Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
3.1. Scientific Classification of Longan and Geographical Description
3.2. Complete Botanical Description of D. longan Tree
3.3. Ethnobotanical Usages of Longan
3.4. Nutrient Components and Phytochemicals Profiling of Dimocarpus longan
3.4.1. Nutrient Components of the Fruits
3.4.2. Phytochemical Profiling
3.5. Pharmacological Activities of Dimocarpus longan
3.5.1. Antiproliferative, Antioxidant Activity and Anticancer Activity
3.5.2. Anti-Inflammatory Properties
3.5.3. Immunomodulatory Activities
3.5.4. Prebiotic Activities
3.5.5. Anti-Microbial Activities
3.5.6. Anti-Fungal Activities
3.5.7. Neuroprotective Activities
3.5.8. Anti-Aging Activities
3.5.9. Anti-Diabetic Effect and Anti-Hyper Glycemic Effects
3.5.10. Anti-Tyrosinase Properties
3.5.11. Miscellaneous Activities
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Lin, Y.; Lai, Z.; Tian, Q.; Lin, L.; Lai, R.; Yang, M.; Zhang, D.; Chen, Y.; Zhang, Z. Endogenous target mimics down-regulate miR160 mediation of ARF10, -16, and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour. Front. Plant Sci. 2015, 6, 956. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Joyce, D.C.; Ketsa, S. Postharvest biology and handling of longan fruit (Dimocarpus longan Lour.). Postharvest Biol. Technol. 2002, 26, 241–252. [Google Scholar] [CrossRef]
- Crane, J.H.; Balerdi, C.F.; Sargent, S.A.; Maguire, I. Longan Growing in the Florida Home Landscape; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2005. [Google Scholar]
- Pham, V.; Herrero, M.; Hormaza, J. Fruiting pattern in longan, Dimocarpus longan: From pollination to aril development. Ann. Appl. Biol. 2016, 169, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Lim, T. Dimocarpus longan subsp. malesianus var. malesianus. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2013; pp. 33–38. [Google Scholar]
- Mei, Z.Q.; Fu, S.Y.; Yu, H.Q.; Yang, L.Q.; Duan, C.G.; Liu, X.Y.; Gong, S.; Fu, J.J. Genetic characterization and authentication of Dimocarpus longan Lour. using an improved RAPD technique. Genet. Mol. Res. GMR 2014, 13, 1447–1455. [Google Scholar] [CrossRef]
- Hussain, H.; Hamdan, N.; Sim, E.U.-H. Anticancer and antimicrobial peptides from medicinal plants of Borneo island in Sarawak. Adv. Tradit. Med. 2021, 21, 189–197. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.; Shi, J.; Chen, F.; Ashraf, M. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—A review. Food Res. Int. 2011, 44, 1837–1842. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q.J. Modern pharmacological actions of longan fruits and their usages in traditional herbal remedies. J. Med. Plants Stud. 2019, 7, 179–185. [Google Scholar]
- Xu, X.; Chen, X.; Chen, Y.; Zhang, Q.; Su, L.; Chen, X.; Chen, Y.; Zhang, Z.; Lin, Y.; Lai, Z. Genome-wide identification of miRNAs and their targets during early somatic embryogenesis in Dimocarpus longan Lour. Sci. Rep. 2020, 10, 4626. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Khan, S.A.; Lin, Y.; Guo, D.; Pan, X.; Liu, L.; Wei, Z.; Zhang, Y.; Deng, Y.; Zhang, M. Phenolic profiles and cellular antioxidant activity of longan pulp of 24 representative Chinese cultivars. Int. J. Food Prop. 2018, 21, 746–759. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.-Y.; Ning, Y.-L.; Qi, J.; He, Z.; Jie, J.; Lin, J.-J.; Huang, Y.-J.; Li, F.-S.; Li, M.S. Structure and antitumor and immunomodulatory activities of a water-soluble polysaccharide from Dimocarpus longan pulp. Int. J. Mol. Sci. 2014, 15, 5140–5162. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Zhou, B.; Liu, Q.; Wu, H.; Zheng, L. Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Med Biol. Eng. Comput. 2016, 54, 607–617. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, S.; Ho, C.-T.; Bai, N.; Wellness, H. Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: A review. Food Sci. Hum. Wellness 2020, 9, 95–102. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, X.; Li, W.; Tan, S.; Zheng, Q. Phenolic content, antioxidant capacity, and α-amylase and α-glucosidase inhibitory activities of Dimocarpus longan Lour. Food Sci. Biotechnol. 2020, 29, 683–692. [Google Scholar] [CrossRef]
- Bai, X.; Pan, R.; Li, M.; Li, X.; Zhang, H. HPLC Profile of Longan (cv. Shixia) pericarp-sourced phenolics and their antioxidant and cytotoxic effects. Molecules 2019, 24, 619. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, J.; Mu, Y.; Han, L.; Liu, R.; Cai, Y.; Huang, X. Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts. J. Funct. Foods 2015, 13, 314–322. [Google Scholar] [CrossRef]
- Tang, Y.Y.; He, X.M.; Sun, J.; Li, C.B.; Li, L.; Sheng, J.F.; Xin, M.; Li, Z.C.; Zheng, F.J.; Liu, G.M.; et al. Polyphenols and alkaloids in byproducts of longan fruits (Dimocarpus Longan Lour.) and their bioactivities. Molecules 2019, 24, 1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, K.N.; Hao, J.; Shi, J.; Liu, T.; Li, J.; Wei, X.; Qiu, S.; Xue, S.; Jiang, Y. Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 413–419. [Google Scholar] [CrossRef]
- Zhu, X.R.; Wang, H.; Sun, J.; Yang, B.; Duan, X.W.; Jiang, Y.M. Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. J. Zhejiang Univ. Sci. B 2019, 20, 503–512. [Google Scholar] [CrossRef]
- Sun, J.; Shi, J.; Jiang, Y.; Xue, S.J.; Wei, X. Identification of two polyphenolic compounds with antioxidant activities in longan pericarp tissues. J. Agric. Food Chem. 2007, 55, 5864–5868. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, W.; Liu, Y.; Zhan, R.; Chen, Y. Two new flavonol glycosides from Dimocarpus longan leaves. Nat. Prod. Res. 2015, 29, 163–168. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2007, 45, 328–336. [Google Scholar] [CrossRef]
- Tseng, H.C.; Wu, W.T.; Huang, H.S.; Wu, M.C. Antimicrobial activities of various fractions of longan (Dimocarpus longan Lour. Fen Ke) seed extract. Int. J. Food Sci. Nutr. 2014, 65, 589–593. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 2005, 1085, 270–277. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Xu, Y.-J.; Ge, Z.-Z.; Zhu, W.; Xu, Z.; Li, C.-M. Structural elucidation and antioxidant activity evaluation of key phenolic compounds isolated from longan (Dimocarpus longan Lour.) seeds. J. Funct. Foods 2015, 17, 872–880. [Google Scholar] [CrossRef]
- Mai, J.; Liang, J.; Liu, X.; Tan, L.; Xu, H.; Li, Y.; Zhou, Y.; Yang, C.; Xin, C. Simultaneous determination of 5 components in the leaves of Dimocarpus longan by Quantitative Analysis of Multicomponents by Single Marker (QAMS) based on UPLC and HPLC. J. Anal. Methods Chem. 2020, 2020, 3950609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-W.; Yang, D.-J.; Chang, Y.-Y.; Hsu, C.-L.; Tseng, J.-K.; Chang, M.-H.; Wang, M.; Chen, Y.-C. Polyphenol-rich longan (Dimocarpus longan Lour.)-flower-water-extract attenuates nonalcoholic fatty liver via decreasing lipid peroxidation and downregulating matrix metalloproteinases-2 and-9. Food Res. Int. 2012, 45, 444–449. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, Y.; Lin, S.; Wen, L.; Wu, D.; Zhao, M.; Chen, F.; Jia, Y.; Yang, B. Structural identification of (1→6)-α-d-glucan, a key responsible for the health benefits of longan, and evaluation of anticancer activity. Biomacromolecules 2013, 14, 1999–2003. [Google Scholar] [CrossRef] [PubMed]
- Jeff, I.B.; Yuan, X.; Sun, L.; Kassim, R.M.; Foday, A.D.; Zhou, Y. Purification and in vitro anti-proliferative effect of novel neutral polysaccharides from Lentinus edodes. Int. J. Biol. Macromol. 2013, 52, 99–106. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, F.; Zhang, M.W.; Zhang, R.F.; Deng, Y.Y.; Wei, Z.C.; He, J.R. Solution properties and in vitro anti-tumor activities of polysaccharides from longan pulp. Molecules 2013, 18, 11601–11613. [Google Scholar] [CrossRef]
- Lin, C.C.; Chung, Y.C.; Hsu, C.P. Potential roles of longan flower and seed extracts for anti-cancer. World J. Exp. Med. 2012, 2, 78–85. [Google Scholar] [CrossRef]
- Huang, G.J.; Wang, B.S.; Lin, W.C.; Huang, S.S.; Lee, C.Y.; Yen, M.T.; Huang, M.H. Antioxidant and anti-inflammatory properties of longan (Dimocarpus longan Lour.) pericarp. Evid. Based Complementary Altern. Med. ECAM 2012, 2012, 709483. [Google Scholar] [CrossRef]
- Apriyanto, D.R.; Aoki, C.; Hartati, S.; Hanafi, M.; Kardono, L.B.; Arsianti, A.; Louisa, M.; Sudiro, T.M.; Dewi, B.E.; Sudarmono, P.; et al. Anti-hepatitis C virus activity of a crude extract from longan (Dimocarpus longan Lour.) leaves. Jpn. J. Infect. Dis. 2016, 69, 213–220. [Google Scholar] [CrossRef]
- Cheng, J.C.; Liaw, C.C.; Lin, M.K.; Chen, C.J.; Chao, C.L.; Chao, C.H.; Kuo, Y.H.; Chiu, Y.P.; Peng, Y.S.; Huang, H.C. Anti-influenza virus activity and chemical components from the parasitic plant Cuscuta japonica choisy on Dimocarpus longans Lour. Molecules 2020, 25, 4427. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Tongchusak, S.; Boonhok, R.; Chaiyaroj, S.C.; Junyaprasert, V.B.; Buajeeb, W.; Akanimanee, J.; Raksasuk, T.; Suddhasthira, T.; Satayavivad, J. In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia 2012, 83, 545–553. [Google Scholar] [CrossRef]
- Puspita, R.; Bintang, M.; Priosoeryanto, B.P. Antiproliferative activity of longan (Dimocarpus longan Lour.) leaf extracts. J. Appl. Pharm. Sci. 2019, 9, 102–106. [Google Scholar]
- Doungsaard, P.; Chansakaow, S.; Sirithunyalug, J.; Shang-Chian, L.; Wei-Chao, L.; Chia-Hua, L.; Kuan-Ha, L.; Leelapornpisid, P. In vitro biological activities of the anti-aging potential of Dimocarpus longan leaf extracts. CMU J. Nat. Sci. 2020, 19, 235–251. [Google Scholar] [CrossRef]
- Park, S.J.; Park, D.H.; Kim, D.H.; Lee, S.; Yoon, B.H.; Jung, W.Y.; Lee, K.T.; Cheong, J.H.; Ryu, J.H. The memory-enhancing effects of Euphoria longan fruit extract in mice. J. Ethnopharmacol. 2010, 128, 160–165. [Google Scholar] [CrossRef]
- Lin, A.M.; Wu, L.Y.; Hung, K.C.; Huang, H.J.; Lei, Y.P.; Lu, W.C.; Hwang, L.S. Neuroprotective effects of longan (Dimocarpus longan Lour.) flower water extract on MPP+-induced neurotoxicity in rat brain. J. Agric. Food Chem. 2012, 60, 9188–9194. [Google Scholar] [CrossRef]
- Rakariyatham, K.; Zhou, D.; Rakariyatham, N.; Shahidi, F. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. J. Funct. Foods 2020, 67, 103846. [Google Scholar] [CrossRef]
- Kubo, I.; Kinst-Hori, I.; Chaudhuri, S.K.; Kubo, Y.; Sánchez, Y.; Ogura, T. Flavonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorganic Med. Chem. 2000, 8, 1749–1755. [Google Scholar] [CrossRef]
- Yang, D.J.; Chang, Y.Y.; Hsu, C.L.; Liu, C.W.; Lin, Y.L.; Lin, Y.H.; Liu, K.C.; Chen, Y.C. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J. Agric. Food Chem. 2010, 58, 2020–2027. [Google Scholar] [CrossRef]
- Patra, S.; Nithya, S.; Srinithya, B.; Meenakshi, S.M. Review of medicinal plants for anti-obesity activity. Transl. Biomed. 2015, 6. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, C.; Zeng, L.; Chen, Z. Somatic embryogenesis in longan [Dimocarpus longan Lour.]. In Somatic Embryogenesis in Woody Plants; Springer: Dordrecht, The Netherlands, 2000; pp. 415–431. [Google Scholar]
- Wang, B.; Tan, H.W.; Fang, W.; Meinhardt, L.W.; Mischke, S.; Matsumoto, T.; Zhang, D. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. Hortic. Res. 2015, 2, 14065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.R.; Das, S.; Alam, M.; Rahman, A. Documentation of wild edible minor fruits used by the local people of Barishal, Bangladesh with emphasis on traditional medicinal values. J. Bio-Sci. 2019, 27, 69–81. [Google Scholar] [CrossRef]
- Menzel, C.M.; Waite, G.K. Litchi and Longan: Botany, Production and Uses; CABI Publishing: Wallingford, UK, 2005. [Google Scholar]
- Subhadrabandhu, S.; Stern, R.A. Taxonomy, Botany and Plant Development; CABI Publishing: Wallingford, UK, 2005; pp. 25–34. [Google Scholar]
- Pham, V.; Herrero, M.; Hormaza, J.I. Phenological growth stages of longan (Dimocarpus longan) according to the BBCH scale. Sci. Hortic. 2015, 189, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, E.; Xu, L.; Li, Z.; Wang, Z.; Li, C. Comparison on characterization of longan (Dimocarpus longan Lour.) polyphenoloxidase using endogenous and exogenous substrates. J. Agric. Food Chem. 2010, 58, 10195–10201. [Google Scholar] [CrossRef]
- Haque, M.; Bari, L.; Hasan, M.; Sultana, M.; Reza, S. A survey on medicinal plants used by the folk medicinal practitioners in Tangail Sadar Upazilla, Tangail, Bangladesh. J. Environ. Sci. Nat. Resour. 2014, 7, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, E.; Ebihara, H.; Takeuchi, H.; Yamazaki, M. Adenosine, the anxiolytic-like principle of the Arillus of Euphoria longana. Planta Med. 1999, 65, 115–119. [Google Scholar] [CrossRef]
- Yang, E.; Sim, K. Characterisation of nutritional, physiochemical, and mineral compositions of aril and seed of longan fruit (Dimocarpus longan L.). Int. Food Res. J. 2021, 28, 91–101. [Google Scholar]
- Khan, S.A.; Liu, L.; Lai, T.; Zhang, R.; Wei, Z.; Xiao, J.; Deng, Y.; Zhang, M. Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria. J. Food Sci. Technol. 2018, 55, 4782–4791. [Google Scholar] [CrossRef]
- Ayoola, G.; Coker, H.; Adesegun, S.; Adepoju-Bello, A.; Obaweya, K.; Ezennia, E.C.; Atangbayila, T. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Pharm. Res. 2008, 7, 1019–1024. [Google Scholar]
- Priosoeryanto, B.P.; Tateyama, S.; Yamaguchi, R.; Uchida, K. Antiproliferation and colony-forming inhibition activities of recombinant feline interferon (rFeIFN) on various cells in vitro. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1995, 59, 67–69. [Google Scholar]
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants 2021, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Prasad, K.N.; Divakar, S.; Shivamurthy, G.R.; Aradhya, S.M. Isolation of a free radical-scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). J. Sci. Food Agric. 2005, 85, 1461–1468. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hannan, M.A.; Dash, R.; Rahman, M.H.; Islam, R.; Uddin, M.J.; Sohag, A.A.M.; Rahman, M.H.; Rhim, H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of the autophagy-apoptosis pathway. Front. Pharmacol. 2021, 12, 639628. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W.J.F.C. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, Q.; Deng, Y.; Zhang, M.; Wei, Z.; Zhang, Y.; Tang, X. Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem. 2013, 136, 1169–1176. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Dey, D.; Quispe, C.; Hossain, R.; Jain, D.; Ahmed Khan, R.; Janmeda, P.; Islam, M.T.; Ansar Rasul Suleria, H.; Martorell, M.; Daştan, S.D.; et al. Ethnomedicinal use, phytochemistry, and pharmacology of Xylocarpus granatum J. Koenig. Evid. Based Complementary Altern. Med. 2021, 2021, 8922196. [Google Scholar] [CrossRef]
- Algra, A.M.; Rothwell, P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: A systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012, 13, 518–527. [Google Scholar] [CrossRef]
- Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer chemoprevention by carotenoids. Molecules 2012, 17, 3202–3242. [Google Scholar] [CrossRef]
- Narayanan, B.A. Chemopreventive agents alters global gene expression pattern: Predicting their mode of action and targets. Curr. Cancer Drug Targets 2006, 6, 711–727. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L.; Cheung, P.C. Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohydr. Res. 2006, 341, 2261–2269. [Google Scholar] [CrossRef]
- Brown, E.M.; Gill, C.I.; McDougall, G.J.; Stewart, D. Mechanisms underlying the anti-proliferative effects of berry components in in vitro models of colon cancer. Curr. Pharm. Biotechnol. 2012, 13, 200–209. [Google Scholar] [CrossRef]
- Kendall, C.W.; Esfahani, A.; Truan, J.; Srichaikul, K.; Jenkins, D. Health benefits of nuts in prevention and management of diabetes. Asia Pac. J. Clin. Nutr. 2010, 19, 110–116. [Google Scholar]
- Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev. 1997, 55, S44–S49. [Google Scholar] [CrossRef]
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef]
- Heiss, E.; Herhaus, C.; Klimo, K.; Bartsch, H.; Gerhäuser, C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 2001, 276, 32008–32015. [Google Scholar] [CrossRef] [Green Version]
- Cochran, F.R.; Selph, J.; Sherman, P. Insights into the role of nitric oxide in inflammatory arthritis. Med. Res. Rev. 1996, 16, 547–563. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, M.-W.; Liao, S.-T.; Zhang, R.-F.; Deng, Y.-Y.; Wei, Z.-C.; Tang, X.-J.; Zhang, Y. Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydr. Polym. 2012, 87, 636–643. [Google Scholar] [CrossRef]
- Yi, Y.; Liao, S.T.; Zhang, M.W.; Shi, J.; Zhang, R.F.; Deng, Y.Y.; Wei, Z.C. Physicochemical characteristics and immunomodulatory activities of three polysaccharide-protein complexes of longan pulp. Molecules 2011, 16, 6148–6164. [Google Scholar] [CrossRef] [Green Version]
- Rong, Y.; Yang, R.; Yang, Y.; Wen, Y.; Liu, S.; Li, C.; Hu, Z.; Cheng, X.; Li, W. Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydr. Polym. 2019, 213, 247–256. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, F.Y.; He, Z.; Ning, Y.L.; Li, X.H.; Song, H.; Wang, J.; Zhou, R. Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro. Int. J. Biol. Macromol. 2014, 67, 323–329. [Google Scholar] [CrossRef]
- Li, X.; Jiao, L.L.; Zhang, X.; Tian, W.M.; Chen, S.; Zhang, L.P. Anti-tumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigricans and culture medium. Int. Immunopharmacol. 2008, 8, 909–915. [Google Scholar] [CrossRef]
- Sakurai, M.H.; Matsumoto, T.; Kiyohara, H.; Yamada, H. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology 1999, 97, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317–333. [Google Scholar] [CrossRef]
- Pineiro, M.; Asp, N.G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical meeting on prebiotics. J. Clin. Gastroenterol. 2008, 42, S156–S159. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Gullón, B.; Yáñez, R.; Schols, H.; Alonso, J.L. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. J. Funct. Foods 2016, 20, 108–121. [Google Scholar] [CrossRef]
- Scott, K.P.; Martin, J.C.; Duncan, S.H.; Flint, H.J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol. Ecol. 2014, 87, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Liu, H.; Zhang, R.; Dong, L.; Liu, L.; Ma, Y.; Jia, X.; Wang, G.; Zhang, M. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydr. Polym. 2019, 206, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Thitiratsakul, B.; Anprung, P. Prebiotic activity score and bioactive compounds in longan (Dimocarpus longan Lour.): Influence of pectinase in enzyme-assisted extraction. J. Food Sci. Technol. 2014, 51, 1947–1955. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Rahman, M.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants 2020, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Janssen, A.M.; Scheffer, J.J.; Baerheim Svendsen, A. Antimicrobial activity of essential oils: A 1976–1986 literature review. Aspects of the test methods. Planta Med. 1987, 53, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Saxena, G.; McCutcheon, A.R.; Farmer, S.; Towers, G.H.; Hancock, R.E. Antimicrobial constituents of Rhus glabra. J. Ethnopharmacol. 1994, 42, 95–99. [Google Scholar] [CrossRef]
- Connolly, J.E., Jr.; McAdams, H.P.; Erasmus, J.J.; Rosado-de-Christenson, M.L. Opportunistic fungal pneumonia. J. Thorac. Imaging 1999, 14, 51–62. [Google Scholar] [CrossRef]
- Rindum, J.L.; Stenderup, A.; Holmstrup, P. Identification of Candida albicans types related to healthy and pathological oral mucosa. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 1994, 23, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Sorrell, T.C.; Chen, S.C. Pulmonary Cryptococcosis. Semin. Respir. Crit. Care Med. 2015, 36, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Spies, F.S.; de Oliveira, M.B.; Krug, M.S.; Severo, C.B.; Severo, L.C.; Vainstein, M.H. Cryptococcosis in patients living with hepatitis C and B viruses. Mycopathologia 2015, 179, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.J.; Reichardt, L.F. Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem. 2003, 72, 609–642. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.R.; Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 2000, 10, 381–391. [Google Scholar] [CrossRef]
- Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 1996, 381, 706–709. [Google Scholar] [CrossRef]
- Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 1995, 92, 8856–8860. [Google Scholar] [CrossRef] [Green Version]
- Gage, F.H. Mammalian neural stem cells. Science 2000, 287, 1433–1438. [Google Scholar] [CrossRef]
- Taupin, P.; Gage, F.H. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 2002, 69, 745–749. [Google Scholar] [CrossRef]
- Zhao, C.; Deng, W.; Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.L.; Barres, B.A. The relationship between neuronal survival and regeneration. Annu. Rev. Neurosci. 2000, 23, 579–612. [Google Scholar] [CrossRef]
- McAllister, A.K.; Katz, L.C.; Lo, D.C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 1996, 17, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Merino, C.; Lopez-Sanchez, C.; Lagoa, R.; Samhan-Arias, A.K.; Bueno, C.; Garcia-Martinez, V. Neuroprotective actions of flavonoids. Curr. Med. Chem. 2011, 18, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, C.C.; Doré, S. Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr. Neurosci. 2011, 14, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos-Esparza Mdel, R.; Torres-Ramos, M.A. Neuroprotection by natural polyphenols: Molecular mechanisms. Cent. Nerv. Syst. Agents Med. Chem. 2010, 10, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.D.H.; Hossain, M.S.; Biswas, P.; Islam, R.; Uddin, M.J.; Rahman, M.H.; Rhim, H. Molecular insights into the multifunctional role of natural compounds: Autophagy modulation and cancer prevention. Biomedicines 2020, 8, 517. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.S. Exercise in aging: Its important role in mortality, obesity and insulin resistance. Aging Health 2010, 6, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Hamdani, S.U.; Awan, N.R.; Bryant, R.A.; Dawson, K.S.; Khan, M.F.; Azeemi, M.M.-U.-H.; Akhtar, P.; Nazir, H.; Chiumento, A. Effect of a multicomponent behavioral intervention in adults impaired by psychological distress in a conflict-affected area of Pakistan: A randomized clinical trial. JAMA 2016, 316, 2609–2617. [Google Scholar] [CrossRef]
- Gandía-Herrero, F.; Jiménez, M.; Cabanes, J.; García-Carmona, F.; Escribano, J. Tyrosinase inhibitory activity of cucumber compounds: Enzymes responsible for browning in cucumber. J. Agric. Food Chem. 2003, 51, 7764–7769. [Google Scholar] [CrossRef] [PubMed]
- McEvily, A.J.; Iyengar, R.; Otwell, W.S. Inhibition of enzymatic browning in foods and beverages. Crit. Rev. Food Sci. Nutr. 1992, 32, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ferrer, A.; Rodríguez-López, J.N.; García-Cánovas, F.; García-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta 1995, 1247, 1–11. [Google Scholar] [CrossRef]
- Tuan, H.M.; Lee, C.Y.; Tang, H.C. Phenolic compounds in food and their effects on health. v. 1. Analysis, occurrence, and chemistry—v. 2. Antioxidants and cancer prevention. ACS Symp. Ser. 1992, 507. [Google Scholar]
- Prasad, K.N.; Yang, B.; Shi, J.; Yu, C.; Zhao, M.; Xue, S.; Jiang, Y. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction. J. Pharm. Biomed. Anal. 2010, 51, 471–477. [Google Scholar] [CrossRef]
- Song, K.K.; Huang, H.; Han, P.; Zhang, C.L.; Shi, Y.; Chen, Q.X. Inhibitory effects of cis- and trans-isomers of 3,5-dihydroxystilbene on the activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 2006, 342, 1147–1151. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, M.; Jiang, Y. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp. Food Chem. 2008, 110, 294–300. [Google Scholar] [CrossRef]
- Rout, S.; Banerjee, R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresour. Technol. 2007, 98, 3159–3163. [Google Scholar] [CrossRef]
- Chooi, Y.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, Y.; Lee, E.M.; Lee, D.Y.; Lee, J.H.; Oh, S. Longan fruit increase bone mineral density in zebrafish and ovariectomized rat by suppressing RANKL-induced osteoclast differentiation. Phytomed. Int. J. Phytother. Phytopharm. 2019, 59, 152910. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.H.; Son, Y.; Goh, S.H.; Oh, S. Longan (Dimocarpus longan Lour.) fruit extract stimulates osteoblast differentiation via Erk1/2-dependent RUNX2 activation. J. Microbiol. Biotechnol. 2016, 26, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Jiang, Y.; Yang, B.; Yu, C.; Tsao, R.; Zhang, H.; Chen, F. Structural characteristics and antioxidant activities of oligosaccharides from longan fruit pericarp. J. Agric. Food Chem. 2009, 57, 9293–9298. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhao, M.; Jiang, Y. Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave. Food Chem. 2009, 114, 629–633. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, L.; Wu, P.; Xie, H.; Jiang, Y.; Chen, F.; Wei, X. Polyphenols from longan seeds and their radical-scavenging activity. Food Chem. 2009, 116, 433–436. [Google Scholar] [CrossRef]
- Chung, Y.C.; Lin, C.C.; Chou, C.C.; Hsu, C.P. The effect of Longan seed polyphenols on colorectal carcinoma cells. Eur. J. Clin. Investig. 2010, 40, 713–721. [Google Scholar] [CrossRef]
- Aziz, H.A.; Rahim, N.A.; Ramli, S.F.; Alazaiza, M.Y.; Omar, F.M.; Hung, Y.-T. Potential use of Dimocarpus longan seeds as a flocculant in landfill leachate treatment. Water 2018, 10, 1672. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.C.; Hwang, L.S.; Shen, Y.J.; Lin, C.C. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J. Agric. Food Chem. 2007, 55, 10664–10670. [Google Scholar] [CrossRef] [PubMed]
Type | Content | Type | Content |
---|---|---|---|
Water | 82.75 g | Total lipid (fat) | 0.1 g |
Energy | 60 kcal | Calcium (Ca) | 1 mg |
Protein | 1.31 g | Iron (Fe) | 0.13 mg |
Ash | 0.7 g | Phosphorus (P) | 21 mg |
Carbohydrate | 15.14 g | Potassium (K) | 266 mg |
Fiber (total dietary) | 1.1 g | Thiamin | 0.031 mg |
Magnesium (Mg) | 10 mg | Niacin | 0.3 mg |
Vit-C (ascorbic acid) | 84 mg | Riboflavin | 0.14 mg |
Type | Content (g) | Type | Content (g) |
---|---|---|---|
Threonine (Thr) | 0.034 | Leucine (Leu) | 0.054 |
Isoleucine (Ile) | 0.026 | Lysine (Lys) | 0.046 |
Methionine (Met) | 0.013 | Tyrosine (Tyr) | 0.025 |
Phenylalanine (Phe) | 0.03 | Valine (Val) | 0.058 |
Arginine (Arg) | 0.035 | Alanine (Ala) | 0.157 |
Histidine (His) | 0.012 | Glutamic acid (Glu) | 0.209 |
Glycine (Gly) | 0.042 | Proline (Pro) | 0.042 |
Serine (Ser) | 0.048 | Aspartic acid (Asp) | 0.126 |
Plant Parts | Phytocompounds | References |
---|---|---|
Pulp | Protocatechuic acid, Vanillic acid, 4-Methylcatechol, p-Coumaric acid, Ferulic acid, Syringic acid, Chlorogenic acid, Quinic acid, Caffeic acid, Narirutin, Naringin, Rhoifolin, Hesperidin, Phthalic acid, Methyl hesperidin, Naringenin, Phlorizin, Gallic acid, Epicatechin, Isoquercitrin, coumarin | [11,14,15,55] |
Pericarp | Protocatechuic acid, Ellagic acid, Ethyl gallate, Gallic acid, Corilagin, Isoscopoletin, Brevifolin, 4-O-methylgallic acid, Proanthocyanidin, Epicatechin, Quercetin, Proanthocyanidins C1, Methyl gallate, Methyl brevifolin carboxylate, Rutin | [16,17,18,19,20,21,22] |
Seeds | Corilagin, Gallic acid, Ellagic acid, Ethyl gallate, Geraniin, Flavogallonic acid | [18,20,23,24,25,26] |
Leaves | Ethyl gallate, Astragalin, Luteolin, kaempferol, Quercetin | [27] |
Flowers | Gentisic acid, Epicatechin, Proanthocyanidin | [28] |
Potential Activity | Sources | Compound Name and Chemical Class | Test System | Test Dose/Concentration | Results | References |
---|---|---|---|---|---|---|
Antioxidant activity | High pressure-assisted extract of fruit pericarp | Gallic acid, corilagin acid, and ellagic acid | Phosphomolybdenum method using various antioxidant model systems | 50 μg/mL at 90 min | Strong antioxidant activity | [19] |
Ultrasonic assisted extract of Fruit Pericarp | Galactose and galacturonic acid | OLFP and DPPH Radical Scavenging Assay | At the concentration of 500 μg/mL | Strong antioxidant activities | [128] | |
Anti-tyrosinase activity | Ultra-high-pressure-assisted fruit pericarp extract | Phenolic acids, gallic acid, ellagic acid, and corilagin | Through HPLC assay | l-Tyrosine solution (4 mL) at 0.5 mg/mL, dissolved in 20 mM phosphate buffer (pH 6.8) | Enhanced anti-tyrosinase activity | [121] |
Anti-glycated activity | Extract of fruit polysaccharides with Ultrasonic wave | Plant polysaccharides, mainly the phenolic compounds | PLFP assay and aminoguanidine | At the concentration of 0.5 mg/mL | Significant anti-glycated activity | [129] |
Radical-scavenging activity | Polyphenols from seeds | Polyphenols (methyl brevifolin carboxylate, brevifolin and 4-O-a-L-rhamnopyranosyl-ellagic acid) | DPPH radical assay and superoxide radical assay | 0.80– 5.91 lg/mL for DPPH radical assay and 1.04–7.03 lg/mL superoxide radical assay | Effective radical-scavenging activity | [130] |
Anti-Inflammatory Properties | Water extract of longan pericarp | Polyphenols | Male ICR mice (6–8 weeks) | (10 mg/kg) | Strong anti-Inflammatory properties | [33] |
Anti-microbial activities | Seed extracts | Phenolic compounds (gallic acid, corilagin, ethyl gallate and ellagic acid) | Disc diffusion method | 64 mg/mL | Strong antimicrobial activities | [24] |
Activation of osteoblast differentiation | Fruit Extract | Plant Polyphenolic Compounds | Promotion of signal-regulated kinase1/2 (Erk1/2) | 500 µg/mL | Can activate osteoblast differentiation | [127] |
Anti-fungal activities | Seed extract | Ellagic acid, corilagin acid and gallic acid | Disc–agar diffusion assay | 15.63–16,000 μg/mL | Potential antifungal activities | [36] |
Anti-colorectal cancer effects | The polyphenol of seed extract | Phenolic compounds | CRC cell lines (Colo 320DM, SW480, HT-29 and LoVo) | 25 µg/mL–200 µg/mL | Strong anti-colorectal cancer effects | [131] |
Antitumor activities | Water extract of pulp | Monosaccharide compounds | SKOV3 and HO8910 tumor cells | 5–40 mg/L | Effective antitumor activities | [12] |
Immunomodulatory activities | Water extract of pulp | Monosaccharide compounds | Immunosuppression of serum IL-2 levels in mice | 320 mg/kg | Effective Immunomodulatory activities | [12] |
Articular chondrocytes maintenance activity | Pulp extract | Plant polysaccharides | Articular chondrocytes culture 1-week-old New Zealand rabbits | 9.38 μg/mL | Intense articular chondrocytes maintenance activity | [13] |
Prebiotic activities | Pulp extract | Plant polysaccharides | Basal medium | 0.5, 1.0, 1.5 and 2.0% (w/v) | Potential prebiotic activities | [87] |
Flocculant in landfill leachate treatment | Seed powder | Not demonstrated | Landfill leachate samples | 2 g/L LSP and 2.75 g/L PACl | Show effective efficiency | [132] |
Anti-ageing activities | Leaf Extracts | Plant total phenolic and flavonoid content | MTT assay on mouse embryonic fibroblasts (BCRC 60071; ATCC CCL92) | 0.1–1 mg/mL | Potential anti-aging activities | [38] |
Suppressive effect on macrophage cells | Flower extract | Flavonoids (tannins, and proanthocyanidins) | Determination PGE2 by enzyme immunoassay | 1 µg/mL | Strong suppressive activity | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, P.; Biswas, P.; Dey, D.; Saikat, A.S.M.; Islam, M.A.; Sohel, M.; Hossain, R.; Mamun, A.A.; Rahman, M.A.; Hasan, M.N.; et al. Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes 2021, 9, 1803. https://doi.org/10.3390/pr9101803
Paul P, Biswas P, Dey D, Saikat ASM, Islam MA, Sohel M, Hossain R, Mamun AA, Rahman MA, Hasan MN, et al. Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes. 2021; 9(10):1803. https://doi.org/10.3390/pr9101803
Chicago/Turabian StylePaul, Priyanka, Partha Biswas, Dipta Dey, Abu Saim Mohammad Saikat, Md. Aminul Islam, Md Sohel, Rajib Hossain, Abdullah Al Mamun, Md. Ataur Rahman, Md. Nazmul Hasan, and et al. 2021. "Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review" Processes 9, no. 10: 1803. https://doi.org/10.3390/pr9101803
APA StylePaul, P., Biswas, P., Dey, D., Saikat, A. S. M., Islam, M. A., Sohel, M., Hossain, R., Mamun, A. A., Rahman, M. A., Hasan, M. N., & Kim, B. (2021). Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes, 9(10), 1803. https://doi.org/10.3390/pr9101803