1.45 |
Ni | >0.02 | >0.041 |
Pb | >0.85 | >0.127 |
Zn | ≥0.145 | ≥0.29 |
Cu | ≥281.25 | ≥562.5 |
Cr | ≥0.173 | ≥0.692 |
Fed Substrate | Organic Acids Loadeffluent (mg/L) | TCODeffluent (mg/L) | SCODeffluent (mg/L) | Polyphenolseffluent (mg/L) |
---|---|---|---|---|
OMW * | 208 ± 2.5 | 138.07 ± 1.53 | 72.61 ± 0.19 | 0.510 ± 0.04 |
Fe | 204.3 ± 1.17 | 140.1 ± 0.96 | 71.3 ± 0.35 | 0.507 ± 0.11 |
Ni | 187.6 ± 2.82 | 129.5 ± 1.43 | 67.9 ± 1.28 | 0.476 ± 0.14 |
Zn | 200.1 ± 0.57 | 135.2 ± 3.11 | 69.4 ± 1.02 | 0.480 ± 0.10 |
Pb | 197.8 ± 3.04 | 131.4 ± 1.66 | 68.3 ± 1.7 | 0.463 ± 0.03 |
Cu | 195.5 ± 1.45 | 128.1 ± 2.05 | 66.53 ± 0.89 | 0.458 ± 0 |
Heavy Metal Type | Effect on Anaerobic Digestion |
---|---|
Cu [3] | Has a negative effect on hydrolysis which, in the case of cellulose, is catalyzed by cellulases. The impact is concentrated on the spatial structure of the enzyme. High concentration of Cu can inhibit also methanogenic bacteria. |
Ni [3] | High concentrations of nickel also have negative effects on cellulases and methanogenic bacteria. |
Zn [3] | The influence of zinc on bacteria is not clear still and its inhibiting effect seems to be quite reduced. A slight negative effect can be exerted on methanogenic bacteria growth. |
Cd [3] | Cadmium has high toxicity for methanogenic bacteria. |
Fe [3] | Iron can have a positive effect on anaerobic digestion acting on sulfide and reducing its negative effect. Fe generally increases methane production acting on proteolytic enzymes, sucrases, and cellulases. Fe is also important in stimulating the formation of cytochromes and ferredoxin (Fd), which are vital for electron transportation. |
Pb [51,52] | Pb was proved to negatively affect bacteria activity and also pH. Pb can damage microbial cell membrane and also take part in the microbial metabolism, influencing it in a negative way. |
Cr [53] | The effect of chromium depends on its form (either VI or IV) and on the stability of the waste. The toxicity of chromium for bacteria still needs to be assessed further. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrawashdeh, K.A.b.; Gul, E.; Yang, Q.; Yang, H.; Bartocci, P.; Fantozzi, F. Effect of Heavy Metals in the Performance of Anaerobic Digestion of Olive Mill Waste. Processes 2020, 8, 1146. https://doi.org/10.3390/pr8091146
Alrawashdeh KAb, Gul E, Yang Q, Yang H, Bartocci P, Fantozzi F. Effect of Heavy Metals in the Performance of Anaerobic Digestion of Olive Mill Waste. Processes. 2020; 8(9):1146. https://doi.org/10.3390/pr8091146
Chicago/Turabian StyleAlrawashdeh, Khalideh Al bkoor, Eid Gul, Qing Yang, Haiping Yang, Pietro Bartocci, and Francesco Fantozzi. 2020. "Effect of Heavy Metals in the Performance of Anaerobic Digestion of Olive Mill Waste" Processes 8, no. 9: 1146. https://doi.org/10.3390/pr8091146
APA StyleAlrawashdeh, K. A. b., Gul, E., Yang, Q., Yang, H., Bartocci, P., & Fantozzi, F. (2020). Effect of Heavy Metals in the Performance of Anaerobic Digestion of Olive Mill Waste. Processes, 8(9), 1146. https://doi.org/10.3390/pr8091146