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Abstract: Tourism makes a significant contribution to the economy of almost every country, so accu-
rate demand forecasting can help in better planning for the government and a range of stakeholders
involved in the tourism industry and can aid economic sustainability. Machine learning models, and
in particular, deep neural networks, can perform better than traditional forecasting models which
depend mainly on past observations (e.g., past data) to forecast future tourist arrivals. However,
search intensities indices (SII) indicators have recently been included as a forecasting model, which
significantly enhances forecasting accuracy. In this study, we propose a bidirectional long short-term
memory (BiLSTM) neural network to forecast the arrival of tourists along with SII indicators. The
proposed BiLSTM network can remember information from left to right and right to left, which
further adds more context for forecasting in memory as compared to a simple long short- term mem-
ory (LSTM) network that can remember information only from left to right. A seasonal and trend
decomposition using the Loess (STL) approach is utilized to decompose time series tourist arrival
data suggested by previous studies. The resultant approach, called STL-BiLSTM, decomposes time
series into trend, seasonality, and residual. The trend provides the general direction of the overall
data. Seasonality is a regular and predictable pattern which re-occurs at fixed time intervals, and
residual is a random fluctuation that is something which cannot be forecast. The proposed BiLSTM
network achieves better accuracy than the other methods considered under the current study.

Keywords: LSTM; BiLSTM; SII index; tourist arrival; forecasting; machine learning

1. Introduction

Tourism makes a significant contribution to the economies of many countries. During
2019, tourism contributed $2750.07 billion, about 3.2%, to the global economy [1]. Stake-
holders in the tourism industry—such as professionals, managers, government agencies,
and transporters—require accurate data related to tourist arrivals and their demands to
develop and maintain infrastructure [2], enhance services, and provide better experiences
for tourists. Since such data is required in advance to ensure infrastructure and services are
in place to meet demand, the forecasting of tourist arrivals is, therefore, a prime concern
among practitioners and academics.

In tourism, forecasting methods can be broadly categorized into qualitative and
quantitative. Qualitative methods largely depend on insights and past experiences of
tourists [3]. Forecasting models are quantitative and are trained on previous data to
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forecast future trends. In the case of tourism, the set of past data includes tourist arrival
times, rates, and volumes, and other key factors—such as weather conditions, public
transportation systems, and availability of the infrastructure—that help forecast future
tourist arrivals and demands. With the advent of information technology, tourists make use
of search engines to collect information such as the availability of hotels, popular places to
visit, and weather conditions at the destination location [4]. Consequently, in recent years,
search intensity indices (SII) data have been extensively used in tourist forecasting [5]
to augment tourist arrival data, which has subsequently improved the performance of
forecasting models [6].

Machine learning techniques such as “support vector regressor” (SVR) have shown
significant performance improvement in forecasting data compared with the more tradi-
tional models such as “Autoregressive Integrated Moving Average” (ARIMA) [5]. However,
many machine learning methods do not work without human intervention, relying on
feature selection that requires human experts to select the key features that contribute
to better forecasting performance. Since real-world datasets contain a large number of
features, the manual selection of key features is a very tedious and time-consuming task.
“Artificial neural network (ANN) is a machine learning method inspired by the human
brain” [7], which does not require manual feature selection but is a more robust model
for forecasting since it can automatically select features [6]. ANN has also been widely
used for time series forecasting problems and has shown better results than other machine
learning models. However, ANN suffers from an inability to remember long dependencies
in sequences, affecting its forecasting performance [6].

Deep convolutional neural networks (DCNN) are an extension of ANN that has shown
great success in image classification, object detection, and computer vision tasks [8]. The
efficiency of DCNN is mainly due to its automatic feature extracting capability [9]. For
sequence-based problems, particularly in natural language processing, other kinds of deep
networks known as the recurrent neural network (RNN), long-short-term-memory (LSTM),
and gated recurrent unit (GRU) have shown huge success because of their long-term
learning dependencies. LSTM is still imperative in demand forecasting in varied domains
such as tourist arrival forecasting “order demand based on short lead time” [6]. In tourism
demand forecasting, Law et al. [6] suggested a deep learning model with an attention
mechanism and highlighted the efficiency of the LSTM network in forecasting Macau
tourism demand [6].

However, the main limitation of LSTM is that it remembers information in only one di-
rection, i.e., “from left to right”. In [10], authors used the ARIMA model to forecast German
tourist arrival in Croatia, and in [11] researchers used an econometric model to forecast
Chinese tourist arrival. Law [12] used a neural network for tourism forecasting and Chang
and Tsai [13] used a deep neural network to forecast the number of tourists. Similarly,
authors in [14,15] have used a unidirectional LSTM network to forecast tourism arrival.
However, all the previous studies were based on deep neural networks and used a unidi-
rectional LSTM network that remembers only in one direction. In forecasting problems,
accuracy can be considerably improved if the network can also accommodate information
from both directions (i.e., from forward to backward and backward to forward) [16]. To
reduce this gap in the tourism forecasting literature, we present, for the first time, an
advanced version of the LSTM network—a bidirectional LSTM (BiLSTM) network—to
forecast tourist arrivals. The bidirectional network trains the same input twice, once in
the forward direction and once in the backward direction [17], which provides additional
context information for the network, thereby improving its forecasting performance.

The effectiveness of the BiLSTM network has been examined in other forecasting
problems. For example, the authors in [16] used a BiLSTM network for stock forecasting
and showed that BiLSTM performs better than unidirectional networks. In [18] researcher
made a comparative analysis of ARIMA, LSTM, and BiLSTM for financial time series and
showed that BiLSTM outperforms LSTM and ARIMA. In [19] authors also demonstrate the
effectiveness of BiLSTM network over LSTM network in stock forecasting. To display the
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efficacy of BiLSTM network in tourism forecasting, we investigate the BiLSTM recurrent
neural network in which the hidden layer is added in the reverse direction. This extra
layer reads the same input from a backward direction to address the limitation of learning
tendency only based on the immediately preceding pattern of the recurrent neural network
to outperform the unidirectional LSTM network.

In sequence modeling, the attention mechanism has achieved tremendous success.
The attention mechanism generates weights for the parts of the sequences that should
receive more attentions and assigns an attention score to each element in the sequence.
The attention mechanism allows the model to be more decipherable and enable the model
to ignore irrelevant information while forecasting. In tourism forecasting, the attention
mechanism is useful since it selects and gives more weight to those important factors in
tourism. The proposed BiLSTM network with attention learns the “temporal relationship”
among various factors and the relative significance of the factors in accordance with their
influence on tourism demand.

The current study aims to examine BiLSTM deep neural network and test its efficacy
in tourist demand forecasting. Along with the BiLSTM network, this study also incorpo-
rates the decomposition method, which has received significant attention from tourism
researchers who have accommodated decomposition methods with DNN to improve ac-
curacy [15]. Decomposition methods split the data into sub-datasets, which reduces the
model complexity without adding more data. In line with [15], we used STL decomposition,
which divides data into three sub-series: seasonality, trend, and residual. This component
gives additional stationary data for forecasting, which further improves the overall accu-
racy. The goal of this study is to present a forecasting performance of BiLSTM as compared
to the unidirectional LSTM network. This study used the monthly tourism arrival data
obtained from Zhang et al. [15], which they achieved by extracting many SII intensities
from search engines such as Google trends. One of this study’s significant contributions
is to present the BiLSTM network in tourism forecasting along with attention mechanism
and STL decomposition technique suggested by previous studies to further enhance the
forecasting performance for tourism arrival.

The remainder of the paper is organized as follows: Section 2 presents the prior work
in tourism demand forecasting, followed by Section 3 explaining the methodology behind
the proposed approach. Section 4 highlights the empirical findings and the performance.
Lastly, the study culminates with Section 5, which covers implications, the conclusion, and
some observations on limitations and potential future work.

2. Related Works

Tourist arrival forecasting can be formed under a time series analysis method that
can be forecast using past data of tourist arrival to forecast future trends in arrival [10].
SII data shows tourists’ intention to visit a particular country, reflecting such indicators
as tourist food interest, their activity plan to visits places of interest, weather conditions,
and hotel and transportation availability. Since interested potential tourists themselves
provide this information, SII data are effective indicators in forecasting tourism demand
and have therefore been implemented in many tourism demand forecasting models. The
relationships between tourist search queries for US cities and attractiveness have been
discussed in [20]. Google trend indices have been used to forecast tourism demand in Hong
Kong from nine countries [21]. In [14], the authors have shown that SII indicators reveal
tourist preferences and identify changes in tourist preferences over time. The effectiveness
of SII data has also been demonstrated in hotel occupancy forecasting in [22].

Tourism forecasting methods can be categorized into time series, econometrics, and
artificial intelligence-based methods [23]. Time-series methods, such as ARIMA and its
variants, are the most widely used time-series models [14,22–24], which are used to forecast
future tourist arrival based on past observations and trends [25]. Song et al. [22] proposed
an ARIMA model that includes seasonal parameters to forecast future trends. Baldigara
and Mamula [10] presented an ARIMA model to predict German tourist arrivals in Croatia
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and Lim et al. [26] used ARIMA with an explanatory variable model for multiple time
series data to forecast international arrivals. Other simple time-series models such as the
Persistence model (also known as the Naïve model) and exponential smoothing have been
widely used in univariate time-series modeling. In fact, these models have been used
as benchmark models for performance evaluation of other models [8,20]. Most of the
time, series models, including variations of ARIMA models, assume that there is a linear
relationship between past observations and future observations, which means that their
performances suffer when data is nonlinear.

Econometric models aim to establish the association between tourist demand and de-
mographic variables such as income and destination markets factors such as ease of going,
transportation, and government policy for regional markets [27–30]. Econometric factors
decide “economic growth” in tourism demands and offer more in-depth understandings
for practitioners and policymakers [23,27]. Some contemporary/traditional models, for
instance the error correction model [23] and the vector autoregression model, have been
widely used in tourism demand forecasting. For example, Ognjanov et al. [11] used an
economy model for Chinese tourism demand. Gunter and Onder [30] employed Bayesian
factor augmented vector autoregression to predict Vienna’s tourism demand. Bangwayo-
Skeete and Skeete [27] used a mixed data sampling model with Google search data to
forecast tourism demand and claimed an improvement in forecasting performance. Song
et.al [22] used an integration of different “econometric models” to forecast tourism demand.
Asaaf et al. [31] proposed a Bayesian global vector auto-regression model to forecast the
South Asian market’s tourism demand. They observed that their model performed well
in forecasting the demand for South Asian tourists. Comparative studies have also been
conducted between time series and econometrics models and time series methods have
often been more accurate than econometric models [3].

With the advances in data generation methods, artificial intelligence methods have
shown great success in many domains, including tourism demand forecasting [6]. Artificial
intelligence methods comprise machine learning models such as SVM and deep learning
models that include ANN and deep neural networks (DNN) [32]. Although ANN and
SVM have been extensively used in tourism demand forecasting since the 1990s and have
shown significant forecasting capability for tourism forecasting [5,31,32], these methods
suffer from the lack of memory for long-term dependencies and the ability to forecast
accurately. Given those limitations, researchers have recently started exploring advanced
versions of neural networks—for instance, RNN, and LSTM and its associated variants—to
forecast tourism demand since these can remember long-term dependencies. DLM with
attention mechanisms for tourism demand forecasting was proposed by Law et al. [6], who
achieved the best accuracy in forecasting Macau tourism demand. Attention mechanism
automatically examines which feature is more relevant for the forecasting in the input data.
On this basis, they assigned more significant weight to those features that significantly
contribute to forecasting than those that were not of much importance.

Recently, decomposition methods have received significant attention from tourism
researchers who have started incorporating decomposition methods with DNN to improve
accuracy [15] further. Decomposition methods split the data into sub-datasets which
reduces the model complexity without adding more data. Decomposition can be generated
using filters, wavelet transformation, empirical mode decomposition (EMP) and “Seasonal
and Trend Decomposition using Loess” (STL). Chen and Wu [33] applied EMP on tourist
arrival in Taiwan. Singular Spectral Analysis (SSA) was used by Hassani et al. [34] for
US tourist arrival and claimed increased performance. Silva et al. [35] used SSA and
other decomposition with the neural network to forecast tourism demand for 10 European
countries, namely Germany, Greece, Spain, Italy, Cyprus, Netherland, Austria, Sweden, and
the UK. Similarly, Zhang et al. [15] used STL decomposition method with “duo attention
deep learning model” (DADLM) and proposed a novel framework for tourism demand
forecasting as STL-DADLM. STL decomposes the data into three sub-series, namely—
seasonality, trend, and residual. These components provide additional stationary data for
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forecasting and further improves the overall accuracy. Overfitting problem is a general
problem in deep learning models, in which a model performs better on training data, but
it does not generalize well on unseen and first-hand (new) data. Forecasting quality in
tourism is affected by two factors: data volume, which is limited for complex deep learning
model; and inclusion of irrelevant explanatory variables such as a lot of SII indices during
model building [15]. To overcome these issues, the authors in [15] used STL decomposition
for a limited data. The first layer performs feature selection without lag order selection,
and the second layer does the reverse. This dual attention layer processes the equal amount
of data by two feature engineering activities in parallel for explanatory variables and lag
order in DADLM.

This section briefly outlines the review of the foundation literature about tourist
arrivals and its forecasting methods, various models to forecast tourists’ arrival, and
related data. The existing literature indicates that previous researchers have used many
methods to forecast the influx of the tourists, such as, time series-based method (ARIMA),
econometric based model (e.g., error correction model or vector autoregression model, etc.),
and most popular artificial intelligence-based methods (such as SVM, ANN, or DNN). The
literature in the context of DNN highlights that previous methods/models have included
LSTM network for tourist arrival forecasting. Information in the LSTM network traverses
once during training from left to right. However, [25] shows that the BiLSTM network
spans the input twice: once from backward to forward and then forward to backward
during training, which provides additional context for forecasting and reduces the error
rate by 37.78% compared with the LSTM network for time series problems. A comparative
study has been made for ARIMA, LSTM, and BiLSTM in financial time series forecasting
that further shows the improved forecasting performance of the BiLSTM network [18].
Joo and Choi [23] also showed the forecasting performance of LSTM and BiLSTM in
case of stock prediction and shows the effectiveness of BiLSTM over the simple LSTM
network. Addressing this research gap in tourism research and the dearth of studies in the
literature, this study explores a BiLSTM network with an attention mechanism for tourism
demand forecasting, which overcomes the limitations of the previously existing models
in tourism research. Our study used a BiLSTM network that can remember information
from both forward and backward directions with attention mechanism along with the STL
decomposition method discussed in [15] to forecast tourist arrival that further achieved
better accuracy than LSTM network.

3. Method

This research introduces the STL-BiLSTM deep neural network that achieves high
accuracy in tourist demand forecasting. This section presents a detailed explanation of the
proposed network and formulation of the tourist demand forecasting model.

3.1. Problem Formulation

In tourism research, time-series study uses several factors, for instance, determinants
and indicators, to forecast future tourism arrival. Tourism demand forecasting uses several
multivariate time series factors from past data to forecast future tourism arrival volume.

Suppose vector [Yt]t=1
T = (Y1, Y2, Y3, . . . , Yt) represents the time series values for the

tourism arrival volume at T time steps and the corresponding feature vector that forecast
arrival time series data YT is [Xt]t=1

T = (X1, X2, X3, . . . , Xt). T is the total time steps, such
as the number of years, number of months, or number of days in the dataset. At time
steps T, Xt represents the various multivariate tourism factors such as the SII indicator,
determinants; and Yt represents tourist arrival.

Tourism demands forecasting takes tourism arrival [Yt]t=1
T and multivariate factors

in time series [Xt]t=1
T as an input to forecast the future tourist arrival volume [Yt]t=T+1

T+θ

with function Φ forecasting future tourist arrival for future time steps θ.

[Yt]t=T+1
T+θ = Φ([Xt]t=1

T , [Yt]t=1
T), (1)
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where θ is the future time steps that will be forecast by a function Φ, since forecasting
tourist demand is a nonlinear problem, function Φ is a nonlinear function providing the
relationship between tourist arrival input factors and output tourist arrival volume.

3.2. STL Decomposition

Data were collected from [15] and observed to have random variations in the arrival
volume series [Yt]t = 1T. STL plays an important role in “time series analysis” when
considerable seasonality is present in the data [15]. Seasonal smoothing is used to smooth
the cyclic sub-series to determine the seasonal component. Further, lowpass smoothing is
used to smooth out the estimated seasonal component. In the final stage, trend smoothing
is used to find an estimation of the trend component. This process is repeated several times
to improve the accuracy of the estimations of the components.

At a given time, step t, tourism arrival, can be calculated as a sum of the three series
as in Equation (2).

[Yt]t=1
T = [Pt]t=1

T + [St]t=1
T + [Rt]t=1

T , (2)

where:

Trend = [Pt]t = 1T
Seasonality= [St]t = 1T
Residual or Noise = [Rt]t = 1T
Total arrival Volume = [Yt]t = 1T

After STL decomposition, the trend series represent a global trend pattern, which is
the stationary series throughout the series; and the seasonality as a constant component
since it repeats with the same cycle. After applying STL, the total tourist arrival volume
was decomposed into trend, seasonality, and residual at given time t. Forecasting of the
total tourism arrival is calculated separately for trend and residual through a deep learning
model. The seasonality component was computed according to the forecasting period with
the persistence method. As a result, the tourism arrival volume was forecasted as three
separate simple series, which achieves high accuracy without having additional data and
avoiding the overfitting problem.

3.3. Data Standardization

Data standardization was applied to bring all features into the same range by scaling
the data so that the features have zero mean and unit variance, as in Equation (3).

x′ =
x− µ

σ
. (3)

where µ is the mean, σ is the standard deviation and x is the feature vector.

3.4. LSTM Deep Neural Networ k

Since traditional neural networks cannot remember the previous state of the input,
researchers proposed RNN, which has been shown to remember long-term dependencies.
However, in reality, RNN fails because during back-propagation, network weights begin
to vanish or explode, making the network unstable. Hochreiter and Schmidhuber [36]
proposed a LSTM network, which addresses the long-term dependencies by introducing
the cell state in the network, which stores the temporal information and three gates—the
forget gate, input gate, and output gate through which information flows. LSTM network
encodes inputs [Xt]t=1

T to the set of hidden states [ht]t=1
T The forget gate ft, in Equation (4)

decides which information needs to be excluded, looking at the previous hidden states
ht−1 and the current state xt [37]. In Equation (5), the following input gate decides which
information needs to be stored in the cell state. The input gate has two layers: the first
comprises sigmoid layers that determine what value needs to be updated and the second
layer is tanh in Equation (6), which creates a vector of candidate values Ct that can be
added to the cell state [30,38]. These two layers are combined to create an update to the cell
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state. The last gate is an output gate ot, in Equation (7) that dictates which information will
be output. The output gate outputs the info in two layers: the first sigmoid layer decides
which part of the cell state is to be output. Equation (8) shows the updated cell, which is the
sum of the previous cell state’s multiplication and the forget gate, and the multiplication
of the input and the current cell state [36]. Then, the cell state is passed through the tanh
function (see Equation (9)) and is multiplied with the sigmoid output.

ft = σ(W f [ht−1, xt] + b f ), (4)

it = σ(Wi[ht−1, xt] + bi), (5)

Ct = tanh(Wc[ht−1, xt] + bc), (6)

ot = σ(Wo[ht−1, xt] + bo), (7)

Ct = ft × Ct−1 + it × Ct, (8)

ht = ot × tanh(Ct). (9)

In Equations (4)–(9), σ and tanh are the activation functions that define a neuron’s
output in the neural network and W and b are the network parameters [6].

3.5. BiLSTM Deep Neural Network

In the study, we have combined a BiLSTM network with an attention mechanism.
The BiLSTM network processes input in two ways: first, it processes information from
the backward to forward direction, and then it processes the same input from forward to
backward. The BiLSTM approach differs from unidirectional LSTM because the network
runs the same input twice, i.e., from forward to backward and backward to forward
direction, which preserves the extra context information that can be very useful in tourism
demand forecasting to improve the network accuracy further. Two hidden states in the
network are able to preserve information from the past and future. We used the STL
decomposition implemented in [15] to make a comparison with our BiLSTM network.
STL decomposition divides the original time series data into three different series: trend,
seasonality, and a residual component. Decomposing the data provides a useful abstract
model for thinking about time series generally and for better understanding of the problem
during analysis and forecasting. The network takes input as the arrival volume and SII
indicators that form a multivariate problem to forecast arrival volume in the future. In
Figure 1, dense is a fully connected neural network layer, and softmax is a probability
function that gives the probability. The network takes the arrival volumes, and SII factors
as inputs and then attention is applied on those inputs. The inputs are then applied to the
Bi-LSTM network, where the outputs from the LSTM network are fed into the dense layer
in vector format. Outputs obtained from the dense layer are passed to the outputs layer,
ultimately resulting in the arrival volume.

3.6. Attention Mechanism

Two input attention layers are used, one for features and one for the time step dimen-
sion. The equation below shows the attention layers on input XT [15]. In Figure 1, after
input feature, attention mechanism is applied before the BiLSTM layer. This attention layer
assigns more weights to those features that are important in tourism forecasting and fewer
weights to those features that are not as important. After attention is applied, such features
are sent to the dense layer (on the right side of Figure 1) where the network learns the
relationships among different features. In the next step, the softmax function is applied,
which provides the probability, and then multiplication is used with the feature vectors.
The output from this layer is then sent to the BiLSTM network, where the network learns
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the long-term dependencies and is then sent to the dense layer (left side in the figure) that
provides the output as tourist arrival.

AT = softmax(W T× [[Xt]t=1
T ]T+bT) × [[Xt]t=1

T ]T , (10)

AT = softmax(W T× [[Xt]t=1
T ]T+bT) × [[Xt]t=1

T ]T , (11)

where input XT contains the T time steps of the F features in a vector form. Equation (8)
represents the attention in the time step dimension. The softmax function produces a F× T
dimension vector, which is a multiplication of time step T and n features vector F in the
input vector. Equation (9) represents the attention to the feature vector that produces the
T× F vector after the softmax layer. WT, WF, bT, and bF are the parameters that are learned
during the training.

Figure 1. BiLSTM network using attention mechanism.

Figure 1 presents a typical architecture used in this study to train the BiLSTM network.
The first layer in the figure is the input layer, which takes the arrival volume and SII
indicators as input in the network. In the second layer, attention mechanism is applied
on the input. The attention mechanism assigns more to those input values which play
pertinent part in prediction. The right side of Figure 1 exhibits the working of the attention
mechanism, as in this layer input goes to the dense layer (also known as the fully connected
layer) and output from this layer goes to the softmax function, which is a probability
function. After that, this output is multiplied with input values, which assigns weight
to input values. Further, afterwards the attention layers go to the BiLSTM layer, which
processes the input from backward and forward direction to get the better representation
of data as compared to the standard LSTM network. From there, data goes to a fully
connected layer and finally it goes to the output layer, which gives the output.

4. Empirical Study

In this empirical study, we forecast the tourist arrival in Hong Kong for the following
reasons: (a) Hong Kong is an attractive destination for tourists; (b) a large amount of data
is available pertaining to foreign tourist arrival; and (c) there is high seasonality in the data.
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Further, tourism contributes significantly to the Hong Kong economy [39,40]. Therefore,
accurate forecasting of tourist arrival is crucial for the government and other stakeholders
to develop strategic policies to attract foreign tourists.

4.1. Data Collection

We used the “HK2012–2018” dataset [15], which contains SII indicators collected from
Google trends and tourist arrival volume collected from the Hong Kong Tourism Board
(HKTB) [21] website that has records of monthly data of tourist arrival from a range of
countries for up to 72 months. Following Zhang et al. [15], SII indicators were collected
for six major countries: Australia, Philippines, Singapore, Thailand, United Kingdom,
and United States. Although they are major sources of tourists, countries such as Japan,
Taiwan, and South Korea were excluded because English search keywords were limited in
Google for those countries. The authors in [15] defined several seed keywords (see Table 1)
for the SII indicators in the chosen market within seven categories: recreation, shopping,
lodging, tour, clothing, transportation, and dining. The authors recognized tourism-related
keywords from the initial seed search keyword and collected data for each search query.
They collected 96 keywords on the basis of their relevance for the chosen six countries in
their study. Finally, with the help of a Python program they collected the SII data from
Google trend.

Table 1. SII seed search keywords under the study.

Head Keywords

Recreation Hong Kong night clubs, Hong Kong night view, Hong Kong markets,
Shopping Hong Kong shopping, shopping center in Hongkong,
Tourism Hong Kong tour, Hong Kong travel, Outing in Hong Kong, Hong Kong visit
Lodging Hotels in Hong Kong, budgeted accommodation Hong Kong
Clothing Weather in Hong Kong, Temperature in Hong Kong

Transportation Public transportation in Hong Kong, Hong Kong flights
Dining Dining Hong Kong food, Hong Kong restaurant lodging

4.2. STL Decomposition and Training

In the next step, STL decomposition was applied to the input data for all six chosen
source markets. Trend, seasonality, and residual series were generated: Trend represents the
global trend pattern, seasonality shows the constant component, and residual represents
the local sensitivity for each country visiting Hong Kong. Before sending the trend and
residual series to the BiLSTM network, we applied data standardization on all features
to convert them to the same scale. The first row in Figure 2 depicts the general trend of
tourist arrivals in Hong Kong from the United Kingdom and Australia—the y axis in the
graph shows the total number of tourist arrivals, and the x-axis shows the year (the other
source markets are not shown to save space). Cyclic trends can be observed in all source
markets coming to Hong Kong. The three decomposed series for the United Kingdom and
Australia are shown in Figure 2.

The trend series represents better stability as compared to the original arrival volume
for the United Kingdom and Australia market demand in Hong Kong. The seasonality
series show the constant cycle that occurs in specific periods. Local sensitivity represents
the occasional and irregular events such as sudden earthquakes, coronavirus pandemic,
and other events that are not known in advance, known as irregular events or residual.
In Figure 2, the residual is shown for the United Kingdom and Australia. We used trend
series, which represents the overall trend of tourist arrival after decomposition and local
sensitivity events in the neural network training process. For the seasonality we used
a persistence method. After STL, the total arrival volume is equal to the sum of trend,
residual, and seasonality, as shown in Equation (3).
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Figure 2. Trend, residual/error, and seasonality component after STL process.

4.3. Performance Evaluation

To evaluate the performance of the proposed method compared with other methods
for forecasting tourism demand, a walk-forward validation set up was used in this study to
simulate the real-world environment. This section describes the validation steps and next,
compares the one-step forecasting results for all methods. In real-word use, we would like
to re-train the model again as new data is available so that the model has the opportunity
to make better forecasts in each time step. We evaluate our model with the assumption
that we first select the minimum number of input values to train the model, which is taken
to be the window width if we use a sliding window.

Next, we have to decide whether the model will be trained on all data if it is available
or trained on the latest available data. When an appropriate configuration has been chosen
for the test setup, the model can be trained and evaluated in the following four steps:

• Select minimum samples in the window used to train the model;
• Make forecast for the next time step;
• Evaluate prediction;
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• Increase window size to add the known values and repeat from step 1.

In the walk-forward validation setting, new arrival volume is available as input for
the next month’s forecast as in a real-world scenario. For this validation process, the
persistence method, ARIMA method, and DADLM [15] methods (with and without STL)
have been applied to serve as baseline models.

4.4. Methods Investigated

In our study, following the validation setup, Persistence, ARIMA, DADALM, and
STL-DADLM methods were used as baseline methods to compare with the forecasting
performance of our STL-BiLSTM network. The Persistence method uses the value at the
previous time step to forecast the next time step’s value. ARIMA is a generalization of
simple Auto-Regressive Moving Average, and DADLM is a deep learning-based method.

The ARIMA and Persistence model uses the arrival volumes for forecasting. These
models take the past data to forecast the future tourist arrival volume. In contrast, DADLM
and the BiLSTM network take the arrival volume and SII indicator data as their input to
forecast the next month’s arrival volume. DADLM and the BiLSTM network take the input
in three dimensions: the first dimension is the number of training examples in the network,
the second is the number of time steps, and the third dimension is the number of features,
i.e., SII data and arrival volume for the corresponding months. The STL-BiLSTM network
takes trend and residual series during training. For the one-step forecasting, data from
2012 to 2016 (80%) data was used as training data. The rest of the data from 2016 to 2018
(20%) data was used in step-by-step performance with walk-forward validation for all six
countries to determine the six compared methods’ performance. We divided all the data
for training and test data using slicing operation in NumPy, first 48 months data was used
as the training set and the last 12 months data was used as the test set.

4.5. Sensitivity Analysis of Hyper-Parameters

The ARIMA model parameters are searched through the grid search, which gives
the best ARIMA model for tourist demand forecasting. In our study, we set the range
for p Є[0, 1, 2, 4, 6, 8, 10], for, d (0, 2) and for q (0, 2) as in the work of [41], where p is
the number of lag observations in the model also known as lag order, d is the degree of
differencing, i.e., how many times a number of observations are being differenced; and q is
the moving average of observation also called the window size of the moving average. For
the Singapore dataset, the best values of p, d, q for the ARIMA model are (0, 0, 2), which
were attained through grid search.

The BiLSTM network has a number of hyper-parameters such as the number of
hidden layers, number of neurons in the LSTM cell, and activation. The dense layer
is a neural network that also has hyper-parameters such as, number of hidden layer,
number of neurons in the hidden layer, and activation function. When training a neural
network, hyper-parameters include the number of epochs, batch size number, learning rate
networks, and number of networks. Hyper-parameters of a neural network are important
since they control the overall behavior of the training algorithm and have a notable impact
on the performance of a model. Hyper-parameter tuning is a process to find the optimal
combination of hyper-parameter that minimizes the loss function to give better results. To
address the overfitting issue we used a dropout layer in the network. As the dropout layer
automatically shuts some of the neurons in the network during training and therefore, it
prevents the network from having an overfitting issue.

We set different values for all hyper-parameters and completed the hyper-parameters’
sensitivity analysis to identify the optimal parametric values for the proposed BiLSTM
model. Table 2 demonstrates the list of hyper-parameters of the BiLSTM method for
sensitivity analysis in case of Singapore and the United Kingdom.

Figures 3 and 4 demonstrate the hyper-parameters sensitivity analysis for Singapore
and the United Kingdom and demonstrate the effect of changes of hyper-parameter values
on RMSE, MAE, and MAPE on the y-axis visually.
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In Figures 3 and 4, the first rows show the number of epochs on the x-axis and
performance values on the y-axis. In the United Kingdom case, the network can be
observed to have achieved optimum values in 100 epochs, and for Singapore, optimal
values have been achieved in 130 epochs. The second rows in both figures show the batch
size number on the x-axis and changes in performance measures on the y-axis—the optimal
value for Singapore is 4 and is 6 for the United Kingdom. However, the curve for Singapore
and the United Kingdom shows a steep increase after batch sizes 4 and 6, respectively, and
then a sudden steep decrease after 12. The third rows show the changes in all performance
measures versus changes in the LSTM units. For Singapore, after 128 units, there is a steep
increase in RMSE values compared to the MAE and MAPE but for the United Kingdom,
RMSE increases, however MAE and MAPE values decrease for higher values of LSTM.
The last rows in both figures show the number of dense units or hidden units in the dense
layer (fully-connected layer) on the x-axis and corresponding changes in RMSE, MAE, and
MAPE values on y-axis. In the case of the dense unit for both countries, the best result is
obtained at 256 units. However, the United Kingdom graph shows almost the same zigzag
curve for all performance metrics compared to Singapore. Hence, in Figures 3 and 4, the
best combination of hyper-parameter for Singapore and the United Kingdom are attained
through grid search and are (130, 128, 4, 256), (100, 64, 6, 256), respectively. The first values
are the number of epochs; the second values are the numbers of LSTM units in the BiLSTM
network; the third values show the batch number size, and the last values indicate the
number of hidden units in the dense layer.

Table 2. Hyper-parameter list of the BiLSTM method used in the sensitivity analysis.

Country RMSE MAE MAPE Epochs LSTM
Unit

Dense
Unit

Batch
Size

Number

Singapore

7156.45 6545.56 7.45 150 256 64 2

7020.8 6410.96 7.22 130 128 256 4

7126.45 6734.56 8.49 80 64 128 6

7168.45 6674.56 8.31 100 32 32 12

7234.56 6845.45 8.89 50 16 16 8

7285.32 6898.78 9.11 30 8 8 10

United
Kingdom

1555.65 1288.87 2.99 150 256 32 2

1546.76 1295.21 3.1 130 128 128 4

1538.66 1282.85 2.83 100 64 256 6

1610.45 1334.34 3.78 80 32 64 8

1676.89 1393.23 4.21 50 16 8 10

1570.38 1350.65 3.76 30 8 16 12

Similarly, for all countries, optimal values of hyper-parameters have been attained
through grid search in our proposed method. In the experiments for all methods including
DADLM, STL-DADLM, BiLSTM, and STL-BiLSTM, Tables 3–5 exhibit the best values that
have been achieved after grid search. Equations (12)–(14) show the performance measures
used in this study.

4.6. Optimization and Performance Metrics

An Adam optimizer used for the optimization of the network parameters was pro-
posed for the attention-based BiLSTM network. Adam optimizer is preferred because
it converges faster than other stochastic optimization methods [42,43]. Mean absolute
percentage error is used as a loss function in our study as well as in [15] since it pro-
vides a percentage error that is easy to interpret. All the experiments were performed on
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Windows 7 machine with 4 Gb RAM. The Tensorflow library is used to implement deep
neural network.

We obtained results for all the six visitor countries, average error rate for RMSE in
Equation (12), MAE in Equation (13), and MAPE in Equation (14). Evaluation metrics were
calculated using actual tourism arrival and forecasted tourism arrival for all six countries.

RMSE =

√√√√ 1
N

N

∑
i=1

(yactual − ypred)
2, (12)

MAE =
1
N

N

∑
i=1
|yactual − ypred|, (13)

MAPE =
1
N

N

∑
i=1

(yactual − ypred)

yactual × 100%. (14)

Tables 3–5 show the results of baseline methods and the proposed method (each with
and without STL). ARIMA and Persistence baseline methods have been implemented
according to [44,45] for our study. DADLM and STL-DADLM baseline methods were
implemented based on the instruction in [15] and in their GitHub profile. Bold values
show the better values as compared to the other methods, and the tables show that the
BiLSTM network achieves better accuracy than DADLM for all six sources in all three
metrics used in this study, which demonstrates that the BiLSTM network is able to utilize
the additional context information achieved through processing the same input twice from
forward to backward and backward to forward, leading to better performance [46,47]. Our
decomposition-based method with the combination of bidirectional LSTM network, known
as the STL-BiLSTM network, also outperforms the STL-DADLM method.

Figure 3. Cont.
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Figure 3. Sensitivity analysis of different parameters in case of Singapore arrivals in Hong Kong.

Table 3. RMSE comparison for selected forecasting methods for six source countries.

Models Australia Singapore Thailand United
States

United
Kingdom Philippines

Persistence 13,660.56 22,602.51 15,610.02 30,734.47 16,904.61 12,721.11

ARIMA [14] 12,990.33 20,052.55 14,197.85 27,348.02 15,906.04 11,353.48

DADLM (LSTM) [32] 11,373.59 18,126.55 10,669.45 26,243.57 10,998.21 10,124.48

STL-DADLM
(LSTM) [32] 2187.67 8429.56 4043.56 8412.45 2629.81 6745.43

BiLSTM 9524.56 17,399.61 8872.67 25,233.69 10,445.41 10,767.56

STL-BiLSTM [ours] 1989.87 7020.20 3854.56 7260.22 1538.66 6478.67

Table 4. MAE comparison for selected forecasting methods for six source countries.

Models Australia Singapore Thailand United
States

United
Kingdom Philippines

Persistence 10,329.63 18,129.66 13,731.00 13,394.43 7869.87 10,714.66

ARIMA [14] 6851.40 14,527.07 12,043.80 12,043.80 6611.22 8622.58

DADLM (LSTM) [32] 8980.79 12,499.58 7543.36 24,450.54 8567.53 8088.05

STL-DADLM
(LSTM) [32] 1823.19 7251.32 2067.43 7136.69 2327.16 6170.12

BiLSTM 7560.44 12,110.71 6534.78 23,234.56 8145.45 6770.45

STL-BiLSTM [Ours] 1703.65 6410.96 1934.34 6251.36 1282.85 5898.06
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Figure 4. Sensitivity analysis of different parameters in case of United Kingdom arrivals in Hong Kong.
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Table 5. MAPE comparison for selected forecasting methods for six source countries.

Models Australia Singapore Thailand United
States

United
Kingdom Philippines

Persistence 22.20 30.62 31.71 14.25 16.30 18.82

ARIMA [14] 15.59 25.01 21.89 14.02 15.06 14.75

DADLM(LSTM) [32] 18.34 17.6 14.91 27.49 17.49 13.21

STL-DADLM
(LSTM) [32] 3.98 9.12 7.23 6.28 5.23 9.13

BiLSTM 15.89 16.61 14.78 24.56 14.76 11.65

STL-BiLSTM [Ours] 3.56 7.22 6.67 5.67 2.83 8.67

5. Implications, Conclusion, and Limitation of the Study
5.1. Managerial Implication and Conslusion

The findings of the current study and the proposed model can be important to pol-
icymakers, proprietors, and managers in the tourism industry. The study presents a
model by integrating BiLSTM and SII index data with attention mechanism and offers a
robust method to forecast the tourist arrival with relatively higher accuracy [48]. There-
fore, with accurate information in hand, the government and other stakeholders can plan
the development of infrastructure, transportation, hotel booking and other resources in
advance [49–51]. Moreover, the results will also enable managers/proprietors to design
specific marketing strategies and communication messages to evoke a positive response
from the tourists.

This study presents an attention-based BiLSTM network to enhance overall accuracy
in forecasting tourist arrivals and their demands. For a case study, we used six countries—
Australia, the Philippines, Singapore, Thailand, the United Kingdom, and the United
States —as sources for forecasting tourism demand for Hong Kong. At the same time, we
addressed the limitations of a standard LSTM network, which can only remember from left
to right. Our proposed network can remember from left to right and right to left, which
adds extra context to the network that can learn better representation for forecasting and
improved network performance accuracy in tourism forecasting in the case of Hong Kong.

More specifically, by integrating attention mechanism and BiLSTM network and SII
index data with tourist arrival, the study identifies individual SII index variables with the
help of attention mechanism that affects the forecasting performance of BiLSTM network.
Attention mechanism assigns more weights to those individual variables that empirically
demonstrate a strong connection in forecasting, leading to improved overall forecasting
performance of the BiLSTM network.

The proposed methods can benefit stakeholders involved in the tourism industry to
make decisions and planning for their businesses. We compared ARIMA, Persistence, and
DADLM methods (with and without STL) for all six countries. The proposed method
outperformed all the other compared methods for all source markets except for Thailand
with STL decomposition but, without STL, the method outperformed all methods for all
six countries. This study, therefore, makes an essential contribution to tourism demand
forecasting.

We present a bidirectional network that works better than the univariate LSTM net-
work in Hong Kong tourism demand forecasting. To search for the best hyperparameter
that can give the best-optimized parameter is a very complex and costly task in the case of
deep neural networks. Future work will focus on identifying a bigger range of values in the
hyper-parameter tuning process to achieve a better forecasting stability. Due to the ongoing
coronavirus pandemic, the tourism industry is affected the most by the travel restrictions.
The post-pandemic situation for the tourism industry will be dependent on government
regulations and safety measures. It will depend on the government and tourism practi-
tioners to respond after the post-Covid-19 crisis to attract tourists. Forecasting tourism
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demands will also depend on several factors, including government policies, tourists’
environmental attitude and information [52]. Therefore, there will be a need to include
those factors in the study to forecast tourism demand accurately.

5.2. Limitations and Direction for Future Research

In designing this study, the authors have attempted to be methodological and scientific,
yet this study has some limitations. Future studies may conceptualize in a manner that
they can address these limitations. Limited hyper-parameters settings may have affected
the generalization of the archived results, future researchers can attempt to diversify their
study by including more values in hyper-parameters tuning. The second limitation is that
this study presents the proposed methods based on the tourists’ arrival in Hong Kong, thus,
results may not generalize for other countries when replicating this study. Therefore, future
researchers can include more countries and look for the effect of the proposed method
for more than one country. Another limitation is that this study presents the sensitivity
analysis for hyper-parameters for Singapore and United Kingdom. Future researchers can
analyze all countries and see the effect model when changing hyper-parameters. Lastly,
the current study has used a single method, i.e., LSTM, as the benchmark, hence, future
researchers may compare the proposed method with a combination of Empirical Mode
Decomposition (EMD) and BiLSTM or GRA-BiLSTM, which are quite popular methods of
predictions.
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