Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Oil-in-Water Emulsions
2.2.2. Synthesis and Characterization of Magnetite Nanoparticles
2.2.3. Synthesis of Activated Carbon
2.2.4. Functionalization of Activated Carbon with Magnetite Nanoparticles
2.2.5. Textural and Chemical Characterization
2.2.6. Adsorption Isotherms
2.2.7. Dynamic Tests
2.2.8. Thermogravimetric Analysis (TGA)
3. Results
3.1. Characterization of Magnetite Nanoparticles
3.2. Activated Carbon Characterization
3.3. Adsorption Tests: Batch and Dynamic Experiments
3.4. Dynamic Packed Bed Adsorption Tests
3.5. Crude Oil Decomposition Pyrolysis Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohamed, A.-M.O.; El Gamal, M.; Zekri, A.Y. Effect of salinity and temperature on water cut determination in oil reservoirs. J. Pet. Sci. Eng. 2003, 40, 177–188. [Google Scholar] [CrossRef]
- ANH. Estadísticas de Producción de Petróleo en Colombia. Available online: http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Sistema-Integrado-de-Operaciones/Paginas/Estadisticas-de-Produccion.aspx (accessed on 15 July 2019).
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Willershausen, D.; Ashaghi, K.S.; Engel, L.; Placido, L.; Mund, P.; Bolduan, P.; Czermak, P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination 2010, 250, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Viraraghavan, T. Removal of oil by walnut shell media. Bioresour. Technol. 2008, 99, 8217–8220. [Google Scholar] [CrossRef]
- Arthur, J.D.; Langhus, B.G.; Patel, C. Technical Summary of Oil & Gas Produced Water Treatment Technologies; All Consulting, LLC: Tulsa, OK, USA, 2005. [Google Scholar]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Produced water treatment: Application of air gap membrane distillation. Desalination 2013, 309, 46–51. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente y Desarrollo sostenible. Por el cual se establecen los parámetros límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. In Resolución 0631; Ministerio de Medio Ambiente y Desarrollo sostenible: Bogotá, Colombia, 2015; Volume 0631, p. 62. [Google Scholar]
- Dickinson, E. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll. 2017, 68, 219–231. [Google Scholar] [CrossRef]
- Lee, R.F. Agents which promote and stabilize water-in-oil emulsions. Spill Sci. Technol. Bull. 1999, 5, 117–126. [Google Scholar] [CrossRef]
- Seifriz, W. Studies in emulsions. J. Phys. Chem. 1925, 29, 738–749. [Google Scholar] [CrossRef]
- Yan, N.; Gray, M.R.; Masliyah, J.H. On water-in-oil emulsions stabilized by fine solids. Colloids Surf. A Physicochem. Eng. Asp. 2001, 193, 97–107. [Google Scholar] [CrossRef]
- Naranjo Agudelo, A.d.J. Manejo de producción en campos de petróleo. Fac. Minas 1989, 45, 26–85. [Google Scholar]
- Judd, S.; Qiblawey, H.; Al-Marri, M.; Clarkin, C.; Watson, S.; Ahmed, A.; Bach, S. The size and performance of offshore produced water oil-removal technologies for reinjection. Sep. Purif. Technol. 2014, 134, 241–246. [Google Scholar] [CrossRef]
- Saththasivam, J.; Loganathan, K.; Sarp, S. An overview of oil–water separation using gas flotation systems. Chemosphere 2016, 144, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treat-ment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Mancilla Estupinan, R.A.; Mesa Nausa, H.O. Metodología Para el Manejo de Aguas de Producción en un Campo Petrolero; Universidad Industrial de Santander: Bucaramanga, Colombia, 2012. [Google Scholar]
- Zapata Acosta, K.; Carrasco-Marin, F.; Cortés, F.B.; Franco, C.A.; Lopera, S.H.; Rojano, B.A. Immobilization of P. stutzeri on activated carbons for degradation of hydrocarbons from oil-in-saltwater emulsions. Nanomaterials 2019, 9, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, C.A.; Cortés, F.B.; Nassar, N.N. Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. J. Colloid Interface Sci. 2014, 425, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.A.; Martínez, M.; Benjumea, P.; Patiño, E.; Cortés, F.B. Water remediation based on oil adsorption using nanosilicates functionalized with a petroleum vacuum residue. Adsorpt. Sci. Technol. 2014, 32, 197–207. [Google Scholar] [CrossRef]
- Yu, L.; Hao, G.; Gu, J.; Zhou, S.; Zhang, N.; Jiang, W. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water. J. Magn. Magn. Mater. 2015, 394, 14–21. [Google Scholar] [CrossRef]
- Okiel, K.; El-Sayed, M.; El-Kady, M.Y. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egypt. J. Pet. 2011, 20, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Pan, Q.; Liu, F. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleo-philic sponges. J. Phys. Chem. C 2011, 115, 17464–17470. [Google Scholar] [CrossRef]
- Seeni Meera, K.M.; Murali Sankar, R.; Jaisankar, S.N.; Mandal, A.B. Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol–gel process. J. Phys. Chem. B 2013, 117, 2682–2694. [Google Scholar] [CrossRef]
- Annunciado, T.; Sydenstricker, T.; Amico, S. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut. Bull. 2005, 50, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Rajaković-Ognjanović, V.; Aleksić, G.; Rajaković, L. Governing factors for motor oil removal from water with different sorption materials. J. Hazard. Mater. 2008, 154, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Sudong Yanga, L.C.; Lei, M.; Ma, P.-C. Magnetic graphene foam for efficient adsorption of oil and organic solvents. Colloid Interface Sci. 2014, 430, 337–344. [Google Scholar] [CrossRef] [PubMed]
- da Costa Cunha, G.; Pinho, N.C.; Silva, I.A.A.; Silva, L.S.; Costa, J.A.S.; da Silva, C.M.; Romão, L.P. Removal of heavy crude oil from water surfaces using a magnetic inorganic-organic hybrid powder and membrane system. J. Environ. Man-Agement 2019, 247, 9–18. [Google Scholar] [CrossRef]
- Fard, A.K.; Rhadfi, T.; Mckay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chem. Eng. J. 2016, 293, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi, P.; Tavakol, H. Oil removal from water using highly hydrophobic, ultralight carbon microspheres. International J. Environ. Sci. Technol. 2020, 17, 1649–1656. [Google Scholar] [CrossRef]
- Lamine, S.M.; Ridha, C.; Mahfoud, H.-M.; Mouad, C.; Lotfi, B.; Al-Dujaili, A.H. Chemical activation of an activated carbon prepared from coffee residue. Energy Procedia 2014, 50, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Bates, R.H. The International Coffee Organization. In Analytic Narratives; Princeton University Press: Princeton, NJ, USA, 1999; p. 194. [Google Scholar]
- Boudrahem, F.; Aissani-Benissad, F.; Aït-Amar, H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manag. 2009, 90, 3031–3039. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.; Pereira, E.; Guimaraes, I.R.; Vallone, A.; Pereira, M.; Mesquita, J.P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 2009, 165, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Hernándeza, M.A.; Gonzálezb, A.J.; Suárezb, F.; Ochoac, C.; Candelac, A.M.; Cabezab, I. Assessment of the biohydrogen production potential of different organic residues in Colombia: Cocoa waste, pig manure and coffee mucilage. Chem. Eng. 2018, 65. [Google Scholar] [CrossRef]
- Medina, O.E.; Caro-Vélez, C.; Gallego, J.; Cortés, F.B.; Lopera, S.H.; Franco, C.A. Upgrading of Extra-Heavy Crude Oils by Dispersed Injection of NiO–PdO/CeO2±δ Nanocatalyst-Based Nanofluids in the Steam. Nanomaterials 2019, 9, 1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, O.E.; Gallego, J.; Restrepo, L.G.; Cortés, F.B.; Franco, C.A. Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasifi-cation. Nanomaterials 2019, 9, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, O.E.; Gallego, J.; Arias-Madrid, D.; Cortés, F.B.; Franco, C.A. Optimization of the load of transition metal oxides (Fe2O3, Co3O4, NiO and/or PdO) onto CeO2 nanoparticles in catalytic steam decomposition of n-C7 asphaltenes at low temperatures. Nanomaterials 2019, 9, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina Erao, O.E.; Gallego, J.; Olmos, C.M.; Chen, X.; Cortés, F.B.; Franco, C.A. Effect of Multifunctional Nanocatalysts on n-C7 Asphaltene Adsorption and Subsequent Oxidation under High Pressure Conditions. Energy Fuels 2020. [Google Scholar] [CrossRef]
- Medina, O.E.; Hurtado, Y.; Caro-Velez, C.; Cortés, F.B.; Riazi, M.; Lopera, S.H.; Franco, C.A. Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection. Energies 2019, 12, 4633. [Google Scholar] [CrossRef] [Green Version]
- Arias-Madrid, D.; Medina, O.E.; Gallego, J.; Acevedo, S.; Correa-Espinal, A.A.; Cortés, F.B.; Franco, C.A. NiO, Fe2O3, and MoO3 Supported over SiO2 Nanocatalysts for Asphaltene Adsorption and Catalytic Decomposition: Optimization through a Simplex–Centroid Mixture Design of Experiments. Catalysts 2020, 10, 569. [Google Scholar] [CrossRef]
- Villegas, J.P.; Arcila, N.; Ortega, D.; Franco, C.A.; Cortés, F.B. Crude oil removal from production water using nano-intermediates of a SiO 2 support functionalized with magnetic nanoparticles. Dyna 2017, 84, 65–74. [Google Scholar] [CrossRef]
- Kilduff, J.E.; King, C.J. Effect of carbon adsorbent surface properties on the uptake and solvent regeneration of phenol. Ind. Eng. Chem. Res. 1997, 36, 1603–1613. [Google Scholar] [CrossRef]
- Carroll, D.; Starkey, H.C. Reactivity of clay minerals with acids and alkalies. Clays Clay Miner. 1971, 19, 321–333. [Google Scholar] [CrossRef]
- Shahadat, M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar]
- Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014, 77, 963–982. [Google Scholar] [CrossRef]
- Liu, C.; Yang, J.; Tang, Y.; Yin, L.; Tang, H.; Li, C. Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 10–16. [Google Scholar] [CrossRef]
- Wang, H.; Lin, K.-Y.; Jing, B.; Krylova, G.; Sigmon, G.E.; McGinn, P.; Zhu, Y.; Na, C. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res. 2013, 47, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.A.; Nassar, N.N.; Cortés, F.B. Removal of oil from oil-in-saltwater emulsions by adsorption onto nano-alumina functionalized with petroleum vacuum residue. J. Colloid Interface Sci. 2014, 433, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Llanos, S.; Acevedo, S.; Cortés, F.B.; Franco, C.A. Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions. Energies 2018, 11, 722. [Google Scholar] [CrossRef] [Green Version]
- Boonamnuayvitaya, V.; Sae-ung, S.; Tanthapanichakoon, W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep. Purif. Technol. 2005, 42, 159–168. [Google Scholar] [CrossRef]
- Khenniche, L.; Aissani, F. Preparation and characterization of carbons from coffee residue: Adsorption of salicylic acid on the prepared carbons. J. Chem. Eng. Data 2009, 55, 728–734. [Google Scholar] [CrossRef]
- Fang, M.; Volotinen, T.T.; Kulkarni, S.; Belova, L.; Rao, K.V. Effect of embedding Fe 3 O 4 nanoparticles in silica spheres on the optical transmission properties of three-dimensional magnetic photonic crystals. J. Appl. Phys. 2010, 108, 103501. [Google Scholar] [CrossRef]
- Naderi, M. Surface Area: Brunauer–Emmett–Teller (BET). In Progress in filtration and separation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 585–608. [Google Scholar]
- Villegas, J.P.; Moncayo-Riascos, I.; Galeano-Caro, D.; Riazi, M.; Franco, C.A.; Cortés, F.B. Functionalization of γ-Alumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra-Gas-Wet Surfaces: Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 2020, 12, 13510–13520. [Google Scholar] [CrossRef]
- Medina, O.E.; Gallego, J.; Rodríguez, E.; Franco, C.A.; Cortés, F.B. Effect of pressure on the oxidation kinetics of Asphaltenes. Energy Fuels 2019, 33, 10734–10744. [Google Scholar] [CrossRef]
- Medina, O.E.; Gallego, J.; Nassar, N.N.; Acevedo, S.A.; Cortés, F.B.; Franco, C.A. Thermo-Oxidative Decomposition Behaviors of Different Sources of n-C7 Asphaltenes at High-Pressure Conditions. Energy Fuels 2020. [Google Scholar] [CrossRef]
- Balamurugan, M.; Saravanan, S.; Soga, T. Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract. e-J. Surf. Sci. Nanotechnol. 2014, 12, 363–367. [Google Scholar] [CrossRef] [Green Version]
- El Ghandoor, H.; Zidan, H.; Khalil, M.M.; Ismail, M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparti-cles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745. [Google Scholar]
- Saka, C. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrolysis 2012, 95, 21–24. [Google Scholar] [CrossRef]
- Czepirski, L.; Balys, M.R.; Komorowska-Czepirska, E. Some generalization of Langmuir adsorption isotherm. Internet J. Chem. 2000, 3, 1099–8292. [Google Scholar]
- Xiaobing, L.; ZHANG, C.; Jiongtian, L. Adsorption of oil from waste water by coal: Characteristics and mechanism. Min. Sci. Technol. (China) 2010, 20, 778–781. [Google Scholar]
- Marsh, H. Activated Carbon compendium: A Collection of Papers from the Journal Carbon 1996–2000; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Gu, W.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, on-ion-like carbon, and graphene. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 424–473. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, X.; Sun, X.; Li, R.; Murphy, M.; Ding, Z.; Sun, X.; Sham, T.-K. Interaction between Pt nanoparticles and carbon nanotubes–An X-ray absorption near edge structures (XANES) study. Chem. Phys. Lett. 2007, 437, 229–232. [Google Scholar] [CrossRef]
- Nassar, N.N. Iron oxide nanoadsorbents for removal of various pollutants from wastewater: An overview. In Application of Ad-Sorbents for Water Pollution Control; Bentham Science Publishers: Sharjah, UAE, 2012; pp. 81–118. [Google Scholar]
- Feng, Y.; Yang, F.; Wang, Y.; Ma, L.; Wu, Y.; Kerr, P.G.; Yang, L. Basic dye adsorption onto an agro-based waste material–Sesame hull (Sesamum indicum L.). Bioresour. Technol. 2011, 102, 10280–10285. [Google Scholar] [CrossRef]
- Liu, D.; Hou, J.; Luan, H.; Pan, J.; Song, Q.; Zheng, R. Coke yield prediction model for pyrolysis and oxidation processes of low-asphaltene heavy oil. Energy Fuels 2019, 33, 6205–6214. [Google Scholar] [CrossRef]
- Czajka, K.; Kisiela, A.; Moroń, W.; Ferens, W.; Rybak, W. Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect. Fuel Process. Technol. 2016, 142, 42–53. [Google Scholar] [CrossRef]
- Medina, O.E.; Olmos, C.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies 2019, 12, 4671. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Schaffie, M.; Ranjbar, M. Thermocatalytic in situ combustion: Influence of nanoparticles on crude oil pyrolysis and oxidation. Fuel 2013, 113, 516–521. [Google Scholar] [CrossRef]
- Orge, C.; Órfão, J.; Pereira, M. Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Appl. Catal. B: Environ. 2012, 126, 22–28. [Google Scholar] [CrossRef]
- Rim, K.T.; Eom, D.; Chan, S.-W.; Flytzani-Stephanopoulos, M.; Flynn, G.W.; Wen, X.-D.; Batista, E.R. Scanning tunneling microscopy and theoretical study of water adsorption on Fe3O4: Implications for catalysis. J. Am. Chem. Soc. 2012, 134, 18979–18985. [Google Scholar] [CrossRef] [PubMed]
- Amrollahi Biyouki, A.; Hosseinpour, N.; Nassar, N.N. Pyrolysis and Oxidation of Asphaltene-Born Coke-like Residue Formed onto in Situ Prepared NiO Nanoparticles toward Advanced in Situ Combustion Enhanced Oil Recovery Processes. Energy Fuels 2018, 32, 5033–5044. [Google Scholar] [CrossRef]
Sample | SBET m2 g−1 | W0 (N2) cm3 g−1 | L0 (N2) nm | Vmeso (BJH) cm3 g−1 |
---|---|---|---|---|
PCR | 4.0 | 0.0036 | 0.29 | 0.002 |
AC | 905.1 | 0.522 | 4.28 | 0.16 |
Element | AC | ACM |
---|---|---|
Cl | 0.42 | 1.96 |
Fe | 0.00 | 5.42 |
Adsorbent | %RSME | |||
---|---|---|---|---|
ACM | 0.40 | 1.52 | 0.191 | 0.002 |
AC | 0.54 | 9.00 | 0.041 | 0.015 |
PCR | 505.76 | 2041.03 | 0.008 | 0.002 |
CR | 223.01 | 691.50 | 0.009 | 0.014 |
WH | 1418.21 | 4000.80 | 0.012 | 0.121 |
Material | Temperature (°C) | RSME (%) | |||
---|---|---|---|---|---|
ACM | 25 | 0.40 | 1.52 | 0.1900 | 0.0020 |
40 | 0.51 | 1.63 | 0.1600 | 0.0190 | |
50 | 0.83 | 1.75 | 0.1600 | 0.0160 | |
AC | 25 | 0.38 | 8.09 | 0.0373 | 0.0097 |
40 | 3.19 | 12.03 | 0.0311 | 0.0001 | |
50 | 4.47 | 12.06 | 0.0312 | 0.0001 | |
PCR | 25 | 505.76 | 2041.03 | 0.0095 | 0.0020 |
40 | 791.90 | 2319.07 | 0.0092 | 0.0033 | |
50 | 1137.48 | 2579.59 | 0.0086 | 0.0062 | |
CR | 25 | 223.01 | 691.50 | 0.0108 | 0.0135 |
40 | 380.94 | 934.26 | 0.0096 | 0.0270 | |
50 | 592.53 | 1208.32 | 0.0083 | 0.0455 | |
WH | 25 | 1418.21 | 4000.80 | 0.0120 | 0.1209 |
40 | 2418.28 | 4366.36 | 0.1900 | 0.0599 | |
50 | 3389.82 | 4771.23 | 0.2100 | 0.1054 |
Material | Temperature (°C) | |||
---|---|---|---|---|
ACM | 25 | 0.019 | 4.52 | 1.04 |
40 | 1.27 | |||
50 | 1.50 | |||
AC | 25 | 0.060 | 12.79 | 5.45 |
40 | 5.18 | |||
50 | 6.48 | |||
PCR | 25 | 0.088 | 5.62 | 6.69 |
40 | 21.82 | |||
50 | 22.76 | |||
CR | 25 | 0.114 | 17.88 | 16.21 |
40 | 17.81 | |||
50 | 19.07 | |||
WH | 25 | 0.089 | 7.50 | 18.89 |
40 | 20.18 | |||
50 | 21.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, L.; Galeano-Caro, D.; Medina, O.E.; Cortés, F.B.; Franco, C.A. Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes 2021, 9, 63. https://doi.org/10.3390/pr9010063
Acosta L, Galeano-Caro D, Medina OE, Cortés FB, Franco CA. Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes. 2021; 9(1):63. https://doi.org/10.3390/pr9010063
Chicago/Turabian StyleAcosta, Laura, Dahiana Galeano-Caro, Oscar E. Medina, Farid B. Cortés, and Camilo A. Franco. 2021. "Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production" Processes 9, no. 1: 63. https://doi.org/10.3390/pr9010063
APA StyleAcosta, L., Galeano-Caro, D., Medina, O. E., Cortés, F. B., & Franco, C. A. (2021). Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes, 9(1), 63. https://doi.org/10.3390/pr9010063