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Abstract: Fouling is a substantial economic, energy, and safety issue for all the process industry
applications, heat transfer units in particular. Although this phenomenon can be mitigated, it cannot
be avoided and proper cleaning cycle scheduling is the best way to deal with it. After thorough
literature research about the most reliable fouling model description, cleaning procedures have
been optimized by minimizing the Time Average Losses (TAL) under nominal operating conditions
according to the well-established procedure. For this purpose, different cleaning actions, namely
chemical and mechanical, have been accounted for. However, this procedure is strictly related to
nominal operating conditions therefore perturbations, when present, could considerably compromise
the process profitability due to unexpected shutdown or extraordinary maintenance operations.
After a preliminary sensitivity analysis, the uncertain variables and the corresponding disturbance
likelihood were estimated. Hence, cleaning cycles were rescheduled on the basis of a stochastic
flexibility index for different probability distributions to show how the uncertainty characterization
affects the optimal time and economic losses. A decisional algorithm was finally conceived in order
to assess the best number of chemical cleaning cycles included in a cleaning supercycle. In conclusion,
this study highlights how optimal scheduling is affected by external perturbations and provides an
important tool to the decision-maker in order to make a more conscious design choice based on a
robust multi-criteria optimization.

Keywords: maintenance; scheduling; fouling; flexibility; heat exchanger

1. Introduction

Due to the higher CAPital EXpenses (CAPEX) related to equipment oversizing and
OPerating EXpenses (OPEX) related to energy and production losses as well as frequent
maintenance, fouling still represents, nowadays, a relevant issue for the process industry.

The total heat exchanger fouling costs for highly industrialized countries were about
0.25% of the countries’ Gross National Product (GNP) in 1992 [1,2]. Table 1 shows the
annual costs of fouling in some different countries based on the actualization of the money
value of the 1992 estimation, considering 2018 GNP.

Table 1. Fouling vs. Gross National Product (GNP) (2018).

Country Costs (M$/a) GNP 2018 (M$/a) Costs/GNP (%)

US 14,175 20,891,000 0.13%
Germany 4875 4,356,353 0.21%

France 2400 2,962,799 0.15%
Japan 10,000 5,594,452 0.33%

Australia 463 1,318,153 0.06%
New Zealand 64.5 197,827 0.06%

Processes 2021, 9, 93. https://doi.org/10.3390/pr9010093 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7394-5396
https://orcid.org/0000-0002-3305-8044
https://www.mdpi.com/2227-9717/9/1/93?type=check_update&version=1
https://doi.org/10.3390/pr9010093
https://doi.org/10.3390/pr9010093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9010093
https://www.mdpi.com/journal/processes


Processes 2021, 9, 93 2 of 18

As it can be noticed, additional energy duties required to compensate for an ineffective
heat transfer and frequent unit cleaning and maintenance result in highly relevant expenses.
A considerable part of this work is then focused on the OPEX optimization for already
designed heat exchanger systems.

The overall fouling process is the net result of two simultaneous sub-processes, namely
a deposition and a removal process [3,4]. The combination of these basic phenomena affects
the growth of the deposit on the surface, mathematically defined as the rate of deposit
growth (fouling resistance or fouling factor, Rf).

The two best ways to describe fouling in a model suitable way have been found
in literature as the “Two-layer model” and “Distributed model”. The latter still does
not result as reliable as the first one for optimization purposes, due to its computational
intensiveness [5].

In order to keep the energetic and economic efficiencies of the whole heat transfer process
acceptable, heat exchangers cleaning should be often performed. Cleaning methodologies can
be classified into two main groups, namely chemical cleaning and mechanical cleaning.

Mechanical cleaning methods completely restore the heat transfer surface from fouling
but may damage the equipment. On the contrary, chemical cleaning techniques, which are
not actually able to completely remove the fouling layers, do not cause stress or damage to
the heat exchanger internals. As will be later discussed, in the developed model mechanical
cleaning removes both the layers, while chemical cleaning only removes the one exposed
to the fluid.

This physical description of the fouling process is useful to assess the system heat
transfer performances and thus to find the optimal operation scheduling. Batch process
scheduling is indeed a major research topic in process system engineering and its optimiza-
tion algorithms were widely studied during the last decades [6–8].

With the advent of major concerns related to the sustainability issue, the environmental
considerations concerning energy and waste analysis of batch processes have become part
of the scheduling optimization domain thanks to several studies carried out by the most
influential exponents of the topic [9,10].

Until the end of the 20th century, the vast majority of the studies concerning batch
processes design were mainly referred to as nominal operating conditions, i.e., no uncer-
tainty was accounted for. Moreover, the scheduling optimization and the control design
were performed in two different steps of the process design procedure even though they
substantially affect each other.

With the advances in design under uncertainty methodologies and the spread of
its applications to thermodynamics [11], unit operations [12–16], reacting systems [17],
and other fields of process engineering, the way process scheduling was conceived has
started changing even if—differently from process units—a considerably smaller amount
of publications about this topic is available in the literature. A pioneering work under
this perspective was performed by Balasubramanian and Grossmann that analyzed the
scheduling optimization under uncertain processing times with a branch and bound [18]
and with a fuzzy programming [19] approach. Bonfill et al. (2005) [20] later discussed
the scheduling optimization accounting for variable market demand with a two-stage
stochastic optimization strategy.

Two papers, with similar research topics to that presented in this publication, were
proposed by Smaïli et al. (1999) [21] and Diaby et al. (2016) [22]. The first one deals with the
optimal scheduling of cleaning cycles in heat exchanger networks subject to fouling and the
uncertainty analyzed refers to the measurements used to derive the fouling model. On the
other hand, Diaby et al. propose the use of the genetic algorithm in order to optimize heat
exchanger networks as well.

Uncertainty in batch process scheduling may refer as well to the control system
performances to optimize the operation times. Further details concerning the current state
of the art and the new challenges of simultaneous scheduling design and control under
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uncertainties can be found in the interesting literature review recently carried out by Dias
and Ierapetritou (2016) [23].

The main innovative aspect of this article with respect to the literature presented
here above is that, given a heat exchanger unit undergoing fouling, the optimal cleaning
scheduling is thoroughly analyzed and optimized accounting for uncertain operating
conditions, i.e., the so-called aleatory uncertainty related to the process input parameters is
discussed under a flexibility point of view. The energy analysis of the system is coupled
indeed with the economic one in order to provide a reliable estimation of each operating
cycle time as well as of the associated cleaning costs.

In order to have a clear insight into this research study, the case study followed by
further details and hypotheses concerning the fouling process, the flexibility assessment,
and the optimization algorithm is presented in the following sections.

2. The Heat Exchanger Case Study

This research work aims at the application of the newly proposed procedure starting
from the most elementary unit in order to set the basis for the possible system scale up
to the several possible arrangements of multiple heat exchanger to form a more complex
network. Therefore, the selected case study is a simple heat exchanger unit undergoing
fouling as shown in Figure 1. The purpose of this unit is the effective heat recovery between
hot and cold hydrocarbon process streams. The former passes on the tube sides while the
latter on the shell side of the unit.
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Figure 1. Heat exchanger system layout.

Two additional external duty exchangers are present to make the streams achieve the
desired temperature specifications in case the heat recovery was not sufficient. The value
of these heat duties expressed in Watts are defined as Qcold and Qhot respectively.

The process parameters for this case study were accurately selected in order to be
compliant with the industrial practice. Based on the same case study proposed by Ishiyama
et al. 2011 [24] and later used by Pogiatzis et al. (2012) [5], some process parameters,
in particular specific heat capacities and heat transfer coefficient, were adjusted to more
reliable values for the given mixtures according to the most reputable literature in the
process engineering domain [25–28].

The equipment sizing was performed as well, in the case of maximum heat recovery
for a fixed minimum temperature approach under nominal operating conditions and a
heat transfer surface area equal to 140 m2 was found.

The complete list of the obtained process parameters used for this research work is
reported in Table 2. The details concerning the cleaning cycle scheduling and optimization
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procedure as well as the flexibility analysis applied to the case study here above are
presented and discussed in detail in the following section.

Table 2. Process parameters.

Symbols Quantities Value Unit

Heat exchanger U Overall heat transfer coefficient 350 W/(m2 K)
A Surface area 140 m2

Cold stream qm,c Mass flow rate 135 kg/s
Tin

c Inlet temperature 525 K
cc

P Specific heat capacity 3125 J/(kg K)
Hot stream qm,h Mass flow rate 68 kg/s

Tin
h Inlet temperature 575 K

ch
P Specific heat capacity 2200 J/(kg K)

Fouling Kg Deposition rate 5 × 10−6 (m2 K)/(W d)
Kc Ageing rate 2.5 × 10−7 (m2 K)/(W d)
λg Gel thermal conductivity 0.1 W/(m K)
λc Coke thermal conductivity 0.8 W/(m K)

3. Methodology

The methodology section deals with the three main aspects related to cleaning cycle
scheduling under uncertain operating conditions.

The first part to be defined concerns the fouling kinetic model used to describe the
fouling physical phenomenon that will affect heat transfer effectiveness dynamics and
will be used to assess the optimal cycle duration. Moreover, the two different cleaning
techniques are presented in order to highlight the effect of the cleaning process on the
fouling parameters.

After that, the definition of uncertain operating conditions via the flexibility index is
carried out. The analysis is focused both on deterministic and stochastic indexes in order to
provide a complete overview of flexibility and the way it can be quantified and associated
with process variables.

Finally, the scheduling optimization and the corresponding decisional algorithm
are discussed and compared to those already employed in the available literature. The
definition of the algorithm is indeed required to outline a thorough and general procedure
to be used no matter the case study under analysis.

3.1. Fouling Kinetics and Cleaning Techniques
3.1.1. Fouling Kinetics

The fouling model employed in this work is the so-called “two-layer model” proposed
in similar publications by Ishiyama et al. (2011) [24] and Pogiatzis et al. (2012) [5].

As stated by its name, this model assumes a fouling deposition distributed over two
layers characterized by different physical properties and defined as:

• Gel layer, located at the interface between the hard solid deposition and the process fluid;
• Coke layer, formed between the Gel layer and the exchanger heat transfer surface.

Please note that “coke” as defined here above is used only for fouling formed starting
from an organic compound, otherwise, it should be referred to as “crust”.

The zeroth-order kinetic model assumed to describe the behavior of the growing
layers are:

• Coke layer: {
dδc
dt = λc · Kc, δg > 0

dδc
dt = 0, δg = 0

(1)
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• Gel layer:
dδg

dt
= λg · Kg −

dδc

dt
(2)

where δg and δc are the thicknesses and where λg and λc are the thermal conductivities
of the gel and coke layer, respectively.

The sum of these basic components represents the deposit growth on the heat ex-
changer surface. The thermal fouling resistance (or fouling factor) of the fouling layer Rf,
also defined as the rate of deposit growth, is evaluated by treating the layers as a pair of
thin slabs of insulating material and mathematically described as:

Rf = Φd −Φr =
δg

λg
+

δc

λc
(3)

where Φd and Φr are the rates of deposition and removal respectively. Rf, as well as the
deposition and the removal rate, can be expressed in the units of thermal resistance as
[(m2 K)/W] or in the units of the rate of thickness change as [m/s] or units of mass change
as [kg/(m2 s)] [3].

Finally, in the fouling model adopted, the overall heat transfer coefficient U is given by:

1
U

=
1

Uclean
+ Rf ⇔ U =

Uclean
1 + Uclean · Rf

(4)

where Uclean indicates its value at t = 0.

3.1.2. Cleaning Techniques

Both the two different cleaning techniques presented by Ishiyama et al. (2011) [24]
have been studied in this research work. They can be classified and qualitatively described
as follows:

• Chemical Cleaning: the heat exchanger is shut down in order to perform the cleaning.
Only the gel layer is removed with this technique by means of a proper solvent. This
cleaning procedure is generally shorter and has lower fixed costs with respect to
mechanical cleaning;

• Mechanical Cleaning: the heat exchanger is shut down in order to perform the cleaning
procedure. Deposits are completely removed by means of mechanical strength and
the heat exchanger recovers its original heat transfer capacity. This cleaning procedure
is generally longer and has higher fixed costs with respect to chemical cleaning.

The cost related to the two techniques are those suggested in the referenced publica-
tions. Although the results are affected by those values, the procedure and the related code
are of general validity whatever the cost function is.

The effect of these cleaning techniques on the model equations concerns the terms δg
and δc. In particular, the chemical cleaning process resets the gel layer δg to zero, restoring
the heat transfer coefficient defined by the Equation (4) to the value:

1
U

=
1

Uclean
+

δc

λc
⇔ U =

Uclean · λc

λc + Uclean · δc
(5)

It is worth remarking that, once the chemical cleaning is performed, the coke layer
keeps on increasing starting from the thickness achieved before the unit shut down.

On the other hand, the mechanical cleaning process is able to remove the entire fouling
layer so that the heat transfer coefficient is equal to Uclean once the unit is restarted.

The analysis of more cleaning cycle techniques with respect to the usual scheduling
based on the Mechanical Cleaning only implies the possibility of multiple cleaning cycles
configurations obtained by combining them. The implications related to what will be called
“supercycle” and the way we should treat it during the design phase are better discussed
in Section 3.3.
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3.2. Flexibility Indices

Flexibility, defined as the ability of a process to accommodate a set of uncertain
parameters [29], can be quantified by the mean of several indices proposed in the literature.
As already observed by Di Pretoro et al. (2019) [13], flexibility indices can be classified into
deterministic and stochastic according to the way uncertainty is treated. In this research
work, both a deterministic index and a stochastic one have been employed in order to
compare their behavior on the applied case study.

The main definitions and mathematical formulations are discussed here below in order
to provide a complete overview before their application to the cleaning cycle scheduling
problem.

The first to be defined and the most widespread flexibility index is the Swaney and
Grossmann (1985) [30] one.

Let us define the general hyperrectangle:

T(δ) =
{

θ : θN − δ · ∆θ− < θ < θN + δ · ∆θ+
}

(6)

With δ non-negative scalar variable for which{
δ < 1, T(δ) ∈ T
δ > 1, T(δ) 3 T

(7)

The flexibility index FSG, proposed by Swaney and Grossmann, is then the solution to
the constrained optimization flexibility problem:

FSG = maxδ (8)

s.t. max
θ∈T(δ)

min
z

max
j∈J

f j(d, z, θ) ≤ 0 (9)

where d and z represent the design and the manipulated variables respectively. By referring
to Figure 2, FSG graphically represents the maximum scale factor so that the correspond-
ing hyperrectangle is bounded by the feasible zone. Moreover, for constraints jointly
quasi-convex in z and 1D quasi-convex in θ, the solution lies at a vertex of the hyper-
rectangle allowing to solve the optimization problem by evaluating the feasibility of the
design at each vertex. On the contrary, certain types of non-convex domains may lead to
nonvertex solutions.
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The index presented here above can be referred to as “deterministic” since it is based
on the assessment of a “perturbation magnitude” in the uncertain domain without taking
into account the perturbation likelihood. Thus, this index definition results in a rather
conservative estimation of the system flexibility.

For these reasons, a few years later, Pistikopoulos and Mazzuchi (1990) [31] introduced
a stochastic flexibility index based on the perturbation likelihood. Given the uncertain
parameters Probability Distribution Function (hereafter PDF) P(θ) and the feasible region

Ψ(d, z, θ) ≤ 0 (10)

the stochastic flexibility index SF can be defined as:

SF =
∫

Ψ
P(θ) · dθ (11)

Unlike the deterministic indices, the stochastic flexibility one does not quantify a
perturbation magnitude but assesses the percentage of the possible operating conditions
for which the system keeps being feasible. However, the higher cost to pay for such an
accurate result does not lie on the higher need for data only. As shown in Figure 3 indeed,
more than one subregion in the uncertain domain corresponding to the same value of
integral (11) could exist.
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Therefore, the design choice and the related Time Average Losses (TAL, hereafter
denoted by Θ) associated with each value of SF is the result of an economic optimization
problem stated as:

Θ(SF) = max
D

Θ (12)

where

D = Dk
∣∣∣∣max

Dk
Θ ≤ max

Dj
Θ ∀ j :

∫
Dk

P(θ) · dθ =
∫

Dj
P(θ) · dθ = SF (13)

This formulation states that, for each value SF of the stochastic flexibility index, the
associated subregion D, represented by the maximum value of Θ in it, is the cheapest one
among all the subregions satisfying the Equation (11). Thus, for each step of the stochastic
flexibility analysis an additional optimization problem should be solved, considerably
increasing the required computational effort.

The particular definition of this index makes it different from the deterministic ones
by two main properties as pointed out by Di Pretoro et al. (2019) [13]:

• The stochastic flexibility index SF has always a value between 0 and 1;
• Under nominal operating conditions, SF can be higher than 0.
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The importance of including flexibility when assessing operating costs has already
been proved by Di Pretoro et al. (2020) [32]. However, in order to do that the decisional
algorithm for the operation scheduling to which the flexibility indices will be applied
should be thoroughly defined. For this reason, a detailed explanation will be discussed in
the following section.

3.3. Decisional Algorithm for Operation Scheduling

Given the heat exchanger case study under analysis with the related cleaning tech-
niques and the associated fouling kinetic model described in Sections 2 and 3.1 respectively,
the decisional algorithm for the cleaning operation schedule should give the answers to
two main questions:

1. WHEN the cleaning operation should be performed?
2. WHICH cleaning operation should be performed?

In order to do that, some cost functions are required. The fact that the cycle is
optimized with respect to an economic criterion implies that, once questions 1 and 2 are
answered, a third question “what are the expected operating costs?” is answered as well.

The first cost function to use is called the “Energy Loss” function and it is defined as:

EL = CE ·
∫ t

0
(Qcl −Q) · dt (14)

where CE is the cost per energy [€/J], t is the operating time, Qcl is the heat exchanged
under clean conditions, i.e., at t = 0, and Q is the actual heat recovery at t = top. In particular,
it can be observed that the integrated function represents the external heat duty demand,
i.e., the sum between Qcold and Qhot. This cost function describes operating costs to be
afforded when the heat recovery is still ongoing.

Two other cost functions should be defined in order to quantify the expenses incurring
during the unit shutdown. The first one refers to the cost of the energy to be provided by
the external duty when no heat recovery is performed. This value is equal to:

ELC = CE ·Qcl · τC (15)

for solvent cleaning or
ELM = CE ·Qcl · τM (16)

for mechanical cleaning where τi is the time required for the corresponding cleaning
operation.

Finally, the last cost item is represented by the cost of the cleaning operation itself,
abbreviated with CCl

C and CCl
M for the chemical and mechanical cleaning techniques respec-

tively. The costs of cleaning have been assumed as constant in time. Although the code
does not account for inflation and market trends’ influence, it is still possible to implement
within it these aspects for real applications. However, this is not the purpose of this work.

Once all these cost items are calculated, the optimization problem concerning the
optimal cycle duration needs to be solved. Its general formulation is:

min
t, τM,τC

Θ(t, τM, τC) (17)

Θ(t, τM, τC) = ΘM(t, τM) + ΘC(t, τC) (18)

This formulation is used to solve the so-called supercycle, i.e., the sequence of multiple
chemical cleaning operations (NC) required before performing the mechanical one. In
particular, whether a cleaning operation is required, i.e., when the energy losses are higher
than the cost of cleaning, the minimum value between ΘM and ΘC determines which
kind of cleaning technique should be employed. In fact, each time the solvent cleaning
is preferred, the coke layer keeps increasing until the chemical operation becomes more
expensive than the mechanical one and the so-called supercycle is closed.
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In the case where only mechanical cleaning is considered, the optimization problem is
simplified by removing all the chemical cleaning related terms.

The decisional algorithm described here above has been graphically summarized in
the flowchart reported in Figure 4.
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The following section presents the obtained results both for the conventional proce-
dure and for the stochastic flexibility based one. In the latter case, the economic optimiza-
tion carried out to select the optimal scheduling has been coupled with the optimization
required by the stochastic flexibility assessment. This innovative procedure allows out-
lining the trend of the cycle duration and the associated costs obtained from the first
optimization as a function of the flexibility index resulting from the second one.

The heat exchanger and fouling models, the flexibility analysis, and the decisional algo-
rithm for scheduling optimization calculations were all performed by means of MatLab® codes.

4. Results

The following sections present in detail the results obtained. In particular, they have
been classified into three main parts. The first one shows the results of the scheduling
algorithm applied to our case study under nominal operating conditions both in case of a
single cleaning process and of the combination of the two.

A sensitivity analysis with respect to two possible uncertain variables will follow in
order to detect the most critical one and use it to perform the flexibility assessment.

Finally, the third part presents and discusses in detail the outcome of the stochastic
flexibility assessment for the single heat exchanger case study by coupling economic and
operational aspects.

4.1. Nominal Operating Conditions

This section presents the results obtained with the process parameters discussed in
Section 2 accounting both for the mechanical cleaning methodology only and for both
chemical and mechanical ones.
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4.1.1. Mechanical Cleaning Only

The scheduling optimization has been performed first according to the conventional
methodology accounting for mechanical cleaning only. The time average losses have been
calculated for a range of cycle time and the top corresponding to its minimum value has
been detected.

The overall Energy Losses and the TAL trend as a function of the operation time
are shown in Figure 5a,b respectively. As it can be noticed, for low top values, the TAL
are very high since the cleaning costs are much higher than the cost of the external duty
required to compensate for the lower performance of the heat exchanger due to the fouling
phenomenon. This value decreases until a minimum of 306.16 $/d in correspondence of
195 days and starts increasing again for the longer top because of the higher impact of the
EL with respect to the cleaning expenses.

Processes 2021, 9, x FOR PEER REVIEW 10 of 19 
 

 

The following section presents the obtained results both for the conventional proce-
dure and for the stochastic flexibility based one. In the latter case, the economic optimiza-
tion carried out to select the optimal scheduling has been coupled with the optimization 
required by the stochastic flexibility assessment. This innovative procedure allows outlin-
ing the trend of the cycle duration and the associated costs obtained from the first optimi-
zation as a function of the flexibility index resulting from the second one. 

The heat exchanger and fouling models, the flexibility analysis, and the decisional 
algorithm for scheduling optimization calculations were all performed by means of 
MatLab® codes. 

4. Results 
The following sections present in detail the results obtained. In particular, they have 

been classified into three main parts. The first one shows the results of the scheduling 
algorithm applied to our case study under nominal operating conditions both in case of a 
single cleaning process and of the combination of the two. 

A sensitivity analysis with respect to two possible uncertain variables will follow in 
order to detect the most critical one and use it to perform the flexibility assessment. 

Finally, the third part presents and discusses in detail the outcome of the stochastic 
flexibility assessment for the single heat exchanger case study by coupling economic and 
operational aspects. 

4.1. Nominal Operating Conditions 
This section presents the results obtained with the process parameters discussed in 

Section 2 accounting both for the mechanical cleaning methodology only and for both 
chemical and mechanical ones. 

4.1.1. Mechanical Cleaning Only 
The scheduling optimization has been performed first according to the conventional 

methodology accounting for mechanical cleaning only. The time average losses have been 
calculated for a range of cycle time and the top corresponding to its minimum value has 
been detected. 

The overall Energy Losses and the TAL trend as a function of the operation time are 
shown in Figure 5a,b respectively. As it can be noticed, for low top values, the TAL are 
very high since the cleaning costs are much higher than the cost of the external duty re-
quired to compensate for the lower performance of the heat exchanger due to the fouling 
phenomenon. This value decreases until a minimum of 306.16 $/d in correspondence of 
195 days and starts increasing again for the longer top because of the higher impact of the 
EL with respect to the cleaning expenses. 

  
(a) (b) 
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4.1.2. Supercycle

The decisional algorithm for scheduling optimization has been then applied ac-
counting for both the gel and the coke layers according to the methodology presented
in Section 3.3. The TAL cost function was evaluated for different numbers of chemical
cleaning cycles NC before performing the mechanical operation.

Figure 6a shows the optimal TAL value for NC ranging from 0 to 5. The function
in 0 represents the result obtained when no chemical cleaning is performed before the
mechanical one. This value is exactly the one obtained for a simple cycle scheduling in
the previous section, i.e., 306.16 $/d. The TAL trend shows a minimum of 234 $/d in
correspondence of NC equal to 2. This means that the optimal supercycle consists of two
chemical cleanings and a mechanical one. For lower values, i.e., 1 and 0, the energy losses
due to the lower efficiency of the heat recovery do not justify the cost of a mechanical
operation. On the other hand, for higher values, the impact of the increasing coke layer on
the heat transfer implies substantial energy losses that would compromise the profitability
of the operation more than the cost of complete cleaning.

In order to ease the understanding of this phenomenon, the gel and coke layer thicknesses
as a function of time have been represented in Figure 6b for the optimal operation scheduling.

The time interval when the layer thickness has a stationary trend refers to cleaning
operation time, i.e., the unit maintenance shutdown time. In particular, it can be noticed
that the last shutdown required for the mechanical cleaning is longer than the previous
ones (5 days vs. 1 day) due to the higher complexity related to the coke layer removal.
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The most relevant outcome of this section is that the combination of two different
cleaning strategies allows to save up to 24% of the time average losses thanks to the lower
complexity and duration of the solvent cleaning subcycle.

4.2. Sensitivity Analysis

The sensitivity analysis was performed on the hot side inlet temperature Tin
h and the

heat transfer surface area A. The choice of perturbing both an input parameter and a design
variable has the purpose to verify which one of them has a higher impact on the operation
scheduling. The most critical one indeed will be selected as an uncertain parameter to
perform the stochastic flexibility assessment.

Figure 7 shows the results of the sensitivity analysis for wide ranges of the perturbed
variables. In particular, Figure 7a refers to the optimal cycle TAL while Figure 7b shows
the corresponding optimal cycle time.
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On the one hand, in the former Figure, an almost linear trend of the Time Average
Losses as a function of the two perturbed variables can be noticed. More precisely, for the
same deviation in terms of percentage, the TAL shows a slightly higher sensitivity with
respect to Tin

h than to A. In particular, the sensitivity of the cost function with respect to one
of the two variables becomes more relevant as the value of the other one gets higher.
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On the other hand, in the latter Figure, the higher sensitivity of the optimal cycle time
with respect to the temperature results to be much more relevant. The perturbation of top
with respect to the heat transfer surface area is almost negligible for low Tin

h values and
shows a moderate response for very high-temperature perturbations. On the contrary, the
optimal cycle time exhibits an almost exponential growth with respect to the inlet tempera-
ture for any value of the heat transfer surface area. This behavior can be reconducted to the
fact that this parameter directly acts on the external duty demand required to achieve the
hot side specification while the heat exchanger was already properly sized and affects the
optimal scheduling solution only in case of very ineffective heat transfer.

Thus, in the light of these results, the intermediate value A = 140 m2 was finally kept
as the nominal one while the hot side inlet temperature has been selected as uncertain
parameters for the flexibility analysis presented in detail in the next section.

4.3. Flexibility Assessment

As already discussed in detail by previous studies dealing with the aleatory uncer-
tainty and the stochastic flexibility index [13,31,32], the uncertainty characterization, i.e.,
the probability distribution function used to describe the uncertain parameter likelihood,
plays a main role in the final result. For this reason, in order to have a more complete
overview, two PDFs, namely the Gaussian and the Beta distributions, are employed in
this study. The former describes an uncertain variable perturbation with a symmetric
behavior with respect to the central point (i.e., its mode) usually corresponding to the
nominal operating conditions. On the other hand, the Beta distribution defines an aleatory
parameter for which either the positive or the negative deviation is more likely to occur.
Further details about their mathematical formulation are provided in the Appendix A.

Both the Gaussian (or Normal) and the Beta distributions belong to the class of
two-parameter PDFs, therefore two conditions should be imposed in order to uniquely
determine their trends. In the case of real applications, the distribution of the uncertain
parameter can be outlined according to the available frequency data or accounting for its
expected behavior. For this paper, since the study is not related to any existing unit, the
maximum likelihood of the PDF was set equal to the nominal operating conditions point
and the variance was selected so that the entire uncertain space is covered with a residual
probability lower than the 0.01%.

The trends resulting from these hypotheses have been outlined in Figure 8. As it
can be noticed, the Gaussian distribution results particularly narrow with respect to the
entire temperature range since there is a minimum inlet temperature below which the heat
transfer is not feasible due to a minimum temperature approach lower than 10 ◦C. This
value was then set as the lower boundary of the uncertain domain.

Once the uncertain parameter PDF has been properly defined, the stochastic flexibility
assessment can be finally carried out according to the methodology presented in Section 3.2.
Each probability distribution function was then integrated over the uncertain domain and
the maximum TAL and cycle time have been assessed at each value of the SF index. This
procedure allowed to estimate the expected costs and operation time to be respectively
afforded and waited for each simple cycle.

The cost trends obtained this way are shown in Figure 9. As it can be noticed, the
expected TAL grows fast for very low flexibility index values until a lower slope increased
is attained over a wide range of the uncertain parameter. As the residual probability
gets lower, much higher losses should be expected in order to almost entirely cover the
uncertain domain.

The interval width reflects the PDF shape as expected and has already been discussed
in the previous sections. In particular, the “steady” region is much wider in the case of the
Gaussian one. The TAL for lower values resulted higher for the Beta PDF while the cost
increase in the residual part of the stochastic flexibility index is more relevant when using
the Gaussian one.
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Figure 9. Flexibility analysis results—mechanical cleaning: (a) Optimal cycle TAL vs. SF; (b) Optimal cycle time vs. SF.

In regards to the optimal cycle time, the obtained curves show an opposite trend with
respect to the corresponding TAL functions. This behavior is due to the fact that higher
inlet temperature requires cleaning cycles to be more frequently performed as already
pointed out by the sensitivity analysis. Analogously to the economic remarks discussed
in Section 4.1.2 about the costs, the use of a combined chemical and mechanical cleaning
methodology allows extending the operating time before a complete shutdown is required.

In any case, the two trends are qualitatively similar. It is worth remarking that the
presence of some edges in these trends is due to the discretization of the uncertain domain
that was not kept too dense in order to avoid excessive computational time.

The same procedure was then carried out for the supercycle accounting for both
chemical and mechanical cleaning operations.

The optimal number of solvent cleaning cycles over the uncertain domain always
resulted as 2. However, the corresponding costs and optimal cycle time considerably
vary over the inlet temperature interval as shown by the plots in Figure 10a,b for the two
probability distributions. Given that the optimal supercycle configuration does nott change,
relatively smooth trends can be observed for both the output variables and both the PDFs
without any particular discontinuous point. As for the simple cycle, a fast increase in the
cost function can be observed for very low and very high SF values. However, for the
supercycle, the Beta distribution exhibits a higher slope in the intermediate range with
respect to the Gaussian one.
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Even in this case, an opposite trend can be detected for the optimal cycle time as for
the previous analysis. In general, higher costs, and thus lower optimal cycle time, can be
pointed out for the Beta distribution due to its higher variance.

Therefore, in the light of these results, it can be also concluded that, in the case of
a narrow probability distribution, the scheduling parameters obtained accounting for
nominal operating conditions only are much closer to the real estimation. This is due to the
fact that the trends TAL and top vs. SF exhibit a lower slope over a wider flexibility range
and just the very last part of residual probability significantly affects their values.

5. Conclusions

The purpose of this research work was to include the uncertainty of the operating
condition in the heat cleaning cycles scheduling optimization algorithm. The outcome
of the study was successful and allowed for the definition of a thorough procedure to be
applied in the case of heat exchanger cleaning cycle optimal scheduling.

The general validity of the innovative algorithm with respect to the uncertainty charac-
terization was proved by testing both a symmetric (i.e., Gaussian) and a skewed (i.e., Beta)
probability distribution function. Moreover, the procedure does not depend on the fouling
kinetic model that is used to describe the physical phenomena related to fouling.

Furthermore, the employment of a preliminary sensitivity analysis is proposed in this
study with the purpose of restraining the number of uncertain parameters to be accounted
for by identifying the most critical ones from a flexibility perspective and thus decreasing
the dimension of the uncertain domain.

A further result obtained during this study was the algorithm aimed at the optimally
combined solvent and mechanical cleaning cycle under uncertainty. As for nominal operat-
ing conditions, the possibility to exploit different cleaning operations allows reducing the
costs related to fouling removal. However, the optimization of the so-called “supercycle”
implies the introduction of an additional decisional variable, i.e., chemical vs. mechanical,
requiring a non-negligible computational effort already in the case of a single unit.

In conclusion, a general procedure for operation scheduling under uncertainty was
outlined by means of a stochastic flexibility indicator and, in particular, its application to a
single heat exchanger cleaning cycle was analyzed in deep. The aleatory uncertainty char-
acterization by means of a probability distribution function combined with the proposed
algorithm provides a tool to the decision-maker to have a more reliable cost estimation and
to define the best scheduling solution according to the specific operating conditions.

This work sets the basis for future applications on more complex heat exchanger
networks as well as additional perspectives on other kinds of operations different than
unit maintenance. Moreover, besides the use of the methodology proposed in this research
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study to deal with an undesired disturbance, i.e., fouling, the scheduling algorithm could
be also actively exploited to take advantage of certain operational parameters in order to
reduce operating costs and enhance the process performances.

Author Contributions: Conceptualization, A.D.P.; Data curation, F.D.; Methodology, A.D.P. and F.D.;
Supervision, F.M.; Writing—original draft, A.D.P. and F.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary
Symbol Definition Unit
A Heat transfer surface area m2

CAPEX CAPital EXpenses $/a
ci

P Specific heat at constant pressure J/(kg K)
CCl

i Cleaning costs $
CE Energy costs $/J
D Stochastic Flexibility index domain n-D space
d Design variable variable
EL Energy Losses $

FSG
Swaney & Grossmann flexibility
index

1

GNP Gross National Product acronym
Ki Fouling kinetic constant (m2 K)/J
NC Number of chemical cleaning cycles 1
OPEX OPerating EXpenses $/a
PDF Probability Distribution Function function
P(θ) Probability function function
qm,i Mass flow rate kg/s
Qi Heat duty W
Rf Fouling heat transfer resistance (m2 K)/W
SF Stochastic Flexibility index 1
t Time d
top Operation time d
T Flexibility hyper-rectangle function
TAL Time Average Losses acronym
Tin Inlet temperature K
U Heat transfer coefficient W/(m2 K)
z Control variable variable
Greek letters
α Beta distribution shape parameter 1
β Beta distribution scale parameter 1
δ Flexibility index scale factor 1
δi Fouling layer m
Θ Time Average Losses $/d
θ Uncertain variable various
λi Thermal conductivity W/(m2 K)
µ Mean various
σ Variance various
τi Cleaning time d
Φi Fouling deposition/removal rate (m2 K)/W
Ψ Feasible domain n-D space
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Appendix A
The formulation of the probability distribution functions employed to describe the uncertain variable

deviation likelihood will be discussed in detail here below in order to provide a better understanding of
the associated mathematical properties. For further details please refer to Severini (2011) [33].

Appendix A.1. Normal Probability Distribution Function
As already mentioned, the condition of “general validity” is represented by the Gaussian or

normal probability distribution function. It is symmetrical with respect to its mean and the 99.73% of
cumulative probability falls in the range ±3 times the variance [−3σ, +3σ].

Different Gaussian distributions are plotted in Figure A1 for different values of the characteristic
parameters µ and σ.
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Moreover we can standardize, i.e., reconduct to a 0 mean value and variance equal

to 1 (variance-covariance matrix equal to the identity matrix), the normal distribution by
mean of the independent variable substitution:

z =
x− µ

σ
(A3)

obtaining:

P(z) =
(

1
2 · π

) n
2
· |I|−

1
2 · e−

1
2 ·z
′ ·I·z (A4)

for a general n variables standard normal probability distribution.
This transformation besides making the calculations easier allows to compare variables

with different dimensions, e.g., temperature vs. flowrate vs. velocity etc.
The boundaries of the feasibility domain, if analytically available, have then to be

rewritten as functions of the new variable z by inverting the Equation (A3).
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Appendix A.2. Beta Probability Distribution Function

The second distribution function used in this paper to describe the uncertain variable
deviation likelihood is the so called Beta PDF. It is a two-parameter continuous probability
distribution defined for positive values of the independent variable x ∈ [0, ∞].

Beta distribution is defined according to two parameters; the parametrization with
a shape parameter α and a scale parameter β is used here below. Different Gaussian
distributions are plotted in Figure A2 for different values of the characteristic parameters.
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The analytical expression of the single variable Beta PDF is formulated as:

P(x) = xα−1 · (1− x)β−1 · Γ(α + β)

Γ(α) + Γ(β)
(A5)

The mode with α, β > 1 assumes the meaning of the most likely value of the distribution,
it graphically corresponds to the peak in the PDF and is mathematically formulated as:

mode =
α− 1

α + β− 2
(A6)

For α, β < 1 the behavior is opposite and is defined as the anti-mode, or the lowest
point of the probability density curve.

For α = β, the expression for the mode simplifies to 1/2, showing that for α = β > 1
the mode (respectively anti-mode when α, β < 1), is at the center of the distribution: it is
symmetric in those cases as can be seen in the figure.
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