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Abstract: Development of gas sensors displaying improved sensing characteristics including sensitiv-
ity, selectivity, and stability is now possible owing to tunable surface chemistry of the sensitive layers
as well as favorable transport properties. Herein, zinc ferrite (ZnFe2O4) nanoparticles (NPs) were
produced using a microwave-assisted hydrothermal method. ZnFe2O4 NP sensing layer films with
different thicknesses deposited on interdigitated alumina substrates were fabricated at volumes of
1.0, 1.5, 2.0, and 2.5 µL using a simple and inexpensive drop-casting technique. Successful deposition
of ZnFe2O4 NP-based active sensing layer films onto alumina substrates was confirmed by X-ray
diffraction and atomic force microscope analysis. Top view and cross-section observations from
the scanning electron microscope revealed inter-agglomerate pores within the sensing layers. The
ZnFe2O4 NP sensing layer produced at a volume of 2 µL exhibited a high response of 33 towards
40 ppm of propanol, as well as rapid response and recovery times of 11 and 59 s, respectively, at an
operating temperature of 120 ◦C. Furthermore, all sensors demonstrated a good response towards
propanol and the highest response against ethanol, methanol, carbon dioxide, carbon monoxide,
and methane. The results indicate that the developed fabrication strategy is an inexpensive way to
enhance sensing response without sacrificing other sensing characteristics. The produced ZnFe2O4

NP-based active sensing layers can be used for the detection of volatile organic compounds in
alcoholic beverages for quality check in the food sector.

Keywords: sensing layer; zinc ferrites; gas sensing; nanoparticles; drop casting

1. Introduction

Volatile organic compounds (VOCs) emitted from food products are essential as they
give rise to different aromas and serves as indicators for food freshness [1,2]. Aromas are
mainly crucial for a distinctive taste and making food more enjoyable. Additionally, detec-
tion of VOCs making up such aromas is significant for classification purposes. Research
studies have shown that a range of VOCs has been widely detected in wines and alcoholic
beverages for quality checks [3,4]. In particular, wine aroma and its analysis is a significant
parameter responsible for quality and consumer acceptance. Conventional methods such
as gas chromatography have been widely used for the analysis and classification of wines.
Lukic et al. [3] previously used gas chromatographic analysis of minor aromas in wines
for sensory evaluation. Their study showed that it is possible to use gas chromatogra-
phy for wine classification. However, sensory evaluation by chemical analysis requires
a large set of samples for accurate and reliable classification and prediction models. In
general, conventional methods require laboratory settings and skilled personnel [5]. The
high cost associated with gas chromatography and extensive laboratory steps limits them
from real-time and onsite applications. On the other hand, semiconducting metal oxides
(SMOs) have attracted much attention owing to their simple fabrication, portability, and
low cost [6].
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Moreover, SMOs offer high sensitivity, selectivity, simple operation, and stable prop-
erties, making them ideal in various applications. In addition, the easy integration of
SMOs in different devices allows them to be incorporated with different technologies.
Over the past decades, several SMOs such as WO3 [7], ZnO [8], LaCoO3 [9], TiO2 [10],
and ZnFe2O4 [11–13] have been widely researched and developed to detect various VOCs.
Despite the variety of available SMOs, researchers continue to search for sensitive, selective,
and stable sensing materials with low operating temperatures. Among them, ZnFe2O4
readily detects VOCs, making it a promising SMO for classification and quality check
sensors. However, the sensitivity, selectivity, and high operating temperature of ZnFe2O4
need to improve for its use in practical applications.

Researchers have focused on improving the sensing properties of ZnFe2O4 through its
electrochemical properties to address these setbacks. This is conducted by the development
of novel synthesis procedures [14], surface modification [5,15], cation substitution, [16,17],
and heterostructure formation [18,19]. In contrast, developing sensitive layer deposition
methods to attain ideal sensors suitable for prototype systems is significant. Previous
findings have also demonstrated that gas sensing takes place at different sites of the
structure depending on morphology [20]. Thus, the orientation of morphology on the
deposited sensitive layer highly influences the gas exposure to different sites. Therefore,
different chemical and physical deposition techniques to produce sensitive films of ZnFe2O4
have been adopted. However, such deposition techniques normally produce compact layers
(thin films) with gas interaction only at the geometric surface. Further, these techniques are
complicated to use and sometimes require high processing power [21]. On the other hand,
a simple drop-casting method can produce a porous layer where the volume of the layer is
also accessible to the gas, creating a much higher active surface than the geometric one [22].
In addition, mass transportation of the gas and diffusion over the entire sensing layer can
lead to improved sensing characteristics [23].

Although the drop-casting method has been used before to prepare active ZnFe2O4
sensitive layers, the depositing parameters have often been neglected leading to poor sens-
ing characteristics and reproducibility issues [24,25]. The dispersion of the nanostructures
deposited on a substrate to produce an active sensing layer is influenced by the volumetric
amount and evaporation rate of the solution which in turn affects the sensing characteristics
of the sensitive layer. Thus, for reproducible sensitive surfaces, the radial outward flow
of the drops forming the sensitive layer needs to be controlled by the volume deposited
and evaporation rate of the solution [26]. While optimization of sensing film’s thickness
can lead to enhanced sensing characteristics, this often comes with an expense of sacri-
ficing crucial sensing characteristics. Barreca et al. [27] realized this when their chemical
vapor-deposited MoO3-Bi2O3 thin films possessed a long response time of 5 min towards
methane with no stability and repeatability characteristics. Korotcenkov et al. [28] further
explained the negative influence of highly porous layers to time constants of In2O3 sensing
films. Based on this, development of reliable sensing fabrication approach is still needed.

Therefore, this work focuses on the optimization of the ZnFe2O4 NP-based sensing
film thickness through an inexpensive drop-casting method. Sensing films with different
thicknesses deposited on interdigitated alumina substrates were fabricated at volumes of
1.0, 1.5, 2.0, and 2.5 µL. The suitability to use a ZnFe2O4 NP-based sensor with an optimized
film thickness for the detection of VOCs in alcoholic beverages for quality check in the food
sector has been evaluated through comparison of gas sensing performance studies at an
operating temperature of 120 ◦C. The ZnFe2O4 NP-based sensor fabricated at a volume
of 2 µL displayed better sensing characteristics while maintaining good response and
recovery times. A gas sensing mechanism describing the observed enhanced gas sensing
behavior has been proposed.

2. Materials and Methods

Zinc (II) nitrate hexahydrate (Zn(NO3)2•6H2O), iron (III) nitrate nonahydrate
(Fe(NO3)3•9H2O), sodium hydroxide (NaOH), α-Terpineol (C10H18O), and cellulose were
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all purchased from Sigma-Aldrich (South Africa). All chemicals were used as received with-
out any further purification. Distilled water used in the aqueous solutions was prepared
with Mili-Q water.

A microwave hydrothermal synthesis method was used for the preparation of the
ZnFe2O4 NPs. In a typical procedure, a 1:2 mole ratio of Zn(NO3)2•6H2O and Fe(NO3)3•9H2O
was dissolved in 50 mL of distilled water. The precursor solution was stirred for an hour
using a magnetic stirrer at room temperature. NaOH base precursor (0.5 M) was added
dropwise to the solution until a pH of 7 was reached. The solution was further stirred
for 10 min before being transferred to Teflon vessels placed in a digestive microwave.
The solution was irradiated at 150 ◦C for 15 min and then allowed to cool down. The pro-
duced precipitate was washed six times using distilled wasted and absolute ethanol, and
a centrifuge collected the precipitate. The precipitate was then dried in an oven at 80 ◦C
for 12 h and annealed at 500 ◦C for 3 h to archive crystallinity. Finally, a pestle and mortar
were used to obtain nanostructured ZnFe2O4 in the powder form.

The illustration of the deposition of ZnFe2O4 NP-based sensing films is presented in
Figure 1. To produce homogeneously dispersed ZnFe2O4 NPs, the cellulose was dissolved
in terpineol at a mole ratio of 1:10, respectively. This solution was kept at 60 ◦C on a
magnetic stirrer until the cellulose was dissolved completely. 0.03 g of ZnFe2O4 product
was added in 0.25 mL of the terpineol/cellulose solution, which was then ultrasonicated
for 1 h. A micropipette was used to drop cast the sonicated mixture onto commercially
purchased interdigitated alumina (Al2O3) substrates at volumes of 1.0, 1.5, 2.0, and 2.5 µL.
The produced sensing films were dried in an oven for 1 h and further annealed at 300 ◦C
for 2 h. The gas sensing capabilities of the fabricated ZnFe2O4 based gas sensors were
evaluated using a KSGAS6S gas sensing station (KENOSISTEC, Brescia, Italy) at operating
temperatures ranging from 25 to 180 ◦C under dry atmospheric conditions with a source
voltage of 2.0 V applied across the sensors. The operating temperature was determined by
varying the applied voltage across the sensor’s heater with a thermocouple used to measure
the resultant temperature. The desired concentration of target gases (ppm) of methanol,
propanol, ethanol, methane, and carbon monoxide were varied at flow ratios with synthetic
air in a sensing chamber. The sensors output was in current (mA) which was converted
to resistance for response calculations. The response was calculated by R = Ra/Rg for
all the target reducing gases, where Ra is the resistance in air and Rg the resistance in
the reducing gas. X-ray diffraction (PANalytical Xpert PRO) using a CuKα radiation
source (λ = 0.15406 nm) was used for phase identification and structural analysis. Surface
morphology and cross-sectional analysis were conducted using a field-emission scanning
electron microscope (FE-SEM, Auriga, and Zeiss, Germany). Elemental mapping of the
sensing layers was carried out using an energy dispersive spectrometer (EDS) coupled
with an FE-SEM.
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Figure 1. Fabrication process followed to produce ZnFe2O4 NP-based sensing layer films using a drop-casting method.
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3. Results
3.1. Characterization

Figure 2 presents the XRD patterns of ZnFe2O4 NP-based sensing films deposited
into interdigitated Al2O3 substrates. The ZnFe2O4 deposited sensing films at volumes of
0.5, 1.0, 1.5, 2.0, and 2.5 µL represented by bullet-labeled diffraction peaks can be indexed
to the face-centred cubic structure (JCPDS file (card No. 86-0507). This indicates that the
ZnFe2O4 NPs crystallized in a face-centered cube with no other impurity phases formed.
The remaining diffraction peaks were perfectly indexed to the JCPDS file (card No. 83-2081)
of Al2O3. It can be seen from the XRD patterns of all the ZnFe2O4 deposited sensing films
that the diffraction peak intensity of ZnFe2O4 is weaker as compared to that of the Al2O3
substrate, indicating that the deposited ZnFe2O4 NP-based sensing film is significantly
thinner compared to the substrate.
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Figure 2. Diffraction patterns of the ZnFe2O4 deposited sensing films at volumes of 1.0, 1.5, 2.0, and
2.5 µL.

Figure 3a–e illustrates the cross-sectional and top-view SEM images of the ZnFe2O4 NP
deposited sensing films at volumes of 1.0, 1.5, 2.0, and 2.5 µL, respectively. As displayed
in this figure, the sensing film thickness values were found to be 3.92, 4.38, 5.15, and
5.61 µm for 1.0, 1.5, 2.0, and 2.5 µL volumes, respectively. The thickness varied with the
deposited volumes and could be determined by the radial outward flow and evaporation
rate of the deposited solution [26]. The cross-sectional images also display evidence of
inter-agglomerate pores within the sensing layers. A higher magnification top view of the
sensing films confirms the inter-agglomeration pores, which are prominent on the ZnFe2O4
sensing films prepared at volumes of 1.5 and 2.0 µL (Figure 3f,g, respectively). The top view
images further indicate that the ZnFe2O4 sensing films were made of nanoparticles. The
sensing film deposited at 1.0 µL in Figure 3e shows that the particles were very clustered
with a smooth surface. However, as the sensing film volume was increased to 1.5 and
2.0 µL, the particles became dispersed with a rough surface showing inter-grain pores. The
sensing film deposited at a volume of 2.5 µL started showing compact particles on the
surface and inter-agglomerate pores were no longer visible.
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Figure 4 presents the cross-sectional image view of ZnFe2O4 sensing film prepared at
volume of 2.0 µL. A high-magnification top view SEM image presented in Figure 4b shows
a uniform and well-dispersed distribution of ZnFe2O4 NPs. Figure 4c shows the ZnFe2O4
microscopic agglomerates distributed across the interdigitated electrodes. The microscopic
distribution of the agglomerates was also visible to the naked eye, suggesting that the
radial outward flow of the dropped solution was sufficient to cover the interdigitated
electrodes. This is a consequence of the coffee ring effect, where particles form ring-like
patterns on the surface/substrate [26]. As displayed in Figure 4d, the elemental maps show
abundance of different elements ubiquitously distributed over the Al2O3 interdigitated
electrodes. The compositional variation on the surface was further analyzed by EDS
presented in Figure 5a–d for the sensing film prepared at volumes of 1.0, 1.5, 2.0, and
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2.5 µL, respectively. An intensity of Al observed between the electrodes decreased with an
increase of deposited volumes confirming different sensing film thickness. Intensities of
Zn, Fe, and O displayed an increase with an increase of the deposited volumes. A stronger
intensity increase of O is observed in between the electrodes, and this is contributed by O
from Al2O3 substrate and ZnFe2O4 NPs.
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3.2. Sensing Characteristics

The electrical properties of the active ZnFe2O4 NP-based sensing layers were evaluated
in order to validate real applicability in sensing devices. Figure 6a presents the resistance in
air of active ZnFe2O4 NP-based sensing layers obtained by varying the temperature from
25 to 180 ◦C. The resistance in air decreased with the increase in operating temperature,
displaying the general semiconductor characteristics [29]. At operating temperatures
higher than 90 ◦C, the resistance is not much affected by temperature change. This is
probably because of the equilibrium between the competing thermal excitation of electrons
and oxygen chemisorption [8]. The resistance of the active ZnFe2O4 NP-based sensing
layers decreased with the volume amount with the sensing layer produced at 0.5 µL,
showing a significant high resistance even at a high temperature of 120 ◦C. This can be
associated with the reduced surface area covered by the deposited ZnFe2O4 NPs between
interdigitated electrodes, resulting in reduced percolation path for charge carriers.
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The optimum operating temperature was determined by exposing the ZnFe2O4 NPs
based sensing layers produced at volumes of 1.0, 1.5, 2.0, and 2.5 µL towards 40 ppm of
propanol at operating temperatures ranging from 25 to 180 ◦C as shown in Figure 6b. The
response values for all active ZnFe2O4 NP-based sensing layers increased with increasing
operating temperature exhibiting an optimal response at 120 ◦C. This can be explained by
an increase in chemical reaction and gas diffusion that varies with temperature. Beyond
120 ◦C, the increased excitation of electrons reduced further chemisorption of oxygen, hence
the decrease in active ZnFe2O4 NP-based sensing layers response values. The optimum
temperature of 120 ◦C was then chosen for conducting sensing analysis in this study.
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Figure 7a presents the transient response curves of the active ZnFe2O4 NP sensing
layers produced at volumes of 1.0, 1.5, 2.0, and 2.5 µL towards 2.5 to 40 ppm propanol at
an operating temperature of 120 ◦C. When the active ZnFe2O4 NP sensing layers produced
at different volumes were exposed to various concentrations of propanol, the sensing
layer responses increased rapidly and reached saturation before dropping to the base
resistance. However, the active ZnFe2O4 NP sensing layer prepared at 2.0 µL displayed
a higher magnitude of the response as compared to its counterparts. Figure 7b presents
the calibration curves of the active ZnFe2O4 NP sensing layers towards propanol at an
operating temperature of 120 ◦C. The response against concentration data was fitted using
a power-law relation given by [30]:

R = Ra/Rg = (1 + k[C3H8O])m (1)

where k is the sensitivity coefficient, [C3H8O] the concentration of propanol and m the
power-law exponent. The slope of the linear curve gave a sensitivity of 1.06 ± 0.04 ppm−1

for the active ZnFe2O4 NP sensing layer film prepared at 2.0 µL and an extrapolated
detection limit of about 0.588 ppm.

It is also well known that work efficiency is an essential parameter in gas sensing
application [31]. Thus, the response and recovery times of the active ZnFe2O4 NP sensing
layers produced at different volumes were measured as shown in Figure 7c. The response
time was taken at a point where the sensors reach 90% of the maximum response while
the recovery time was taken at 90% before baseline. Figure 7d presents response and
recovery times of the active ZnFe2O4 NP sensing layer films produced at different volumes
of 1.0, 1.5, 2.0, and 2.5 µL towards 40 ppm propanol. The active ZnFe2O4 NP sensing
layer produced at 2.0 µL displayed better sensing kinetics than its counterparts since its
response and recovery times were found to be within a minute. In addition, the active
ZnFe2O4 NP sensing layer at 2.0 µL revealed a faster response time than recovery time.
This could probably be due to the fact that desorption of propanol gas tends to be slower
than adsorption [5,32,33].
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Figure 7. (a) Transient response curves, (b) log response against log concentration, (c,d) measurements and response-
recovery times plot of the active ZnFe2O4 NP sensing layers produced at volumes of 1.0, 1.5, 2.0, 2.5 µL towards 40 ppm at
an operating temperature of 120 ◦C.

In alcoholic beverages, several VOCs contribute to the sensory attributes of the
drink [34,35]. Therefore, a gas sensor needs to have good selectivity when utilized for
classification and quality checks in the food sector. Figure 8a compares the responses of the
active ZnFe2O4 NP sensing layer produced at 2.0 µL towards 40 ppm of propanol, ethanol,
methanol, carbon dioxide, carbon monoxide, and methane at an operating temperature of
120 ◦C. The comparison of responses for the active ZnFe2O4 NP sensing layer indicates a
good selectivity towards propanol, which displayed a response value of 33 compared to
other gases.

For further gas sensor practicality, the active ZnFe2O4 NP sensing layer’s reproducibil-
ity was evaluated by repeatedly exposing the active ZnFe2O4 NP sensing layer produced at
2.0 µL to 40 ppm propanol at an operating temperature of 120 ◦C as it displayed enhanced
sensing performance. Good repeatability towards 40 ppm of propanol with negligible
variation in the response values was observed as presented in Figure 8b. Furthermore,
an ideal sensor needs to maintain long term stability. Thus, the durability of the active
ZnFe2O4 NP sensing layer produced at 2 µL towards 40 ppm propanol at an operating
temperature of 120 ◦C was tested over a period of 30 days. As presented in Figure 8c, the
sensor reproduced the response with limited fluctuations as shown in the inserted figure.
Thus, the sensor can be relied on for long term detection of propanol.
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Humidity is an unavoidable parameter in the food sector in terms of food transporta-
tion and its storage. In the case of beverage alcoholics, humidity plays a role in the aging
process of wine in cellars [36]. Temperature and humidity also influence the ingredients
and subjective taste of wine [37]. Therefore, the active ZnFe2O4 NP sensing layers produced
at different deposition volumes were exposed to 40 ppm of propanol both in dry air and
atmospheric conditions of 30, 60, and 90% relative humidity (RH) levels acquired at an
operating temperature of 120 ◦C, and the results are presented in Figure 9. As observed
from Figure 9a, the resistance dropped upon an increase in RH levels. A further slight
drop in resistance was observed as the RH levels were increased. This could be due to
the adsorption of water molecules that displaces oxygen and forms a monolayer of –OH
groups. The reduction of chemisorbed oxygen subsequently leads to the reduction of
resistance. Figure 9b displays the influence of RH on the responses of the active sensing
layers. As observed, the response values decreased with an increase in RH levels, and this
is more evident on the active sensing layer produced at 2.0 µL. This could be explained
by the competition of adsorption sites between water and oxygen species. Thus, when
the sensors are exposed to propanol, there is a limited amount of oxygen species to react,
leading to a drastic drop in response.
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Figure 9. (a) Transient resistance curves of the active ZnFe2O4 NP sensing layer produced at 2.0 µL towards 40 ppm
propanol at an operating temperature of 120 ◦C. (b) Response against RH of the active ZnFe2O4 NP sensing layer produced
at different deposition volumes of 1.0, 1.5, 2.0, 2.5 µL.

4. Discussion

Based on the findings presented above, it is clear that the active ZnFe2O4 NP sensing
layer produced at 2.0 µL possesses prominent sensing characteristics. The gas sensing
mechanism as illustrated in Figure 10 can therefore be explained as follows: when the active
sensing layer is exposed to air at an temperature of 120 ◦C, the adsorbed molecular oxygen
dissociates to the atomic form O−. The adsorbed oxygen species then retract electrons from
the conduction band at the surface of the active sensing layer thus creating the so called
electron depletion layer [38,39]. The thickness of the electron depleted region is the length
of the band bending region. This causes an increase in the resistance of the active sensing
layer. The reaction of the adsorbed oxygen species with a reducing gas consumes oxygen
species at the surface layer. Depending on the concentration of the reducing gas, this allows
desorption of oxygen and a release of electrons into the conduction band, resulting in
decreased resistivity. For a polycrystalline structured sensing material, the single grains
are in contact with their ohmic region forming a double Schottky barrier for electrons, as
depicted in Figure 10. Assuming a thermal emission as the dominant transport mechanism,
the conductivity over the potential barrier depends on the energy as follows [38,40]:

G ∼ e−qVs/kT (2)

where qVs is the surface band bending, k is the Boltzmann constant and T is the temperature
of SMO sensing layer. The active ZnFe2O4 NPs sensing layer produced at 2.0 µL volume
has prominent sensing layer characteristics due to a high inter-agglomerate and inter-grain
porous layer as seen in Figure 3 SEM images. A highly porous sensing layer which promotes
both inter-agglomerate and inter-grain gas diffusion possesses a high gas-permeability and
allows with a large number of grains to participate in grain-grain conductivity. This allows
for more pronounced surface bending qVs and leads to a high modulation of resistance
and high response. Thus, the active surface is much higher than that of its counterparts
due to gas access into the entire sensing layer. The enhanced sensing performance could
also be due to the surface texture of the sensing layer produced at 2.0 µL. From SEM
images, the sensing films produced by 1.5, 2.0, and 2.5 µL show a rough surface which may
have particles oriented in preferential directions for active sites. The rough surface is also
confirmed by AFM images in Figure 5. Therefore, the combination of a rough surface and
gas diffusion within the active sensitive layer may be the reason of the enhanced sensing
characteristics displayed by sensing layer produced at 2.0 µL.
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Figure 10. (a,b) Gas sensing mechanism of ZnFe2O4 NP sensing layer showing depletion layer in the presence of oxygen
without propanol and in the presence of oxygen with propanol, respectively. (b–d) Charge transport of the sensing layer in
the presence of oxygen without propanol and in oxygen with propanol, respectively.

A literature survey of different sensors reporting detection of propanol was conducted
to compare sensing characteristics of the optimized active ZnFe2O4 NP sensing layer
produced at 2.0 µL. The sensing characteristics of different sensors from literature are
presented in Table 1. In comparison with other sensors, the active ZnFe2O4 NP sensing
layer produced at 2.0 µL displayed a high response at relatively low concentrations towards
propanol, showing potential of detecting low concentrations of VOCs in alcoholic beverages
for quality checks in the food sector. Moreover, with a porous sensing layer with a high
diffusion rate, the active ZnFe2O4 NP sensing layer produced at 2.0 µL maintained low
response/recovery times as compared to other sensors deposited using similar drop-
casting techniques. Thus, the active ZnFe2O4 NP sensing layer produced at 2.0 µL displays
superior characteristics compared to other sensors from the literature.

Table 1. Comparison of the ZnFe2O4 NP sensing layer produced at 2.0 µL to other propanol gas sensing layers.

Sensor Films Temperature (◦C) Concentration
(ppm) Response (Ra/Rg) τres/τrec (s) Ref.

ZnFe2O4/ZnO particles 25 3000 5.2 * 45/90 [41]
ZnSnO3 nanospheres 200 500 64 <10/315 [42]

Fe2O4/MnO2 mixtures 25 5000 62.57 * 60/80 [43]
ZnO nanoplatelets 125 40 6.6 190/200 [44]

NiFe2O4 hollow byramids 120 200 32.19 - [45]
ZnO@SiO2/rGO spherical NP 29 300 156.85 37/207 [46]

ZnFe2O4 nanostructures 300 500 16 - [47]
ZnFe2O4 NP 120 40 33 11/59 This work

Note: Hyphen ‘-’ values not reported. Asterisk ‘*’ ∆R = (Rg − Ra/Ra
)
× 100.
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5. Conclusions

Herein, a microwave-assisted hydrothermal method was used to synthesize ZnFe2O4 NPs.
A drop-casting method was adopted and optimized to produce sensing layers at volumes of 1.0,
1.5, 2.0, and 2.5 µL. Successful deposition was confirmed by XRD patterns measured directly
on the sensing layers. SEM revealed deposition of inter-agglomerate and inter-grain porous
ZnFe2O4 NP sensing layers on the surface of the Al2O3 substrate. Sensing results showed that
the sensing layer produced at a volume of 2.0 µL performed better towards propanol at an
operating temperature of 120 ◦C, attaining a maximum response of 33. This was attributed to
the combination of a rough surface and gas diffusion within the active sensitive layer.
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