Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. TPE Bonding test Devices and Post Preparation
2.2. Cell Culture
2.3. Immunocytochemistry
2.4. Live/Dead Cell Imaging
2.5. Image Analysis
2.6. Statistics
3. Results and Discussion
3.1. Characterization of TPE Bonding
3.2. Cell Migration Study
3.3. Cell Viablity Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 2004, 115, 453–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E.G.; Stingl, A.; Kirkpatrick, C.J. Migration assay for endothelial cells in multiwells. J. Immunol. Methods 1990, 128, 235–239. [Google Scholar] [CrossRef]
- Frampton, J.P.; White, J.B.; Abraham, A.T.; Takayama, S. Cell Co-culture Patterning Using Aqueous Two-phase Systems. J. Vis. Exp. 2013, 73, e50304. [Google Scholar] [CrossRef] [Green Version]
- Young, E.W.K. Advances in Microfluidic Cell Culture Systems for Studying Angiogenesis. J. Lab. Autom. 2013, 18, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Theberge, A.B.; Yu, J.; Young, E.W.K.; Ricke, W.A.; Bushman, W.; Beebe, D.J. Microfluidic Multiculture Assay to Analyze Biomolecular Signaling in Angiogenesis. Anal. Chem. 2015, 87, 3239–3246. [Google Scholar] [CrossRef] [Green Version]
- Devadas, D.; Moore, T.A.; Walji, N.; Young, E.W.K. A microfluidic mammary gland coculture model using parallel 3D lumens for studying epithelial-endothelial migration in breast cancer. Biomicrofluidics 2019, 13, 064122. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Chung, M.; Jeon, N.L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 2013, 13, 1489–1500. [Google Scholar] [CrossRef]
- Kang, B.; Shin, J.; Park, H.-J.; Rhyou, C.; Kang, D.; Lee, S.-J.; Yoon, Y.-S.; Cho, S.-W.; Lee, H. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486. [Google Scholar] [CrossRef]
- Van Midwoud, P.M.; Janse, A.; Merema, M.T.; Groothuis, G.M.M.; Verpoorte, E. Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models. Anal. Chem. 2012, 84, 3938–3944. [Google Scholar] [CrossRef] [PubMed]
- Berthier, E.; Young, E.W.K.; Beebe, D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 2012, 12, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.A.; Brodersen, P.; Young, E.W.K. Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs PDMS Microfluidic Devices. Anal. Chem. 2017, 89, 11391–11398. [Google Scholar] [CrossRef] [PubMed]
- Guillemette, M.D.; Roy, E.; Auger, F.A.; Veres, T. Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance. Acta Biomater. 2011, 7, 2492–2498. [Google Scholar] [CrossRef] [PubMed]
- Didar, T.F.; Li, K.; Veres, T.; Tabrizian, M. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based micro fluidic device. Biomaterials 2013, 34, 5588–5593. [Google Scholar] [CrossRef]
- Gencturk, E.; Mutlu, S.; Ulgen, K.O. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics 2017, 11, 051502. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; He, Q.; Soper, S.A. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. Electrophoresis 2008, 29, 1881–1888. [Google Scholar] [CrossRef]
- Tan, H.Y.; Loke, W.K.; Tana, Y.T.; Nguyen, N.-T. A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip 2008, 8, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Moon, B.-U.; Hidrovo, C.H. Enhancement of the thermo-mechanical properties of PDMS molds for the hot embossing of PMMA microfluidic devices. J. Micromech. Microeng. 2013, 23, 095024. [Google Scholar] [CrossRef] [Green Version]
- Wan, A.M.D.; Sadri, A.; Young, E.W.K. Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab Chip 2015, 15, 3785–3792. [Google Scholar] [CrossRef]
- Lu, C.; Lee, L.J.; Juang, Y.J. Packaging of microfluidic chips via interstitial bonding technique. Electrophoresis 2008, 29, 1407–1414. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Li, P.C.H. Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk. Lab Chip 2008, 8, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Tu, C.; Huang, B.; Zhou, J.; Liang, Y.; Tian, J.; Ji, L.; Liang, X.; Ye, X. A Microfluidic Chip for Cell Patterning Utilizing Paired Microwells and Protein Patterns. Micromachines 2016, 8, 1. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.T.; Lee, E.K.; Morival, J.L.; Khine, M. Plasma free reversible and irreversible microfluidic bonding. Lab Chip 2017, 17, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Geissler, M.; Roy, E.; Diaz-Quijada, G.A.; Galas, J.-C.; Veres, T. Microfluidic Patterning of Miniaturized DNA Arrays on Plastic Substrates. ACS Appl. Mater. Interfaces 2009, 1, 1387–1395. [Google Scholar] [CrossRef] [Green Version]
- Brassard, D.; Clime, L.; Li, K.; Geissler, M.; Miville-Godin, C.; Roy, E.; Veres, T. 3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab Chip 2011, 11, 4099–4107. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Morton, K.; Shiu, M.; Turcotte, K.; Lukic, L.; Veilleux, G.; Poncelet, L.; Veres, T. Normally Closed Microfluidic Valves with Microstructured Valve Seats: A Strategy for Industrial Manufacturing of Thermoplastic Microfluidics with Microvalves. In Proceedings of the IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 1110–1113. [Google Scholar]
- Li, K.; Hernandez-Castro, J.A.; Turcotte, K.; Morton, K.; Veres, T. Superhydrophobic Thermoplastic Surfaces with Hierarchical Micro-Nanostructures Fabricated by Hot-Embossing. In Proceedings of the IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 29–31 July 2020; pp. 81–84. [Google Scholar]
- Clime, L.; Li, K.; Geissler, M.; Hoa, X.D.; Robideau, G.P.; Bilodeau, G.J.; Veres, T. Separation and concentration of Phytophthora ramorum sporangia by inertial focusing in curving microfluidic flows. Microfluid. Nanofluid. 2016, 21, 5. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Kramer, N.; Walzl, A.; Unger, C.; Rosner, M.; Krupitza, G.; Hengstschläger, M.; Dolznig, H. In vitro cell migration and invasion assays. Mutat. Res. 2013, 752, 10–24. [Google Scholar] [CrossRef]
- Wan, A.M.D.; Devadas, D.; Young, E.W.K. Recycled polymethylmethacrylate (PMMA) microfluidic devices. Sensors Actuators B Chem. 2017, 253, 738–744. [Google Scholar] [CrossRef]
- Xu, T.; Jin, J.; Gregory, C.; Hickman, J.J.; Boland, T. Inkjet printing of viable mammalian cells. Biomaterials 2005, 26, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Javaherian, S.; O’Donnell, K.A.; McGuigan, A.P. A fast and accessible methodology for micro-patterning cells on standard culture substrates using parafilmTM inserts. PLoS ONE 2011, 6, e20909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Jiang, X.; Zhong, H.; Dai, W.; Zhou, J.; Wu, H. Hierarchical Patterning of Cells with a Microeraser and Electrospun Nanofibers. Small 2015, 12, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Guo, T.; Wang, L.; Liu, Y.; Chen, G.; Zhou, H.; Zhang, M. Tape-Assisted Photolithographic-Free Microfluidic Chip Cell Patterning for Tumor Metastasis Study. Anal. Chem. 2017, 90, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wu, C.; Fang, C.; Chen, W. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLoS ONE 2017, 12, e0178960. [Google Scholar] [CrossRef]
- Au, H.T.H.; Cui, B.; Chu, Z.E.; Veres, T.; Radisic, M. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 2009, 9, 564–575. [Google Scholar]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
Technique | Cells | Simplicity | Disadvantages | Advantages |
---|---|---|---|---|
Inkjet printing [34] | Hamster Ovary cells and embryonic motoneurons | Moderate | Low cell viability | High throughput and inexpensive |
Scratch assay [2] | Endothelial cells and NIH3T3 cells | Yes | Harshly damaging cells | Relatively easy experimental set-up |
Parafilm insert [35] | Retinal epithelial cells and dog kidney epithelial cells | Yes | Limited pattern shapes (circular or striped geometry) | Simple, fast and cheap |
Aqueous two-phase cell patterning [4] | HeLa cells and fibroblasts | Moderate | Low throughput | Simple pipette patterning tool |
Contact-erasing strategy [36] | Lung adenocarcinoma epithelial cells, 3T3 cells and osteoblast cells | No | Expensive and complicated processes | Multicell micropatterning technique |
Tape-assisted microfluidic chip [37] | Cancer cells and fibroblasts | Moderate | Hand-crafted mold type fabrication | Photolithographic-free and cost-effective approach |
TPE posts (our approach) | Fibroblasts | Yes | Manual post preparation | High biocompatibility and reversible bonding |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, B.-U.; Morton, K.; Li, K.; Miville-Godin, C.; Veres, T. Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications. Processes 2021, 9, 54. https://doi.org/10.3390/pr9010054
Moon B-U, Morton K, Li K, Miville-Godin C, Veres T. Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications. Processes. 2021; 9(1):54. https://doi.org/10.3390/pr9010054
Chicago/Turabian StyleMoon, Byeong-Ui, Keith Morton, Kebin Li, Caroline Miville-Godin, and Teodor Veres. 2021. "Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications" Processes 9, no. 1: 54. https://doi.org/10.3390/pr9010054
APA StyleMoon, B. -U., Morton, K., Li, K., Miville-Godin, C., & Veres, T. (2021). Reversible Bonding of Thermoplastic Elastomers for Cell Patterning Applications. Processes, 9(1), 54. https://doi.org/10.3390/pr9010054