Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization
3.2. Sensing Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, S.; Liu, Y. Gas sensors for volatile compounds analysis in muscle foods: A review. TrAC Trends Anal. Chem. 2020, 126, 115877. [Google Scholar] [CrossRef]
- Macías Macías, M.; Agudo, J.E.; García Manso, A.; García Orellana, C.J.; González Velasco, H.M.; Gallardo Caballero, R. A Compact and Low Cost Electronic Nose for Aroma Detection. Sensors 2013, 13, 5528–5541. [Google Scholar] [CrossRef] [Green Version]
- Lukic, I.; Plavsa, T.; Sladonja, B.; Radeka, S.; Persuvric, Đ. Aroma compounds as markers of wine quality in the case of malvazija istarska young wine. J. Food Qual. 2008, 31, 717–735. [Google Scholar] [CrossRef]
- García, M.; Aleixandre, M.; Gutiérrez, J.; Horrillo, M.C. Electronic nose for wine discrimination. Sens. Actuators B Chem. 2006, 113, 911–916. [Google Scholar] [CrossRef]
- Nemufulwi, M.I.; Swart, H.C.; Mhlongo, G.H. Evaluation of the effects of Au addition into ZnFe24 nanostructures on acetone detection capabilities. Mater. Res. Bull. 2021, 142, 111395. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef] [PubMed]
- Zappa, D. Low-Power Detection of Food Preservatives by a Novel Nanowire-Based Sensor Array. Foods 2019, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Al-Hardan, N.H.; Abdullah, M.J.; Abdul Aziz, A.; Ahmad, H.; Low, L.Y. ZnO thin films for VOC sensing applications. Vacuum 2010, 85, 101–106. [Google Scholar] [CrossRef]
- Shingange, K.; Swart, H.C.; Mhlongo, G.H. Design of porous p-type LaCoO3 nanofibers with remarkable response and selectivity to ethanol at low operating temperature. Sens. Actuators B Chem. 2020, 308, 127670. [Google Scholar] [CrossRef]
- Chen, N.; Li, Y.; Deng, D.; Liu, X.; Xing, X.; Xiao, X.; Wang, Y. Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sens. Actuators B Chem. 2017, 238, 491. [Google Scholar] [CrossRef]
- Liu, F.; Chu, X.; Dong, Y.; Zhang, W.; Sun, W.; Shen, L. Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B Chem. 2013, 188, 469–474. [Google Scholar] [CrossRef]
- Sutka, A.; Zavickis, J.; Mezinskis, G.; Jakovlevs, D.; Barloti, J. Ethanol monitoring by ZnFe2O4 thin film obtained by spray pyrolysis. Sens. Actuators B Chem. 2013, 176, 330–334. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Sun, H.; Sun, P.; Liang, X.; Liu, F.; Hu, X.; Lu, G. Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl. Mater. Interfaces 2015, 7, 15414. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Song, X.; Wang, X.; Li, X.; Tan, Z. Annealing temperature-dependent porous ZnFe2O4 olives derived from bimetallic organic frameworks for high-performance ethanol gas sensing. Mater. Chem. Phys. 2020, 241, 122379. [Google Scholar] [CrossRef]
- Li, K.; Luo, Y.; Gao, L.; Li, T.; Duan, G. Au-Decorated ZnFe2O4 Yolk-Shell Spheres for Trace Sensing of Chlorobenzene. ACS Appl. Mater. Interfaces 2020, 12, 16792–16804. [Google Scholar] [CrossRef] [PubMed]
- Kadu, A.V.; Jagtap, S.V.; Chaudhari, G.N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Curr. Appl. Phys. 2009, 9, 1246–1251. [Google Scholar] [CrossRef]
- Nemufulwi, M.I.; Swart, H.C.; Mhlongo, G.H. A comprehensive comparison study on magnetic behaviour, defects-related emission and Ni substitution to clarify the origin of enhanced acetone detection capabilities. Sens. Actuators B Chem. 2021, 339, 129860. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Chen, Y.; Chen, J.; Gong, Y.; Han, N. Abnormal n-p-n type conductivity transition of hollow ZnO/ZnFe2O4 nanostructures during gas sensing process: The role of ZnO-ZnFe2O4 hetero-interface. Sens. Actuators B Chem. 2017, 253, 144–155. [Google Scholar] [CrossRef]
- Li, Y.; Luo, N.; Sun, G.; Zhang, B.; Ma, G.; Jin, H.; Wang, Y.; Cao, J.; Zhang, Z. Facile synthesis of ZnFe2O4/α-Fe2O3 porous microrods with enhanced TEA-sensing performance. J. Alloy. Compd. 2018, 737, 255–262. [Google Scholar] [CrossRef]
- Pan, X.; Liu, X.; Bermak, A.; Fan, Z. Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors. ACS Nano 2013, 7, 9318–9324. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, T.; Zhou, Y.; Meng, C.; Zhu, W.; Liu, L. TiO2-Based Nanoheterostructures for Promoting Gas Sensitivity Performance: Designs, Developments, and Prospects. Sensors 2017, 17, 1971. [Google Scholar] [CrossRef] [PubMed]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Mane, S.M.; Nimbalkar, A.R.; Go, J.S.; Patil, N.B.; Dhasade, S.S.; Thombare, J.V.; Burungale, A.S. NO2 sensing properties of 3D flower-like ZnO nanostructure decorated with thin porous petals synthesized using a simple sol--gel drop-casting method. Appl. Phys. A Mater. Sci. Technol. 2021, 127. [Google Scholar] [CrossRef]
- Wu, J.; Gao, D.; Sun, T.; Bi, J.; Zhao, Y.; Ning, Z.; Fan, G.; Xie, Z. Highly selective gas sensing properties of partially inversed spinel zinc ferrite towards H2S. Sens. Actuators B Chem. 2016, 235, 258–262. [Google Scholar] [CrossRef]
- Darshane, S.L.; Deshmukh, R.G.; Suryavanshi, S.S.; Mulla, I.S. Gas-Sensing Properties of Zinc Ferrite Nanoparticles Synthesized by the Molten-Salt Route. J. Am. Ceram. Soc. 2008, 91, 2724–2726. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Zhang, Y.; Li, D.; Compton, R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Barreca, D.; Rizzi, G.A.; Tondello, E. A chemical vapour deposition route to MoO3-Bi2O3 thin films. Think Solid Films 1998, 333, 35–40. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Cerneavschi, A.; Ivanov, M.; Golovanov, V.; Cornet, A.; Morante, J.; Cabot, A.; Arbiol, J. The influence of film structure on In2O3 gas response. Thin Solid Films 2004, 460, 315–323. [Google Scholar] [CrossRef]
- Kim, D.; Jung, J.; Choi, S.; Jang, J.; Koo, W.; Kim, I. Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO2 sensing. Sens. Actuators B Chem. 2018, 273, 1269–1277. [Google Scholar] [CrossRef]
- Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M. Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing. Angew. Chem. 2004, 116, 4445–4449. [Google Scholar] [CrossRef]
- Gadkari, A.B.; Shinde, T.J.; Vasambekar, P.N. Ferrite Gas Sensors. JSEN 2011, 11, 849–861. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, B.; Zhang, L.; Fan, J.; Yu, J. 0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. J. Colloid Interface Sci. 2021, 600, 898–909. [Google Scholar] [CrossRef]
- Ménil, F.; Susbielles, M.; Debéda, H.; Lucat, C.; Tardy, P. Evidence of a correlation between the non-linearity of chemical sensors and the asymmetry of their response and recovery curves. Sens. Actuators B Chem. 2005, 106, 407–423. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Xiaowei, H.; Zhihua, L.; Xiaobo, Z. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef]
- Cozzolino, D. Recent Trends on the Use of Infrared Spectroscopy to Trace and Authenticate Natural and Agricultural Food Products. Appl. Spectrosc. Rev. 2012, 47, 518–530. [Google Scholar] [CrossRef]
- Ocón, E.; Gutiérrez, A.R.; Garijo, P.; Santamaría, P.; López, R.; Olarte, C.; Sanz, S. Factors of Influence in the Distribution of Mold in the Air in a Wine Cellar. J. Food Sci. 2011, 76, M169–M174. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Minagawa, T.; Ochiai, Y. Augmented taste of wine by artificial climate room. In Proceedings of the 10th Augmented Human International Conference; ACM: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- Bläser, G.; Rühl, T.; Diehl, C.; Ulrich, M.; Kohl, D. Nanostructured semiconductor gas sensors to overcome sensitivity limitations due to percolation effects. Phys. A Stat. Mech. Its Appl. 1999, 266, 218–223. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef]
- Arshak, K.; Gaidan, I. Gas sensing properties of ZnFe2O4/ZnO screen-printed thick films. Sens. Actuators B Chem. 2005, 111–112, 58–62. [Google Scholar] [CrossRef]
- Yin, Y.; Shen, Y.; Zhou, P.; Lu, R.; Li, A.; Zhao, S.; Liu, W.; Wei, D.; Wei, K. Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl. Surf. Sci. 2020, 509, 145335. [Google Scholar] [CrossRef]
- Arshak, K.; Gaidan, I. Development of an array of polymer/MnO2/Fe2O3 mixtures for use in gas sensing applications. Sens. Actuators B Chem. 2006, 118, 386–392. [Google Scholar] [CrossRef]
- Kortidis, I.; Lushozi, S.; Leshabane, N.; Nkosi, S.S.; Ndwandwe, O.M.; Tshilongo, J.; Ntsasa, N.; Motaung, D.E. Selective detection of propanol vapour at low operating temperature utilizing ZnO nanostructures. Ceram. 2019, 45, 16417–16423. [Google Scholar] [CrossRef]
- Song, X.; Meng, Y.; Chen, X.; Sun, K.; Wang, X. Hollow NiFe2O4 hexagonal biyramids for high-performance n-propanol sensing at low temperature. New J. Chem. 2018, 42, 14071–14074. [Google Scholar] [CrossRef]
- Samadi, S.; Nouroozshad, M.; Zakaria, S.A. ZnO@SiO2/rGO core/shell nanocomposite: A superior sensitive, selective and reproducible performance for 1-propanol gas sensor at room temperature. Mater. Chem. Phys. 2021, 271, 124884. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G.; Lusis, A.; Jakovlevs, D. Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties. Sens. Actuators B Chem. 2012, 171–172, 204–209. [Google Scholar] [CrossRef]
Sensor Films | Temperature (°C) | Concentration (ppm) | Response (Ra/Rg) | τres/τrec (s) | Ref. |
---|---|---|---|---|---|
ZnFe2O4/ZnO particles | 25 | 3000 | 5.2 * | 45/90 | [41] |
ZnSnO3 nanospheres | 200 | 500 | 64 | <10/315 | [42] |
Fe2O4/MnO2 mixtures | 25 | 5000 | 62.57 * | 60/80 | [43] |
ZnO nanoplatelets | 125 | 40 | 6.6 | 190/200 | [44] |
NiFe2O4 hollow byramids | 120 | 200 | 32.19 | - | [45] |
ZnO@SiO2/rGO spherical NP | 29 | 300 | 156.85 | 37/207 | [46] |
ZnFe2O4 nanostructures | 300 | 500 | 16 | - | [47] |
ZnFe2O4 NP | 120 | 40 | 33 | 11/59 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemufulwi, M.I.; Swart, H.C.; Mhlongo, G.H. Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization. Processes 2021, 9, 1791. https://doi.org/10.3390/pr9101791
Nemufulwi MI, Swart HC, Mhlongo GH. Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization. Processes. 2021; 9(10):1791. https://doi.org/10.3390/pr9101791
Chicago/Turabian StyleNemufulwi, Murendeni I., Hendrik C. Swart, and Gugu H. Mhlongo. 2021. "Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization" Processes 9, no. 10: 1791. https://doi.org/10.3390/pr9101791
APA StyleNemufulwi, M. I., Swart, H. C., & Mhlongo, G. H. (2021). Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization. Processes, 9(10), 1791. https://doi.org/10.3390/pr9101791