Microalgae Biomolecules: Extraction, Separation and Purification Methods
Abstract
:1. Introduction
2. Cell Disruption Methods
2.1. Mechanical and Physical Methods
2.1.1. Bead Milling
2.1.2. High-Speed Homogenization
2.1.3. High-Pressure Homogenization
2.1.4. Microwave Irradiation
2.1.5. Ultrasonication
2.1.6. Pulsed Electric Field
2.1.7. Thermal Treatments
2.2. Non-Mechanical Methods
2.2.1. Chemical Methods
2.2.2. Osmotic Shock
2.2.3. Enzymatic Methods
3. Extraction Methods
3.1. Organic Solvent Extraction
3.2. Alternative Solvents Extraction
3.3. Supercritical Fluid Extraction
4. Analysis Method
4.1. Supercritical Fluid Chromatography
4.2. Column Chromatography
Hydroxyapatite Chromatography
4.3. Gel Permeation Chromatography
4.4. Ion-Exchange Chromatography
4.5. Affinity Chromatography
4.6. Thin-Layer Chromatography
4.7. High-Performance Liquid Chromatography
4.8. Counter Current Chromatography
4.9. Gas Chromatography
5. Separation and Purification Methods
5.1. Electrophoresis
5.2. Membrane Separation Processes
5.2.1. Ultrafiltration
5.2.2. Electromembrane Filtration
5.3. Ultracentrifugation
5.4. Aqueous Two-Phase Systems
5.5. Three-Phase Partitioning
5.6. Ammonium Sulfate Precipitation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morais Junior, W.G.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture 2020, 528, 735562. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae processing for biodiesel production. In Advances in Biodiesel Production: Processes and Technologies, 1st ed.; Luque, R., Melero, J.A., Eds.; Woodhead Publishing: Cambridge, UK; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 204–231. [Google Scholar]
- Mata, T.M.; Martins, A.A.; Sikdar, S.K.; Costa, C.A.V.; Caetano, N.S. Sustainability considerations about microalgae for biodiesel production. In Advanced Biofuels and Bioproducts, 1st ed.; Lee, J.W., Ed.; Springer: New York, NY, USA, 2013; pp. 745–757. [Google Scholar] [CrossRef]
- Santos, R.R.; Corrêa, P.S.; Dantas, F.M.L.; Teixeira, C.M.L.L. Evaluation of the Co-production of Total Carotenoids, C-phycocyanin and Polyhydroxyalkanoates by Arthrospira platensis. Bioresour. Technol. Rep. 2019, 7, 100226. [Google Scholar] [CrossRef]
- Park, S.; Nguyen, T.H.T.; Jin, E. Improving Lipid Production by Strain Development in Microalgae: Strategies, Challenges and Perspectives. Bioresour. Technol. 2019, 292, 121953. [Google Scholar] [CrossRef]
- Geresh, S.; Adin, I.; Yarmolinsky, E.; Karpasas, M. Characterization of the Extracellular Polysaccharide of Porphyridium sp.: Molecular Weight Determination and Rheological Properties. Carbohydr. Polym. 2002, 50, 183–189. [Google Scholar] [CrossRef]
- Shrivastav, A.; Mishra, S.K.; Mishra, S. Polydroxyalkanoate (PHA) Synthesis by Spirulina subsalsa from Gujarat Coast of India. Int. J. Biol. Macromol. 2010, 46, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.R.; Mak, K.Y.; Khaw, Y.J.; Suhaidi, N.; Chew, K.W.; Show, P.L. An efficient and rapid Method to Extract and Purify Protein–Liquid Triphasic Flotation System. Bioresour. Technol. 2019, 294, 122158. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, M.; Chamlagain, S.A.B.; Kariluoto, S.; Piironen, V. Riboflavin, Niacin, Folate and Vitamin B12 in Commercial Microalgae Powders. J. Food Compos. Anal. 2019, 82, 103226. [Google Scholar] [CrossRef]
- Liu, L.; Pohnert, G.; Wei, D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar. Drugs 2016, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.; Chang, J. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S. Microalgae disruption techniques for product recovery: Influence of cell wall composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Agboola, J.O.; Teuling, E.; Wierenga, P.A.; Gruppen, H.; Schrama, J.W. Cell wall disruption: An effective strategy to improve the nutritive quality of microalgae in African catfish (Clarias gariepinus). Aquac. Nutr. 2019, 25, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Larrosa, A.P.Q.; Camara, A.S.; Moura, J.M.; Pinto, L.A.A. Spirulina sp. Biomass Dried/disrupted by Different Methods and their Application in Biofilms Production. Food Sci. Biotechnol. 2018, 27, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Gim, H.; Kim, S.W. Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 2018, 23, 550–556. [Google Scholar] [CrossRef]
- Martínez, J.M.; Gojkovic, Z.; Ferro, L.; Maza, M.; Álvarez, I.; Raso, J.; Funk, C. Use of Pulsed Electric Field Permeabilization to Extract Astaxanthin from the Nordic Microalgae Haematococcus pluvialis. Bioresour. Technol. 2019, 289, 121694. [Google Scholar] [CrossRef]
- Rito-Palomares, M. Bioseparation: The limiting step in bioprocess development. J. Chem. Technol. Biotechnol. 2008, 83, 115–116. [Google Scholar] [CrossRef]
- Yu, L.; Wu, F.; Chen, G. Next-Generation Industrial Biotechnology–Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol. J. 2019, 14, 1800437. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotech. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef]
- Toursel, B.; Delannoy, F.; Patinier, S. Optimised Method for Breaking Chlorella Walls by Mechanical Crushing. U.S. Patent 10465159B2, 5 November 2019. [Google Scholar]
- D’Hondt, E.D.; Martín-Juárez, J.; Kasperoviciene, J.; Koreiviene, J.; Sulcius, S.; Elst, K.; Bastiaens, L. Cell Disruption Technologies. In Microalgae-Based Biofuels and Bioproducts–From Feedstock Cultivation to End-Products; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing Series in Energy: Duxford, UK, 2017; pp. 133–154. [Google Scholar] [CrossRef]
- Balasubramanian, R.K.; Doan, T.T.Y.; Obbard, J.P. Factors affecting cellular lipid extraction from marine microalgae. Chem. Eng. J. 2013, 215–216, 929–936. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Gião, M.S.; Malcata, F.X. Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem. 2013, 138, 638–643. [Google Scholar] [CrossRef]
- González-Delgado, A.D.; Kafarov, V. Microalgae based biorefinery: Evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale. Rev. Ion. 2013, 26, 29–37. [Google Scholar]
- Gomes, T.A.; Zanette, C.M.; Spier, M.R. An overview of cell disruption methods for intracellular biomolecules recovery. Prep. Biochem. Biotech. 2020, 50, 635–654. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Greysen, L.; Foubert, I.; Hendrickx, M.E.; Loey, A.M.V. Evaluating microalgal cell disruption upon ultra high pressure homogenization. Algal Res. 2019, 42, 101616. [Google Scholar] [CrossRef]
- Elain, A.; Nkounkou, C.; Fellic, M.; Donnart, K. Green extraction of polysaccharides from Arthrospira platensis using high pressure homogenization. J. Appl. Phycol. 2020, 32, 1719–1727. [Google Scholar] [CrossRef]
- Piasecka, A.; Krzemińska, I.; Tys, J. Physical methods of microalgal biomass pretreatment. Int. Agrophys. 2014, 38, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Zghaibi, N.; Omar, R.; Kamal, S.M.M.; Biak, D.R.A.; Harun, R. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae Nannochloropsis sp. Molecules 2019, 24, 3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Yoo, C.; Jun, S.; Ahn, C.; Oh, H. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, K.; Chen, C. Study of the microwave lipid extraction from microalgae for biodiesel production. Chem. Eng. J. 2014, 250, 267–273. [Google Scholar] [CrossRef]
- Viner, K.J.; Champagne, P.; Jessop, P.G. Comparison of cell disruption techniques prior to lipid extraction from Scenedesmus sp. slurries for biodiesel production using liquid CO2. Green Chem. 2018, 20, 4330. [Google Scholar] [CrossRef]
- Fan, Y.; Niu, Z.; Xu, C.; Yang, L.; Chen, F.; Zhang, H. Biocompatible protic ionic liquids-based microwave-assisted liquid-solid extraction of astaxanthin from Haematococcus pluvialis. Ind. Crop. Prod. 2019, 141, 111809. [Google Scholar] [CrossRef]
- Krishnan, S.; Ghani, N.A.; Aminuddin, N.F.; Quraishi, K.S.; Azman, N.S.; Cravotto, G.; Leveque, J. Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renew. Energ. 2020, 149, 244–252. [Google Scholar] [CrossRef]
- Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresour. Technol. 2012, 114, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Compr. Rev. Food Sci. Saf. 2020, 19, 530–552. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T. Cultured microalgae and compounds derived thereof for food applications: Strain selection and cultivation, drying, and processing strategies. Food Rev. Int. 2020, 36, 559–583. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V.; Knorr, D. Applications of pulsed electric fields technology for food industry. In Pulsed Electric Fields Technology for the Food Industry; Raso, J., Heinz, V., Eds.; Food Engineering Series; Springer: Boston, MA, USA, 2006; pp. 197–221. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.M.; Bekhit, A.E.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Lam, G.P.; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.M.; Wijffels, R.H.; Olivieri, G. Pulsed electric field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res. 2017, 24, 181–187. [Google Scholar] [CrossRef]
- Käferböck, A.; Smetana, S.; Vos, R.; Schwarz, C.; Toepfl, S.; Parniakov, O. Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Res. 2020, 48, 101914. [Google Scholar] [CrossRef]
- Zhang, R.; Lebovka, N.; Marchal, L.; Vorobiev, E.; Grimi, N. Pulsed electric energy and ultrasonication assisted green solvent extraction of bio-molecules from different microalgal species. Innov. Food Sci. Emerg. Technol. 2020, 62, 102358. [Google Scholar] [CrossRef]
- McMillan, J.R.; Watson, I.A.; Ali, M.; Jaafar, W. Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 2013, 103, 128–134. [Google Scholar] [CrossRef]
- Lorente, E.; Farriol, X.; Salvadó, J. Steam explosion as a fractionation step in biofuel production. Fuel Process Technol. 2015, 131, 93–98. [Google Scholar] [CrossRef]
- Lorente, E.; Hapońska, M.; Clavero, E.; Torras, C.; Salvadó, J. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration. Bioresour. Technol. 2017, 237, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nurra, C.; Torras, C.; Clavero, E.; Ríos, S.; Rey, M.; Lorente, E.; Farriol, X.; Salvadó, J. Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresour. Technol. 2014, 163, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Al hattab, M.; Ghaly, A. Microalgae oil extraction pre-treatment methods: Critical review and comparative analysis. J. Fundam. Renew. Energy Appl. 2015, 5, 172. [Google Scholar] [CrossRef] [Green Version]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kumar, A.; Sharma, Y.C. Biodiesel Synthesis from Microalgae (Anabaena PCC 7120) by Using Barium Titanium Oxide (Ba2TiO4) Solid Base Catalyst. Bioresour. Technol. 2019, 287, 121357. [Google Scholar] [CrossRef]
- Castro, Y.A.; Ellis, J.T.; Miller, C.D.; Sims, R.C. Optimization of Wastewater Microalgae Saccharification Using Dilute Acid Hydrolysis for Acetone, Butanol, and Ethanol Fermentation. Appl. Energy 2015, 140, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Juárez, J.M.; Hernando, A.L.; Torre, R.M.; Lanza, S.B.; Rodríguez, S.B. Saccharification of Microalgae Biomass Obtained from Wastewater Treatment by Enzymatic Hydrolysis. Effect of Alkaline-Peroxide Pretreatment. Bioresour. Technol. 2016, 218, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Kim, J. Cationic Surfactant-Based Method for Simultaneous Harvesting and Cell Disruption of Microalgal Biomass. Bioresour. Technol. 2013, 149, 579–581. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Cong, W. Enzyme-Assisted Aqueous Extraction of Lipid from Microalgae. J. Agric. Food Chem. 2012, 60, 11771–11776. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wang, Z.; Sun, Y.; Zhu, S.; Li, L.; Lv, P. Optimization of Enzymatic Hydrolysis for Effective Lipid Extraction from Microalgae Scenedesmus sp. Renew. Energy 2018, 125, 1049–1057. [Google Scholar] [CrossRef]
- Zhou, Y.; Lai, Y.S.; Eustance, E.; Rittmann, B.E. Promoting Synechocystis sp. PCC 6803 Harvesting by Cationic Surfactants: Alkyl-chain Length and Dose Control the Release of Extracellular Polymeric Substances and Biomass Aggregation. ACS Sustain. Chem. Eng. 2018, 7, 2127–2133. [Google Scholar] [CrossRef]
- Lai, Y.S.; Zhou, Y.; Martarella, R.; Wang, Z.; Rittmann, B.E. Synergistic Integration of C12-C16 Cationic Surfactants for Flocculation and Lipid Extraction from Chlorella Biomass. ACS Sustain. Chem. Eng. 2017, 5, 752–757. [Google Scholar] [CrossRef]
- Alhattab, M.; Kermanshahi-pour, A.; Brooks, S. Dispersed Air Flotation of Chlorella saccharophila and subsequent Extraction of Lipids–Effect of Supercritical CO2 Extraction Parameters as Surfactant Pretreatment. Biomass Bioenerg. 2019, 127, 105297. [Google Scholar] [CrossRef]
- Rakesh, S.; Dhar, D.W.; Prasanna, R.; Saxena, A.K.; Saha, S.; Shukla, M.; Sharma, K. Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae. Eng. Life Sci. 2015, 15, 443–447. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- López, B.H.; Morales, J.M.V. Extraction of antioxidants from Haematococcus pluvialis by osmotic shock with sucrose, for use in the preparation of syrup for jams. In Proceedings of the XIV International Engineering Congress (CONIIN), Queretaro, Mexico, 14–19 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Koyande, A.K.; Tanzil, V.; Dharan, H.M.; Subramaniam, M.; Robert, R.N.; Lau, P.; Khoiroh, I.; Show, P. Integration of osmotic shock assisted liquid biphasic system for protein extraction from microalgae Chlorella vulgaris. Biochem. Eng. J. 2020, 157, 107532. [Google Scholar] [CrossRef]
- Heo, Y.M.; Lee, H.; Lee, C.; Kang, J.; Ahn, J.; Lee, Y.M.; Kang, K.; Choi, Y.; Kim, J. An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal Res. 2017, 27, 286–294. [Google Scholar] [CrossRef]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, R.; Roberts, M. Polymer-enhanced enzymatic microalgal cell disruption for lipid and sugar recovery. Algal Res. 2016, 14, 100–108. [Google Scholar] [CrossRef]
- Bai, M.; Han, C.; Lu, W.; Wan, H.; Chang, J.; Chen, C.; Chang, H. Method for Manufacturing an Active Substance for Inducing Self-Lysis in Microalga Cells, Active Substance Obtained Therefrom, and Method for Inducing Self-Lysis in Microalga Cells. U.S. Patent 10196600B2, 5 February 2019. [Google Scholar]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Xia, A.; Ho, S.; Lim, J.W. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresour. Technol. 2019, 289, 121727. [Google Scholar] [CrossRef] [PubMed]
- Van Eykelenburg, C. Spirulina platensis: Morphology and Ultrastructure. Ph.D. Thesis, Delft University, Delft, The Netherlands, 1980. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A744c0474-507a-42c7-b29b-4139f7cb4f22 (accessed on 20 September 2020).
- Gouveia, J.D.G. The Effects of Light Quality on the Morphology and Hydrocarbon Production of Botryococcus braunii. Master’s Thesis, University of Exeter, Exeter, UK, September 2010. Available online: https://core.ac.uk/download/pdf/12826395.pdf (accessed on 20 September 2020).
- Wang, S.; Hu, Q.; Sommerfeld, M.; Chen, F. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 2004, 4, 692–708. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Li, X.; Xiao, S.; Guo, Y.; Zhou, W.; Xu, J.; Yuan, Z. Microalgae Pretreatment with Liquid Hot Water to Enhance Enzymatic Hydrolysis Efficiency. Bioresour. Technol. 2016, 220, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, F.; Meng, H.; Bao, G.; Zhang, Y.; Li, Y. Development of a Silicon Carbide Disruption Method Enables Efficient Extraction of Proteins from Cyanobacterium Synechocystis sp. PCC 6803. Process Biochem. 2014, 49, 2199–2202. [Google Scholar] [CrossRef]
- Woitzik, D.; Weckesser, J.; Jürgens, U. Isolation and characterization of cell wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307. J. Gen. Microbiol. 1988, 134, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Gille, A.; Hollenbach, R.; Trautmann, A.; Posten, C.; Brivida, K. Effect of Sonication on Bioaccessibility and Cellular Uptake of Carotenoids from Preparations of Photoautotrophic Phaeodactylum tricornutum. Food Res. Int. 2019, 118, 40–48. [Google Scholar] [CrossRef]
- Serive, B.; Kaas, R.; Bérard, J.; Pasquet, V.; Picot, L.; Cadoret, J. Selection and Optimisation of a Method for Efficient Metabolites Extraction from Microalgae. Bioresour. Technol. 2012, 124, 311–320. [Google Scholar] [CrossRef]
- De Martino, A.; Meichenin, A.; Shi, J.; Pan, K.; Bowler, C. Genetic and Phenotypic Characterization of Phaeodactylum tricornutum (Bacillariophyceae) Accessions. J. Phycol. 2007, 43, 992–1009. [Google Scholar] [CrossRef]
- Ramos, G.J.P.; Bicudo, C.E.M.; Neto, A.G.; Moura, C.W.N. Monoraphidium and Ankistrodesmus (Chlorophyceae, Chlorophyta) from Pantanal dos Marimbus, Chapada Diamantina, Bahia State, Brazil. Hoehnea 2012, 39, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Imam, S.H.; Snell, W.J. The Chlamydomonas cell wall degrading enzyme, lysine, acts on two substrates within the framework of the wall. J. Cell Biol. 1988, 106, 2211–2221. [Google Scholar] [CrossRef]
- Wilson, D.P. The triradiate and other forms of Nitzschia closterium (Ehrenberg) Wm. Smith, forma minutissima of Allen and Nelson. J. Mar. Biol. Assoc. UK 1946, 26, 235–270. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mikes, F.; Matsakas, L. An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pora, B.; Qian, Y.; Caulier, B.; Comini, S.; Looten, P.; Segueilha, L. Method for the Preparation and Extraction of Squalene from Microalgae. U.S. Patent 10087467B2, 2 October 2018. [Google Scholar]
- Zanella, L.; Pertile, P.; Massironi, M.; Massironi, M.; Caviola, E. Extracts of Microalgae and their Applications. U.S. Patent 9974819B2, 22 May 2018. [Google Scholar]
- Massetti, F.; Capuano, F.; Medici, R.; Miglio, R. Process for the Extraction of Lipids and Sugars from Algal Biomass. U.S. Patent 10336965B2, 2 July 2019. [Google Scholar]
- Reddy, C.M.; O’Neil, G.W. Use of Marine Algae for co-Producing Alkenones, Alkenone Derivatives and Co-Products. U.S. Patent 10208321B2, 19 February 2019. [Google Scholar]
- Nakazawa, A.; Matsuura, H.; Kose, R.; Kato, S.; Honda, D.; Inouye, I.; Kaya, K.; Watanabe, M. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 2012, 109, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Kaya, K.; Nakazawa, A.; Matsuura, H.; Honda, D.; Inouye, I.; Watanabe, M. Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene. Biosci. Biotechnol. Biochem. 2011, 75, 2246–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, M.H.; Ha, N.C.; Thom, L.T.; Tam, L.T.; Anh, H.T.L.; Thu, N.T.H.; Hong, D.D. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. J. Biosci. Bioeng. 2014, 118, 632–639. [Google Scholar] [CrossRef]
- Patel, A.; Liefeldt, S.; Rova, U.; Christakopoulos, P.; Matsakas, L. Co-production of DHA and squalene by Thraustochytrid from forest biomass. Sci. Rep. 2020, 10, 1992. [Google Scholar] [CrossRef]
- Li, Q.; Chen, G.; Fan, K.; Lu, F.; Aki, T.; Jiang, Y. Screening and Characterization of Squalene-producing Thraustochytrids from Hong Kong Mangroves. J. Agric. Food Chem. 2009, 57, 4267–4272. [Google Scholar] [CrossRef]
- Du, Y.; Schuur, B.; Brilman, D.W.F. Maximizing lipid yield in Neochloris oleoabundans algae extraction by stressing and using multiple extraction stages with n-ethlylbutylamine as switchable solvent. Ind. Eng. Chem. Res. 2017, 56, 8073–8080. [Google Scholar] [CrossRef] [Green Version]
- Obeid, S.; Beaufils, N.; Camy, S.; Takache, H.; Ismail, A.; Pontalier, P. Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Res. 2019, 34, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Hernández, D.; Solana, M.; Riaño, B.; García-González, M.C.; Bertucco, A. Biofuels from microalgae: Lipid extraction and methane production from residual biomass in a biorefinery approach. Bioresour. Technol. 2014, 170, 370–378. [Google Scholar] [CrossRef]
- Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Di Sanzo, G.; Lovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective Extraction of ω-3 Fatty Acids from Nanochloropsis sp. Using Supercritical CO2 Extraction. Molecules 2019, 24, 2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1956, 226, 497–509. [Google Scholar]
- Kumar, R.R.; Rao, P.H.; Arumugan, M. Lipid extraction methods from microalgae: A comprehensive review. Front. Energy Res. 2015, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guldhe, A.; Singh, B.; Ansari, F.A.; Sharma, Y.; Bux, F. Extraction and conversion of microalgal lipids. In Algae Biotechnology; Bux, F., Chisti, Y., Eds.; Green Energy and Technology; Springer: New York, NY, USA, 2016; pp. 91–110. [Google Scholar] [CrossRef]
- Breil, C.; Vian, M.A.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch methods for solid-liquid-liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternatives solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgich, M.; Mata, T.M.; Martins, A.A.; Branco-Vieira, M.; Caetano, N.S. Comparison of different lipid extraction procedures applied to three microalgal species. Energy Rep. 2020, 6, 477–482. [Google Scholar] [CrossRef]
- Ruecker, C.M.; Adu-Peasah, S.P.; Engelhardt, B.S.; Veeder, G.T. Soventless Extraction Process. U.S. Patent 10329515B2, 25 June 2019. [Google Scholar]
- Doble, M.; Kruthiventi, A.M. Alternate solvents. In Green Chemistry and Engineering; Doble, M., Kruthiventi, A.M., Eds.; Academic Press: New York, NY, USA, 2007; pp. 93–104. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Radoševic, K.; Redovniković, I.R.; Halambek, J.; Srček, V.G. A brief overview of the potential environmental hazards of ionic liquids. Ecotox Environ. Saf. 2014, 99, 1–12. [Google Scholar] [CrossRef]
- Ho, T.D.; Zhang, C.; Hantao, L.W.; Anderson, J.L. Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives. Anal. Chem. 2014, 86, 262–285. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Alam, M.A.; Xu, J.; Zhu, S.; Yuan, Z.; Huo, S.; Guo, Y.; Qin, L.; Ma, L. Repeated utilization of ionic liquid to extract lipid from algal biomass. Int. J. Polym. Sci. 2019, 9209210, 1–7. [Google Scholar] [CrossRef]
- To, T.Q.; Procter, K.; Simmons, B.A.; Subasshchandrabose, S.; Atkin, R. Low cost ionic liquid-water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discuss 2018, 206, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Chen, X.; Xia, S. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. J. Ocean Univ. China 2016, 15, 549–552. [Google Scholar] [CrossRef]
- El Archkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Lu, W.; Alam, M.A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhance lipid recovery for biodiesel production. Bioresour. Technol. 2016, 218, 123–128. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Šima, J. Use of deep eutectic solvents in polymer chemisty–A review. Molecules 2019, 24, 3978. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, W.M.A.W.; Lorwirachsutee, A.; Theodoropoulos, C.; Conzalez-Miguel, M. Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
- Pan, Y.; Alam, M.A.; Wang, Z.; Huang, D.; Hu, K.; Chen, H.; Yuan, Z. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour. Technol. 2017, 238, 157–163. [Google Scholar] [CrossRef]
- Manjare, S.D.; Dhingra, K. Supercritical Fluids in Separation and Purification: A Review. Mater Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Johner, J.C.F.; Meireles, M.A.A. Construction of a Supercritical Fluid Extraction (SFE) Equipment: Validation Using Annato and Fennel and Extract Analysis by Thin Layer Chromatography Couple to Image. Food Sci. Technol. 2016, 36, 210–247. [Google Scholar] [CrossRef] [Green Version]
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Hrnčič, M.K. Are Supercritical Fluids Solvents for the Future? Chem. Eng. Process 2019, 141, 107532. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, Y.; Ye, D.; Yuan, L.; Sun, Y.; Han, D.; Hu, Q. Solid Matrix-Supported Supercritical CO2 Enhances Extraction of γ-Linolenic Acid from Cyanobacterium Arthrospira (Spirulina) platensis and Bioactivity Evaluation of the Molecule in Zebrafish. Mar. Drugs 2019, 17, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feller, R.; Matos, A.P.; Mazzutti, S.; Moecke, E.H.S.; Tres, M.V.; Derner, R.B.; Oliveira, J.V.; Junior, A.F. Polyunsaturated ω-3 and ω-6 Fatty Acids, Total Carotenoids and Antioxidant Activity of Three Marine Microalgae Extracts Obtained by Supercritical CO2 and Subcritical n-butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Dal Bosco, C.; Di Caprio, F.; Prosini, L.; Gentili, A.; Pagnanelli, F.; Palocci, C. Extraction of Carotenoids and Fat-Soluble Vitamins from Tetradesmus obliquus Microalgae: An Optimized Approach by Using Supercritical CO2. Molecules 2019, 24, 2581. [Google Scholar] [CrossRef] [Green Version]
- Mendiola, J.A.; García-Martínez, D.; Rupérez, F.J.; Martínez-Álvarez, P.J.; Reglero, G.; Cifuentes, A.; Barbas, C.; Ibañez, E.; Señoráns, F.J. Enrichment of Vitamin E from Spirulina platensis Microalga by SFE. J. Supercrit. Fluids 2008, 43, 484–489. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Marín, F.R.; Hernández, S.F.; Arredondo, B.O.; Señoráns, F.J.; Ibañez, E.; Reglero, G. Characterization via Liquid Chromatography Coupled to Diode Array Detector and Tandem Mass Spectrometry of Supercritical Fluid Antioxidant Extracts of Spirulina platensis Microalga. J. Sep. Sci. 2005, 28, 1031–1038. [Google Scholar] [CrossRef]
- Mehariya, S.; Lovine, A.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Casella, P.; Karatza, D.; Marino, T.; Musmarra, D.; et al. Supercritical Fluid Extraction of Lutein from Scenedesmus almeriensis. Molecules 2019, 24, 1324. [Google Scholar] [CrossRef] [Green Version]
- Molino, A.; Martino, M.; Larocca, V.; Di Sanzo, G.; Spagnoletta, A.; Marino, T.; Karatza, D.; Lovine, A.; Mehariya, S. Eicosapentaenoic Acid Extraction from Nannochloropsis gaditana Using Carbon Dioxide at Supercritical Conditions. Mar. Drugs 2019, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.F.; Ribeiro, L.A.; Batista, A.P.; Marques, P.A.S.S.; Nobre, B.P.; Palavra, A.M.F.; Silva, P.P.; Gouveia, L.; Silva, C. A biorefinery from Nannochloropsis sp. microalga–Energy and CO2 emission and economic analyses. Bioresour. Technol. 2013, 138, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Coskun, O. Separation Techniques: Chromatography. North Clin. Istanbul. 2016, 3, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Rajan, P.M.V.; Barron, A.R. Physical Methods in Chemistry and Nano Science. Openstax CNX™, 337–392. Available online: http://cnx.org/content/col10699/1.25/ (accessed on 25 September 2019).
- Abrahamsson, V.; Rodriguez-Meizoso, I.; Turner, C. Determination of Carotenoids in Microalgae Using Supercritical Fluid Extraction and Chromatography. J. Chromatogr. A 2012, 1250, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Aluç, Y.; Kankilic, G.B.; Tüzün, I. Determination of Carotenoids in Two Algae Species from the Saline Water of Kapulukaya Reservoir by HPLC. J. Liq. Chromatogr. R. T 2018, 41, 93–100. [Google Scholar] [CrossRef]
- Ahuja, S. Chromatographic methods. In Chromatography and Separation Science; Academic Press: New York, NY, USA, 2003; pp. 81–100. [Google Scholar]
- Nawrocki, J. Silica Surface Controversies, Strong Adsorption Sites, their Blockage and Removal. Part I. J. Chromatogr. 1991, 31, 177. [Google Scholar] [CrossRef]
- Nawrocki, J. Silica Surface Controversies, Strong Adsorption Sites, their Blockage and Removal. Part II. J. Chromatogr. 1991, 31, 193. [Google Scholar] [CrossRef]
- Claessens, H.A.; van Straten, M.A. Review on the Chemical and Thermal Stability of Stationary Phases for Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2004, 1060, 23–41. [Google Scholar] [CrossRef]
- Venegas-Venegas, E.; Guil-Guerrero, J.L.; Rincón-Cervera, M.A.; Ramos-Bueno, R.P. Tricosahexaenoyl glycerol Purification from Docosahexanoic Acid Single Cell Oil (DHASCO). Eur. J. Lipid Sci. Technol. 2014, 116, 266–271. [Google Scholar] [CrossRef]
- González-Fernández, M.J.; Ramos-Bueno, R.P.; Rodríguez-García, I.; Guil-Guerrero, J.L. Purification Process for MUFA- and PUFA- based Monoacylglycerols from Edible Oils. Biochimie 2017, 139, 107–114. [Google Scholar] [CrossRef]
- Ronda, S.R.; Lele, S. Argentated Silica Gel Chromatography for Separation of γ-linolenic Acid from Microalgae. Biosci. Biotech. Res. Asia 2007, 4, 621–626. [Google Scholar]
- Guil-Guerrero, J.L.; Belarbi, E.; Rebolloso-Fuentes, M.M. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation 2001, 9, 299–306. [Google Scholar] [CrossRef]
- Wu, H.; Fu, X.; Cao, W.; Xiang, W.; Hou, Y.; Ma, J.; Wang, Y.; Fan, C. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways. J. Agric. Food Chem. 2019, 67, 2212–2219. [Google Scholar] [CrossRef]
- Schröder, E.; Jönsson, T.; Poole, L. Hydroxyapatite chromatography: Altering the phosphate-dependent elution profile of protein as a function of pH. Anal. Biochem. 2003, 313, 176–178. [Google Scholar] [CrossRef]
- Reuter, W.; Nickel, C.; Wehmeyer, W. Isolation of Allophycocyanin B from Rhodella violacea Results in a Model of the Core from Hemidiscoidal Phycobilisomes of Rhodophyceae. FEBS Lett. 1990, 273, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Lojero, C.; Pérez-Gómez, B.; Krogmann, D.W.; Peña-Diaz, A. The Tricylindrical Core of the Phycobilisome of the Cyanobacterium Arthrospira (Spirulina) maxima. Int. J. Biochem. Cell Bid. 1997, 29, 959–970. [Google Scholar] [CrossRef]
- Rossano, R.; Ungaro, N.; D’Ambrosio, A.; Liuzzi, G.M.; Riccio, P. Extracting and Purifying R-phycoerythrin from Mediterranean Red Algae Corallina elongata Ellis & Solander. J. Biotechnol. 2002, 101, 289–293. [Google Scholar] [CrossRef]
- Niu, J.; Wang, G.; Lin, X.; Zhou, B. Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J. Chromatogr. B 2006, 850, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wong, K.; Yang, Y.; Li, X.; Jiang, J.; Zheng, W.; Wu, H.; Chen, T. Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis. Drug Des. Dev. Ther. 2014, 8, 1789–1800. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Wu, L.; Li, C.; He, P.; Li, J.; Zhou, J. Purification, Crystallization and Preliminary X-ray Analysis of Phycocyanin and Phycoerythrin from Porphyra yezoensis Ueda. Acta Cryst. 2011, F67, 579–583. [Google Scholar] [CrossRef]
- Ohsawa, N.; Tsujita, M.; Morikawa, S.; Itoh, N. Purification and Characterization of a Monohalomethane-producing Enzyme S-adenosyl-L-methionine: Halide Ion Methyltransferase from a Marine Microalga, Pavlova pinguis. Biosci. Biotechnol. Biochem. 2001, 65, 2397–2404. [Google Scholar] [CrossRef]
- Ravi, A.; Guo, S.; Rasala, B.; Tran, M.; Mayfield, S.; Nikolov, Z.L. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii. Int. J. Mol. Sci. 2018, 19, 585. [Google Scholar] [CrossRef] [Green Version]
- Williams, T. Gel Permeation Chromatography: A Review. J. Mater. Sci. 1970, 5, 811–820. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Ren, Y.; Chen, F. Characterization of Exopolysaccharides Produced by Microalgae with Antitumor Activity on Human Colon Cancer Cells. Int. J. Biol. Macromol. 2019, 128, 761–767. [Google Scholar] [CrossRef]
- Yang, X.; Liu, M.; Qi, B.; Li, L.; Deng, J.; Hu, X.; Wu, Y.; Hao, S. Extraction, Purification and Partial Characterizations of Polysaccharides from Gracilaria lemaneiformis. Adv. Mat. Res. 2014, 881–883, 776–780. [Google Scholar] [CrossRef]
- Muhamad, I.I.; Zulkifli, N.; Selvakumaran, S.; Lazim, N.A.M. Bioactive Algal-Derived Polysaccharides: Multi-Functionalization, Therapeutic Potential and Biomedical Applications. Curr. Pharm. Des. 2019, 25, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- de Morais, M.G.; Stillings, C.; Dersch, R.; Rudisile, M.; Pranke, P.; Costa, J.A.V.; Wendorff, J. Extraction of Poly(3-hydroxybutyrate) from Spirulina LEB 18 for Developing Nanofibers. Polímeros 2015, 25, 161–167. [Google Scholar] [CrossRef] [Green Version]
- GE Healthcare. Ion Exchange Chromatography & Chromatofocusing. Principles and Methods. 2010. Available online: https://www.gelifesciences.com/en/us/solutions/protein-research/knowledge-center/protein-purification-methods/ion-exchange-chromatography (accessed on 25 September 2019).
- Owczarek, B.; Gerszberg, A.; Hnatuszko-Konka, K. A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. BioMed. Res. Int. 2019, 1–13. [Google Scholar] [CrossRef]
- Chen, K.; Wang, S.S.; Show, P.; Hsu, S.; Chang, Y. Rapid and Efficient Recovery of C-Phycocyanin from Highly Turbid Spirulina platensis Algae Using Stirred Fluidized Bed Ion Exchange Chromatography. Sep. Purif. Technol. 2019, 209, 636–645. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, J.; Ju, B.; Li, W.; Wen, S.; Pu, Y.; Qin, S. One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum. Protein Expr. Purif. 2016, 123, 70–74. [Google Scholar] [CrossRef]
- Urh, M.; Simpson, D.; Zhao, K. Affinity Chromatography: General Methods. Methods Enzymol. 2009, 463, 417–438. [Google Scholar] [CrossRef]
- Mangold, H.K. Dietary Fats and Health; Perkins, E.G., Visek, W.J., Eds.; American Oil Chemists’ Society: Champaign, IL, USA, 1983; pp. 110–123. [Google Scholar]
- Yang, M.; Meng, Y.; Chu, Y.; Fan, Y.; Cao, X.; Xue, S.; Chi, Z. Triacylglycerol accumulates exclusively outside the chloroplast in shortterm nitrogen-deprived Chlamydomonas reinhardtii. BBA-Mol. Cell Biol. Lipids 2018, 1863, 1478–1487. [Google Scholar] [CrossRef]
- Shen, P.; Wang, H.; Pan, Y.; Meng, Y.; Wu, P.; Xue, S. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae. Front. Plant. Sci. 2016, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Dyńska-Kukulska, K.; Ciesielski, W. Methods of extraction and thin-layer chromatography determination of phospholipids in biological samples. Rev. Anal. Chem. 2012, 31, 43–56. [Google Scholar] [CrossRef]
- Lage, S.; Gentili, F.G. Quantification and Characterisation of Fatty Acid Methyl Esters in Microalgae: Comparison of Pretreatment and Purification Methods. Bioresour. Technol. 2018, 257, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wong, C.; Li, Y.; He, Y.; Mao, X.; Wu, T.; Ren, Y.; Chen, F. A Novel Strategy for Isolation and Purification of Fucoxanthinol and Fucoxanthin from the Diatom Nitzschia laevis. Food Chem. 2019, 277, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Żyszka-Haberecht, B.; Poliwoda, A.; Lipok, J. Structural constraints in cyanobacteria-mediated whole-cell biotransformation of methoxylated and methylated derivatives of 2′-hydroxychalcone. J. Biotechnol. 2019, 293, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Jaime, L.; Mendiola, J.A.; Herrero, M.; Soler-Rivas, C.; Santoyo, S.; Señorans, F.J.; Cifuentes, A.; Ibáñez, E. Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. J. Sep. Sci. 2005, 28, 2111–2119. [Google Scholar] [CrossRef] [Green Version]
- de Jesus, S.S.; Ferreira, G.F.; Maciel, M.R.W.; Filho, R.M. Biodiesel Purification by Column Chromatography and Liquid-Liquid Extraction Using Green Solvents. Fuel 2019, 235, 1123–1130. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W. H. Freeman and Company: New York, NY, USA, 2007. [Google Scholar]
- Cerón-Garcia, M.C.; González-López, C.V.; Camacho-Rodríguez, J.; López-Rosales, L.; García-Camacho, F.; Molina-Grima, E. Maximizing Carotenoid Extraction from Microalgae Used as Food Additives and Determined by Liquid Chromatography (HPLC). Food Chem. 2018, 257, 316–324. [Google Scholar] [CrossRef]
- Soares, A.T.; Júnior, J.G.M.; Lopes, R.G.; Derner, R.B.; Filho, N.R.A. Improvement of the Extraction Process for High Commercial Value Pigments from Desmodesmus sp. Microalgae. J. Braz. Chem. Soc. 2016, 27, 1083–1093. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Ghasemi, Y. Developing a Robust Method for Quantification of β-Carotene in Dunaliella salina Biomass Using HPLC Method. Int. J. Pharm. Clin. Res. 2016, 8, 1423–1428. [Google Scholar]
- Soares, A.T.; da Costa, D.C.; Vieira, A.A.H.; Filho, N.R.A. Analysis of Major Fatty Acid Composition of Freshwater Microalgae. Heliyon 2019, 5, e01529. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Manning, S.; Montoya, M.; Keller, K.; Poenie, M. Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry. J. Am. Oil Chem. Soc. 2012, 89, 1371–1381. [Google Scholar] [CrossRef] [Green Version]
- Jerez-Martel, I.; García-Poza, S.; Rodríguez-Martel, G.; Rico, M.; Afonso-Olivares, C.; Gómez-Pinchetti, J.L. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. J. Food Qual. 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; AlAjmi, M.F.; Hussain, I.; Ali, I. Future of Ionic Liquids for Chiral Separations in High-Performance Liquid Chromatography and Capillary Electrophoresis. Crit. Rev. Anal. Chem. 2019, 49, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.P.M.; Nobre, B.P.; Ertekin, F.; Hayes, M.; Garciá-Vaquero, M.; Vieira, F.; Koc, M.; Gouveia, L.; Aires-Barros, M.R.; Palavra, A.M.F. Extraction of Value-Added Compounds from Microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Berthod, A.; Ruiz-Angel, M.; Hassoun, M. Countercurrent Chromatography. Extrus. Elution 2007, 1–8. [Google Scholar] [CrossRef]
- Fábryová, T.; Cheel, J.; Kubáč, D.; Hrouzek, P.; Vu, D.L.; Tůmová, L.; Kopecký, J. Purification of Lutein from the Green Microalgae Chlorella vulgaris by Integrated use a New Extraction Protocol and a Multi-injection High Performance Counter-Current Chromatography (HPCCC). Algal Res. 2019, 41, 101574. [Google Scholar] [CrossRef]
- Cheel, J.; Kučerová, P.; Garrard, I.; Ignatova, S.; Hrouzek, P.; Kopecký, J. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp.) by High Performance Countercurrent Chromatography. Molecules 2014, 19, 8773–8787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, B.M.; Liu, Y. High Speed Counter Current Chromatography: Overview of Solvent-system and Elution-mode. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 629–636. [Google Scholar] [CrossRef]
- Li, H.; Chen, F. Separation and Purification of Epimedin A, B, C, and Icariin from the Medicinal Herb Epimedium brevicornum Maxim by Dual-Mode HSCCC. J. Chromatogr. Sci. 2009, 47, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Li, R.; Zhao, Y.; Liu, Y. Separation of Polysaccharides from Spirulina platensis by HSCCC with Ethanol-Ammonium Sulfate ATPS and Their Antioxidant Activities. Carbohydr. Polym. 2017, 173, 465–472. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, Y.; Chen, F. Preparative Separation and Purification of Squalene from the Microalga Thraustochytrium ATCC 26185 by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2003, 994, 37–43. [Google Scholar] [CrossRef]
- Chen, F.; Li, H.; Wong, R.N.; Ji, B.; Jiang, Y. Isolation and Purification of the Bioactive Carotenoid Zeaxanthin from the Microalga Microcystis aeruginosa by High-Speed Counter-Current Chromatography. J. Chromatogr. A 2005, 1064, 183–186. [Google Scholar] [CrossRef]
- Li, H.; Fan, K.; Chen, F. Isolation and Purification of Canthaxanthin from the Microalga Chlorella zofingiensis by High-Speed Counter-Current Chromatography. J. Sep. Sci. 2006, 29, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Cheel, J.; Urajová, P.; Hájek, J.; Hrouzek, P.; Kuzma, M.; Bouju, E.; Faure, K.; Kopecký, J. Separation of Cyclic Lipopeptide Puwainaphycins from Cyanobacteria by Countercurrent Chromatography Combined with Polymeric Resins and HPLC. Anal. Bioanal. Chem. 2017, 409, 917–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, B.A. Gas Chromatography and its Analytical Applications. A Review. Analyst 1959, 84, 574b–595. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. Advantages of Comprehensive Two-Dimensional Gas Chromatography for Comprehensive Analysis of Potential Migrants from Food Contact Materials. Anal. Chim. Acta 2019, 1057, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lebanov, L.; Tedone, L.; Kaykhaii, M.; Linford, M.R.; Paull, B. Multidimensional Gas Chromatography in Essential Oil Analysis. Part 1: Technical Developments. Chromatographia 2019, 82, 377–398. [Google Scholar] [CrossRef]
- Kusch, P. Application of Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). Compr. Anal. Chem. 2017, 75, 169–207. [Google Scholar] [CrossRef]
- Liu, C.; Duan, X.; Chen, Q.; Chao, C.; Lu, Z.; Lai, Q.; Megharaj, M. Investigations on Pyrolysis of Microalgae Diplosphaera sp. MM1 by TG-FTIR and Py-GC/MS: Products and Kinetics. Bioresour. Technol. 2019, 294, 122126. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. The Purification of Proteins Is an Essential First Step in Understanding Their Function. In Biochemistry, 5th ed.; W. H. Freeman and Company: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22410 (accessed on 25 September 2019).
- Smith, R. Two-Dimensional Electrophoresis: An Overview. In Methods in Molecular Biology, Two-Dimensional Electrophoresis Protocols; Tyther, R., Sheehan, D., Eds.; Humana Press: Totowa, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Tran, T.; Lafarge, C.; Pradelles, R.; Perrier-Cornet, J.; Cayot, N.; Loupiac, C. Effect of High Hydrostatic Pressure on the Structure of the Soluble Protein Fraction in Porphyridium cruentum Extracts. Innov. Food Sci. Emerg. Technol. 2019, 58, 102226. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Q.; Sommerfeld, M.; Chen, F. An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. J. Appl. Phycol. 2003, 15, 485–496. [Google Scholar] [CrossRef]
- Dai, L.; Reichert, C.L.; Hinrichs, J.; Weiss, J. Acid Hydrolysis Behavior of Insoluble Protein-Rich Fraction Extracted from Chlorella protothecoides. Colloids Surf. A 2019, 569, 129–136. [Google Scholar] [CrossRef]
- Lipkens, B.; Mitchell, E.; Carmichael, J.; Mealey, D.; Dionne, J. Ultrasound and Acoustophoresis for Collection and Processing of Oleaginous Microorganisms. U.S. Patent 9556411B2, 31 January 2017. [Google Scholar]
- Saxena, A.; Tripathi, B.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chaiklahan, R.; Chirasuwan, N.; Loha, V.; Tia, S.; Bunnag, B. Separation and Purification of Phycocyanin from Spirulina sp. Using a Membrane Process. Bioresour. Technol. 2011, 102, 7159–7164. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Loredo, A.; Gonzále-Valdez, J.; Rito-Palomares, M. Insights on the Downstream of Fucoxanthin, a microalgal carotenoid, from an aqueous two-phase system stream exploiting ultrafiltration. J. Appl. Phycol. 2015, 27, 1517–1523. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hwang, T.; Oh, Y.; Han, J. Harvesting Chlorella sp. KR-1 Using Cross-Flow Electro-Filtration. Algal Res. 2014, 6, 170–174. [Google Scholar] [CrossRef]
- Furuki, T.; Maeda, S.; Imajo, S.; Hiroi, T.; Amaya, T.; Hirokawa, T.; Ito, K.; Nozawa, H. Rapid and Selective Extraction of Phycocyanin from Spirulina platensis with Ultrasonic Cell Disruption. J. Appl. Phycol. 2003, 15, 319–324. [Google Scholar] [CrossRef]
- Lien, T.; Schreiner, Ø.; Steine, M. Purification of a Derepressible Arylsulfatase from Chlamydomonas reinhardti. Properties of the Enzyme in Intact Cells and in Purified State. Biochim. Biophys. Acta 1975, 384, 168–179. [Google Scholar] [CrossRef]
- Mathiazakan, P.; Shing, S.Y.; Ying, S.S.; Kek, H.K.; Tang, M.S.Y.; Show, P.L.; Ooi, C.; Ling, T.C. Pilot-scale Aqueous Two-phase Floatation for Direct Recovery of Lipase Derived from Burkholderia cepacia Strain ST8. Sep. Purif. Technol. 2016, 171, 206–213. [Google Scholar] [CrossRef]
- Leong, H.Y.; Chang, C.; Lim, J.W.; Show, P.L.; Lin, D.; Chang, J. Liquid Biphasic Systems for Oil-rich Algae Bioproducts Processing. Sustainability 2019, 11, 4682. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.W.; Chia, S.R.; Krishnamoorthy, R.; Tao, Y.; Chu, D.; Show, P.L. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour. Technol. 2019, 288, 121219. [Google Scholar] [CrossRef]
- Safaei, M.; Maleki, H.; Soleimanpour, H.; Norouzy, A.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Development of a Novel Method for the Purification of C-Phycocyanin Pigment from a Local Cyanobacterial Strain Limnothrix sp. NS01 and Evaluation of Its Anticancer Properties. Sci. Rep. 2019, 9, 9474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phong, W.N.; Show, P.L.; Teh, W.H.; Teh, T.X.; Lim, H.M.Y.; Nazri, N.S.B.; Tan, J.; Ling, T.C. Proteins Recovey from Wet Microalgae Using Liquid Biphasic Flotation (LBF). Bioresour. Technol. 2017, 244, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Khoo, K.S.; Chew, K.; Ooi, C.W.; Ong, H.C.; Ling, T.C.; Show, P.L. Extraction of Natural Astaxanthin from Haematococcus pluvialis Using Liquid Biphasic Flotation System. Bioresour. Technol. 2019, 290, 121794. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Cheng, Y.; Tao, Y.; Ao, X.; Nguyen, T.D.P.; Quyen, D.V. Integration Process for Protein Extraction from Microalgae Using Liquid Biphasic Eletric Flotation (LBEF) System. Mol. Biotechnol. 2018, 60, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Koyande, A.K.; Chew, K.W.; Lim, C.; Lee, S.Y.; Lam, M.K.; Show, P. Optimization of Protein Extraction from Chlorella vulgaris Via Nobel Sugaring-out Assisted Liquid Biphasic Electric Flotation System. Eng. Life Sci. 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.C.; Li, Z.Y.; Liu, L.; Wang, J.J.; Wang, H.Y. Selective Separation of Protein and Saccharides by Ionic Liquids Aqueous Two-phase Systems. Sci. China Chem. 2010, 53, 1554–1560. [Google Scholar] [CrossRef]
- Álvarez, M.S.; Longo, M.A.; Deive, F.J.; Rodríguez, A. Non-ionic surfactants and ionic liquids are a suitable combination for aqueous two-phase systems. Fluid Phase Equilibr. 2019, 502, 112302. [Google Scholar] [CrossRef]
- Rachana, C.R.; Lyju, J.V. Three Phase Partitioning-A Novel Protein Purification Method. Int. J. Chem. Tech. Res. 2014, 6, 3467–3472. [Google Scholar]
- Dennison, C.; Lovrien, R. Three Phase Partitioning: Concentration and Purification of Proteins. Protein Expr. Purif 1997, 11, 149–161. [Google Scholar] [CrossRef]
- Duong-Ly, K.C.; Gabelli, S.B. Salting Out of Proteins Using Ammonium Sulfate Precipitation. Methods Enzymol. 2014, 541, 85–94. [Google Scholar] [CrossRef]
- Silva, L.A.; Kuhn, K.R.; Moraes, C.C.; Burket, A.V.; Kalil, S.J. Experimental Design as a Tool for Optimization of C-Phycocyanin Purification by Precipitation from Spirulina platensis. J. Braz. Chem. Soc. 2009, 20, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.; Boussiba, S.; Napoleone, V.; Hohlberg, A. Recovery of C-Phycocyanin from the Cyanobacterium Spirulina maxima. J. Appl. Phycol. 1989, 1, 325–331. [Google Scholar] [CrossRef]
- Básaca-Loya, G.A.; Valdez, M.A.; Enríquez-Guevara, E.A.; Gutiérrez-Millán, L.E.; Burboa, M.G. Extraction and purification of B-Phycoerythrin from the red microalga Rhodosorus Marinus. Cienc Mar. 2009, 35, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Thengodkar, R.R.M.; Sivakami, S. Degradation of Chlorpyrifos by an Alkaline Phosphatase from the Cyanobacterium Spirulina platensis. Biodegradation 2010, 21, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Julianti, E.; Singgih, M.; Mulyani, L.N. Optimization of extraction method and characterization of phycocyanin pigment from Spirulina platensis. J. Math Fund. Sci. 2019, 51, 168–176. [Google Scholar] [CrossRef]
- Muensean, K.; Kim, S.M. Purification and Characterization of β-Glucosidase Produced by Trichoderma Citrinoviride Cultivated on Microalga Chlorella vulgaris. Appl. Biochem. Microbiol. 2015, 51, 102–107. [Google Scholar] [CrossRef]
- Chen, C.; Kao, P.; Tan, C.H.; Show, P.L.; Cheah, W.Y.; Lee, W.; Ling, T.C.; Chang, J. Using an Innovative PH-Stat CO2 Feeding Strategy to Enhance Cell Growth and C-Phycocyanin Production from Spirulina platensis. Biochem. Eng. J. 2016, 112, 78–85. [Google Scholar] [CrossRef]
- Robards, K.; Haddad, P.R.; Jackson, P.E. Supercritical Fluid Chromatography. In Principles and Practice of Modern Chromatography Methods; Robards, K., Haddad, P.R., Jackson, P.E., Eds.; Elsevier Academic Press: San Diego, CA, USA, 2004; pp. 381–405. [Google Scholar] [CrossRef]
- Yuan, H.; Olesik, S.V. Supercritical fluid chromatography. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Acikara, Ö.B. Ion-exchange chromatography and its applications. In Column Chromatography; Martin, D.F., Martin, B.B., Eds.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Huang, M.; Shiea, J. Thin layer chromatography/mass spectrometry. J. Chromatogr. A 2011, 1218, 2700–2711. [Google Scholar] [CrossRef]
- Dong, M.W. Modern HPLC for Practicing Scientists; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Niu, Z.; Pang, R.T.K.; Liu, W.; Li, W.; Cheng, R.; Yeung, W.S.B. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrical cell line. PLoS ONE 2017, 12, e0186534. [Google Scholar] [CrossRef] [Green Version]
Cell Disruption Method | Principle of Cell Disruption | Advantages | Disadvantages | Remarks | Equipment Available | Specifications |
---|---|---|---|---|---|---|
Bead milling [21,49,50] | Mechanical deformation by compaction and shear |
|
| Suitable for large-scale | Bead mill for cell disruption—model EDW (ELE® Company) a | Chamber volume: 5–400 L Power: 11–500 kW Speed: 0–480 to 0–1500 rpm; Dimension: various. Flow: 30–200 to >3000 L h−1Weight: 400–11,700 kg |
High-speed homogenization [21] | Cavitation and shear |
|
| Preferable for large scale (not indicated for mild scale) | High-speed homogenizer and disperser (Intertech®) b | Volume: 750–1150 L Power: 5–75 hp Speed: 1000–2880 rpm Flow rate: 650–5200 L min−1 Dimension: various |
High-pressure homogenization [17,20,50] |
|
|
| Ariete Series Homogenizers(©GEA Group) c DeBEE 2000 series (©BEE International) d | Pressure: 100–1500 bar Flow: 35–80,000 L h−1 Power: 10 hp Pressure: 1333–45,000 bar Flow rate: 0.5–2 L min−1 | |
Microwave irradiation [17,21,50] | Increases temperature and molecular energy |
|
| Not recommended for mild microalgae biorefinery | MARSTM6 Extraction (©CEM Corporation) e | Capacity: 55 L, up to 40 vessels Wattage: 2000 W Power density: 36 W L−1 |
Ultrasonication [17,20,27] | Cavitation and free radical formation |
|
|
| Industrial ultrasonic devices UIP series (Hielscher Ultrasonics) f | Power: 0.5–16 kW Frequency: 18 or 20 kHz Flow rate: 0.25–10 m3 h−1 |
Pulsed electric fields [17,21] | Irreversible pore formation in cell membrane caused by short electrical pulses (electroporation) |
|
| Needs improvements for cell disruption in large-scale | ELEA PEFPilotTM dual trial system (ELEA Technology) g | Power: 400 V, 50 Hz; Water and air cooled Dimensions: 1,45 × 1,79 × 1,13 (W × D × H) Capacity: 10 kg per batch, up to 250 L h−1 |
Autoclaving [49,50] | Exterior heat diffusion through cell membrane to intracellular environment |
|
| Not indicated for large-scale | Systec V series (Systec GmbH) h | Chamber volume: 45/40–166/150 Ltotal/nominal |
Steam explosion [49,50] | High temperature, vapor pressure and depressurization |
|
| Very suitable for commercial applications | Steam generator various models (Garioni Naval) i | Lab-scale:15–180 kW, 9–170 kgsteam h−1, 7–8 barg Up scales: 300–6000 kgsteam h−1, 3 passes, up to 18 barg; 3000–25,000 kgsteam h−1, 2 passes, up to 21 barg |
Species | Description a | Cell Disruption Method | Target Bioproduct | Main Results |
---|---|---|---|---|
Arthrospira (Spirulina) sp. [15,68] | Filamentous cyanobacteria, no heterocystes or alkinetes, helical shape. Cell wall composed by four layer (L-I and III: fibrillar material, L-II: peptidoglycan and L-IV: lipopolysaccharides) [69] | Milling in a ball jar with porcelain balls at 60 rpm, for 120 min | Phycocyanin and phenolic compounds | 74.98 mg C-PC g−1/41.60 mg GAE g−1 |
Microwave oven 2450 MHz and 1400 W, 2 min | 85.43 mg C-PC g−1/41.90 mg GAE g−1 | |||
Autoclaving 121 °C and 200 kPa, for 30 min | 1.17 mg C-PC g−1/41.55 mg GAE g−1 | |||
Sonication 20% power at 35 kHz, 50% duty cycle for 7 min | Phycocyanin | 94.89% (Pf: 6.17) | ||
Homogenisation, speed 3 for 3 min | 89.51% (Pf: 5.59) | |||
Freeze-thawing, 8 h | 77.10% (Pf: 4.15) | |||
Botryococcus braunii [16] | Non-filamentous, pyriform shape (7 × 14 µm), colonies can vary from 30 µm to >2 mm), cell wall composed by polysaccharide with hydrocarbons between [70] | Ultrasonication 5–60 kHz, for 3–15 min | Lipids | 28–30% |
Bead-beating at 2000–3500 psi, for 15 min | 35–38% | |||
Autoclave 121 °C and 0.15 MPa, 5–90 min | 38–40% | |||
French-press 500–3000 psi | 29–43% | |||
Microwave oven 0–1250 W at 20–200 °C, under 2450 MHz, for 0–25 min | 25–50% | |||
Osmotic Shock 0–2 MNaCl, stirred for 1 min and maintained 48 h | 18–22% | |||
Chlorella vulgaris [55] | Non-filamentous, spherical format (3–4 μm) and cell wall composed by extracellular polysaccharides, rhamnose, galactose, xylose [59] | Ultrasound at 600 W for 15 min and enzymatic lysis with snailase and trypsin (37 °C, pH 4.0) | Lipids | 49.82% |
Haematococcus pluvialis [17] | Non-filamentous. Cell wall mostly composed by cellulose. Under favorable growth conditions can present flagella and a gelatinous thick extracellular matrix. In motile cells, the lost of the flagella result in changes on the extracellular matrix that become amorphous. Under stress conditions the cells can transform into cysts or aplanospores and a secondary wall is formed [71] | Freezing-thawing in liquid nitrogen, during 5 cycles | Astaxanthin | 38–95% |
Dimethyl sulfoxide and glass beads. Cycles until pellet became colorless (5 or 10 cycles) | ||||
PEF (1 kV cm−1, 50 ms, 50 kJ kg−1) + 6 h incubation | ||||
Ultrasound at 80% of amplitude in a 450 W ultrasound, 10 times during 10 s (biomass diluted in ethanol) | ||||
Thermal treatment at 70 °C for 1 h | ||||
Nannochloropsis sp. [55] | Non-filamentous, round shape (2–4 μm) and cell wall composed by glucose, cellulose, mannans, rhamnose, fucose, galactose and galacturonic acid [59] | Ultrasound at 600 W for 15 min and enzymatic lysis with snailase and trypsin (37 °C, pH 4.0) | Lipids | 11.73% |
Scenedesmus dimorphus [55] Scenedesmus sp. [56,72] | Non-filamentous, bean shape (10–12 μm) and cell wall composed by crystalline glycoprotein and algaenan (non-hydrolyzable structure) [59] | 46.81% | ||
Cellulase (20 mg g−1), xylanase (14 mg g−1) and pectinase (10 mg g−1) at 45 °C and pH 4.4 and chemical treatment with chloroform:methanol (1:1 v/v) | 13.8 g 100 g−1 (86.4% recovery) | |||
Hydrothermal treatment with water 1:13 (w/v) at 147 °C for 40 min | Glucose | 14.22 g L−1 (89.32% recovery) | ||
Synechocystis sp. [73] | Non-filamentous cyanobacteria. Although uncommon, it may be surrounded by a thin, colorless, diffluent mucilaginous envelope. Cell wall composed by a peptidoglycan layer and an outer membrane (mostly proteins and lipopolysaccharide) [74] | Ultrasound at 20–25 kHz for 30 min (cycles of 5 s on/5 s off) | Proteins | 94.4% cell disruption efficiency 1.88 mg mL−1 protein |
Bead milling in glass beads for 10 min with cycles of 30 s vortexing and 30 s cooling on ice | 54.4% cell disruption efficiency 1.09 mg mL−1 protein | |||
Silicon carbide (200–450 mesh) grinding, 3 cycles of 1 min grinding/1 min cooling on ice | 93.3% cell disruption efficiency 1.89 mg mL−1 protein | |||
3 cycles of freezing at −80 °C for 10 min and thawing at 37 °C for 5 min | 43.3% cell disruption efficiency 0.19 mg mL−1 protein | |||
Phaeodactylum tricornutum [75,76] | Pleiomorphic diatom with poorly silicified cell walls (up to 10 silica bands), can present different shapes (fusiform, triradiate and cruciform) and the size range from 8–25 μm [59,77] | 5 cycles·min−1 of sonication at 20 kHz for 15 min | Carotenoids | 81.7 µg g−1 β-carotene; 679.2 µg g−1 zeaxanthin; 5163.4 µg g−1 fucoxanthin |
Soaking in ethanol at room temperature for 24 h, Cryogrinding in a ceramic mortar with liquid nitrogen and deionized water, Planetary micro mill, 2 cycles of 4 min at 400 rpm with 1 min of relaxation time, Potter homogenizer with ethanol for 1–5 min, Homogeniser at 18,000 rpm, 10–180 s, 2–4 cycles and 30 s of relaxation time, Sonication, 2–4 pulsed cycles (10 s on/5 s off), 30% power (500 W) and 30 s relation time, Mixer mill stainless steel grinding jars or propylene grinding tubes, bead-beating with ethanol for 1–4 min and 2–4 cycles. | Metabolites | Positive effect in cell disruption: bead-beating, planetary micro mill, sonication and mixer mill (both) Negative effect in cell disruption: soaking, cryiogrinding and Potter homogeniser | ||
Mixed microalgae feedstock (Ankistrosdesmus sp., Chlamydomonas sp., Chlorella sp., Micromonas sp. and Scenedesmus sp.) [52] | Ankistrosdesmus: Non-filamentous with mucilaginous envelopes present or absent, commonly find as colonies, fusiform cells (curved, straight or sigmoid), smooth cell wall [78] | Acid hydrolysis H2SO4 1.5 M at 80–90 °C for 80 min | Carbohydrates | 10.2 g maltose, 103.1 g glucose and 68.8 g xylose/galactose per Kg of dry biomass |
Chlamydomonas, Chlorella and Scenedesmus: Non-filamentous. Chlamydomonas present a complex multilayer cell wall composed by 20–25 proteins and glycoproteins (rich in hydroxyproline) [79] | ||||
Micromonas: Flagellate with absent cell wall | ||||
Freeze-dried mixed biomass (95% Scenedesmus obliquus, 4% Scenedesmus quadricauda and 1% Nitzschia sp.) [53] | Nitzschia sp.: diatom that can occur in three cell types: normal (fusiform, straight or curved, no longer than 35 µ), oval (8 µ long and 3–4 µ broad) or triradiate (arms varying from 6 to10 µ) [80] | Enzymatic lysis with cellulase (from Tricoderma reesei), β-glucosidase (from Aspergillus niger), pH 4.9, 50 °C and 300 rpm for 48 h | Carbohydrates (sugars) and byproducts (alcohols and organic acids) | Total sugars: 9.84 g per 100 g of dry biomass Total byproducts: 1.09 g L−1 |
Freeze-dried mixed biomass (61% Aphanothece sp. and 39% Scenedesmus obliquus) [53] | Aphanothece sp.: cells can occur in many shapes (oval, ellipsoidal, straight or slightly curved) with absent of mucilaginous envelope | Total sugars: 0.02 g per 100 g of dry biomass Total byproducts: 7.38 g L−1 |
Patent Purpose | Pretreament | Solvents | Main Results |
---|---|---|---|
Production and extraction of squalene from microalgae of the Thraustochytriales sp. Family [82] | Alkaline lysis (KOH 45%) | Hexane/ ethanol | 6.7 g L−1 of squalene content |
Production of pure microalgae extracts to modulate the metabolism of human skin and hair follicles [83] | - | Methanol/ ethanol/ ethyl acetate | Achieved an effective treatment using a composition comprising from 0.001 to 35% of dry matter content of an extract of Monodus sp. |
Method for extraction of lipids in an organic phase and sugars by hydrolysis [84] | Homogenization | Acetone | Results suggest that it is possible to achieve an industrial-scale extraction yield of 96.3% of total lipids in the starting wet algal biomass |
Biodiesel production and isolation of several valuable co-products from the marine alkenone-producing microalgae Isochrysis [85] | - | n-hexane/ethanol or methanol/ dichloromethane or toluene/acetonitrile | 27:8:1 (FAME:alkenones: fucoxanthin) co-production |
Microalgae Species | Ionic Liquid | Abbreviation | Target Component |
---|---|---|---|
Neochloris oleoabundans [106] | 1-butyl-3-methylimidazolium tetrafluoroborate 1-butyl-3-methylimidazolium methyl sulfate 1-butyl-3-methylimidazolium dicyanamide 1-butyl-3- methylimidazolium chloride | [BMIM][BF4] [BMIM][MeSO4] [BMIM][DCN] [BMIM][Cl] | Lipids |
Chlorella vulgaris and Spirulina platensis [107] | 1-ethyl-3-methylimidazolium acetate choline L-arginate choline glycinate choline L-lysinate choline L-phenyl-alaninate | [Emim][OAc] [Ch][ARG] [Ch][GLY] [Ch][LYS] [Ch][PHE] | Carbohydrates and lipids |
Haematococcus pluvialis [35] | ethanolammonium caproate diethanolammonium caproate triethanolammonium caproate | [EAC] [DEAC] [TEAC] | Astaxanthin |
Scenedesmus sp. [108] | triethylammonium hydrogen sulfate 1-butylpyridinium hydrogen sulfate 1-butylpyridinium dihydrogen phosphate | [HNEt3][HSO4] [BPy][HSO4] [BPy][H2PO4] | Lipids |
Chlorella vulgaris [36] | 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide 1-octyl-3-methylimidazolium acetate | [Omim][NTf2] [Omim][OAc] | Lipids |
Microalgae Species | DES | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Monomer Ratio (mol:mol) | Target Product | Yield (%) |
---|---|---|---|---|---|---|
Chlorella vulgaris [112] | Ch-Gly | Choline chloride | Glycerol | 1:2 | Polyphenolic compounds | 5.27 a |
Ch-EG | Ethylene glycol | 1:4 | 7.19 a | |||
Ch-PDO | 1-3-propanediol | 1:4 | 9.19 a | |||
Ch-BDO | 1-4-butanediol | 1:4 | 9.87 a | |||
Chlorella sp. and Chlorococcum sp. [113] | Ch-Fa | Choline chloride | Formic acid | 1:3 | FAME | 9.12/9.00 |
Ch-Aa | Acetic acid | 1:3 | 13.91/11.5 | |||
Ch-Oa | Oxalic acid | 1:1 | 10.35/9.40 | |||
Ch-Pa | Propanedioic acid | 1:1 | 10.53/9.52 | |||
Chlorella sp. [110] | aCh-O * | Choline chloride | Oxalic acid | 1:2 | FAME | 16.41 b |
aCH-EG * | Ethylene glycol | 1:2 | 15.32 b | |||
aU-A * | Urea | Acetamide | 1:2 | 10.53 b |
Microalgae Species | Solvent(s) | T (°C) | P (bar) | Flow Rate (g min−1) | t (min) | Target Compound | Extraction Yield (%) |
---|---|---|---|---|---|---|---|
Chlorella saccharophila [59] | sc-CO2 | 73.0 | 241 | 3 SLPM | 60 | FAME | 17.60 |
Spirulina platensis [120] | sc-CO2 + EtOH | 55.0 | 78.6 | 52.83 a | 75 | Vitamin E | 8.08 |
Spirulina platensis [121] | sc-CO2 + EtOH | 55.0 | 80 | 52.83 a | 75 | Pigments | 7.94 |
Nannochloropsis sp. [94] | sc-CO2 | 75.0 | 550 | 14.48 | 100 | Lipids | 12.08 * |
Tetradesmus obliquus [119] | sc-CO2 + MeOH | 60.0 | 0.25 | - | 90 | Phylloquinone | 302.74 |
50.0 | 0.35 | Canthaxanthin | 16.14 | ||||
Lutein | 1.25 | ||||||
40.0 | γ-tocopherol | 137.43 | |||||
0.30 | α-tocopherol | 200.15 | |||||
Retinol | 543 | ||||||
sc-CO2 + limonene | Phytofluene | 142.65 | |||||
(mg g−1 dw) | |||||||
Scenedesmus almeriensis [122] | sc-CO2 | 65.0 | 0.55 | 14.48 | 120 | Lutein | 2.97 ** |
0.40 | 7.24 | Lipids | 15.02 | ||||
Nannochloropsis gaditana [123] | sc-CO2 | 65.0 | 250 | 7.24 | 100 | EPA | 11.50 |
Nannochloropsis oculata [118] | sc-CO2 | 40.0 | 300 | 0.02 a | 120 | Lipids | 15.60 |
Phaeodacthylum tricornutum [118] | 14.70 | ||||||
Porphyridium cruentum [118] | 4.50 |
Company | Scale | Specifications |
---|---|---|
ExtrateX Supercritical Fluid Innovation a | Laboratory | Volume: 50–1000 mL; CO2 pump: 0–100 g min−1 Pressure: 0–100 bar; Temperature: up to 150 °C Co-solvent pump: 24 mL min−1 at 400 bar |
Small production | Volume: 5–20 L; CO2 pump: 0–24 or 0–40 kg h−1 Pressure: 0–350 bar; Temperature: 0–150 °C Co-solvent pump: 100 mL min−1 at 350 bar | |
Large production | Volume: 25–100 L; CO2 pump: 0–150 or 0–300 kg h−1 Pressure: 0–350 bar; Temperature: 0–150 °C Co-solvent pump: 30 L h−1 at 350 bar | |
Joda Technology Co. (15 specifications available) b | Small to large production | Pressure: 400–500 bar; Flow rate: 60–16,000 L h−1 Area: 10–700 m2; Height: 2.5–16 m Capacity of raw material: 10–20 kg or less to 5–12 ton |
Tradematt (Henan) Industry Co., Ltd. c | Small production | Extractor: 10 L × 2, ≤50 MPa; Separator: 5 L × 2/3, ≤16 MPa Temperature: ≤85 °C; Power: 20 kW CO2 flow rate: 100 L h−1 |
Large production | Extractor: 25 L × 2, ≤40 MPa Separator: 15 L × 2/3, ≤16 MPa Temperature: ≤85 °C; Power: 30 kW CO2 flow rate: 300 L.h−1 | |
Volume: 700 L × 3; Pressure: 320–500 bar Flowrate: 4000 L h−1; Area: 500 m2 Capacity of raw material: 1.5–3.5 ton | ||
Volume: 1500 L × 3; Pressure: 320–500 bar Flowrate: 800 L h−1; Area: 600 m2 Capacity of raw material: 3.5–8 ton | ||
Green Mill Supercritical d | Small production | CO2 pump: 100–500 gm min−1, pressure: 7500 psia Extractor: 7.5 L; Separator: 3.3 L Power requirements: 200 V, 60 Hz, 1 phase, ~67 A maximum and 14.7 kW maximum |
Biomolecule Type | Chromatographic Methods | |||||
---|---|---|---|---|---|---|
GC | HPLC | IEX | TLC | Size-Exclusion | Adsorption | |
Hydrophilic | X | X | X | X | ||
Hydrophobic | X | X | X | X | X | |
Ionic | X | X | X | |||
Non-ionic | X | X | X | X | X | |
Volatile | X | |||||
Non-volatile | X | X | X | X | X | |
Simple | X | X | ||||
Complex | X | X | X | X |
Microalgae Species | Pretreatment | Type of Polymers | Type of Salts | Type of Alcohol | Bioproduct | Recovery (%) | Purity Factor |
---|---|---|---|---|---|---|---|
Chlorella sorokiniana [207] | Ultrasonication | - | (NH4)2SO4 | 2-propanol | Protein | 53.16 | - |
Haematococcus pluvialis [208] | Mechanical cell disruption | - | Na2CO3 | 2-propanol | Astaxanthin | 104.28 | - |
Spirulina platensis [205] | Ultrasonication | PEG 4000 | (NH4)2SO4 | - | C-PC | 93.50 | 1.63 |
Spirulina platensis [68] | Sonication | PEG 4000 | K2HPO4 | - | C-PC | 94.89 | 6.17 |
Separation/Purification Method | Advantages | Disadvantages | References |
---|---|---|---|
Supercritical fluid chromatography |
|
| [223,224] |
Gel permeation chromatography (GPC) |
|
| [147,223] |
Ion-exchange chromatography |
|
| [225] |
Thin-layer chromatography |
|
| [129,160,161,226] |
High-performance chromatography |
|
| [129,227] |
Gas chromatography |
|
| [129,186] |
Ultrafiltration |
|
| [196,198] |
Electromembrane filtration |
|
| [199,200] |
Ultracentrifugation |
|
| [228] |
Aqueous two-phase systems |
|
| [203,205,211] |
Three-phase partitioning |
|
| [9,213] |
Ammonium sulfate precipitation |
|
| [216,218,219,220] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2021, 9, 10. https://doi.org/10.3390/pr9010010
Corrêa PS, Morais Júnior WG, Martins AA, Caetano NS, Mata TM. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes. 2021; 9(1):10. https://doi.org/10.3390/pr9010010
Chicago/Turabian StyleCorrêa, Priscila S., Wilson G. Morais Júnior, António A. Martins, Nídia S. Caetano, and Teresa M. Mata. 2021. "Microalgae Biomolecules: Extraction, Separation and Purification Methods" Processes 9, no. 1: 10. https://doi.org/10.3390/pr9010010
APA StyleCorrêa, P. S., Morais Júnior, W. G., Martins, A. A., Caetano, N. S., & Mata, T. M. (2021). Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes, 9(1), 10. https://doi.org/10.3390/pr9010010