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Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) supplied with green hydrogen from
renewable sources are a promising technology for carbon dioxide-free energy conversion. Many
mathematical models to describe and understand the internal processes have been developed to
design more powerful and efficient PEMFCs. Parameterizing such models is challenging, but indis-
pensable to predict the species transport and electrochemical conversion accurately. Many material
parameters are unknown, or the measurement methods required to determine their values are ex-
pensive, time-consuming, and destructive. This work shows the parameterization of a quasi-3D
PEMFC model using measurements from a stack test stand and numerical optimization algorithms.
Differential evolution and the Nelder–Mead simplex algorithm were used to optimize eight material
parameters of the membrane, cathode catalyst layer (CCL), and gas diffusion layer (GDL). Measure-
ments with different operating temperatures and gas inlet pressures were available for optimization
and validation. Due to the low operating temperature of the stack, special attention was paid to the
temperature dependent terms in the governing equations. Simulations with optimized parameters
predicted the steady-state and transient behavior of the stack well. Therefore, valuable data for the
characterization of the membrane, the CCL and GDL was created that can be used for more detailed
CFD simulations in the future.

Keywords: polymer electrolyte membrane; fuel cell; quasi-3D model; single-phase; isotherm;
numerical optimization; differential-evolution algorithm; Nelder–Mead simplex algorithm

1. Introduction

Ongoing climate change and the need to reduce greenhouse gas emissions require
new technologies to meet global energy needs with renewable sources. Polymer electrolyte
membrane fuel cells (PEMFCs) powered by green hydrogen show a performance that is
well suited for automotive applications due to their high power density, high efficiency,
and high startup availability [1]. However, due to the low operating temperatures, water
management is a challenge. On the one hand, sufficient hydration of the membrane must
be ensured for proper conduction of hydrogen ions, and on the other hand, flooding of the
microporous layers and GDLs must be avoided.

Mathematical models have been developed to better understand the internal processes,
such as the formation of liquid water and its transport, and to design more efficient and
powerful fuel cells (FCs). In addition, predictive and reliable models are used to forecast the
internal conditions and optimize their operation strategy, e.g., optimization of purging strat-
egy due to nitrogen and water accumulation in the anode [2]. Therefore, the parameteriza-
tion of the models is crucial. The processes and chemical reactions inside a fuel cell depend
on many physical phenomena such as mass/heat/charge transport and electrochemistry.
The available models can be categorized in [3,4]: (1) the degree of physical modeling
(analytical, (semi-)empirical, mechanistic) and (2) the spatial resolution of the models (0D,
1D, 2D, quasi 3D, 3D). Springer [5] developed one of the first 1D semi-empirical models for
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the hydration of the membrane. The work of Bernardi and Verbrugge [6] is considered as
one of the cornerstones in the development of mechanistic models. The models developed
at the beginning of fuel cell modeling were mostly reduced to 0D or 1D [5,7–9], whereas
more recent models are extended to 2D [10,11], quasi-3D [12–15], and 3D(-CFD) [16–18].

The required model parameters of full mechanistic models are physical quantities
and fundamental constants to describe the transport of momentum, species, heat and
electric charge, electrochemistry, and geometry. Complex and expensive measurements,
expert knowledge, and other data sources such as scientific literature and datasheets
are required to parameterize the numerous submodels of spatially resolved approaches,
like the agglomerate model for CLs and gas diffusion models for membranes. Moreover,
anisotropic material parameters for porous media (CL, GDL) or graphite BPP, as well
as their dependence on the cells’ clamping force, further increase unknown material
parameters. Therefore, in addition to measurements, simpler models such as 1D, 2D, or
quasi-3D can be applied to obtain some of these parameters and thus reduce the number of
unknowns. They are faster than computationally intensive CFD models but have similar
physical behavior. Many evaluations can be performed quickly with these models, e.g., for
numerical optimization of parameters with available comparison data.

As pointed out by Demuren and Edwards [4] and d’Adamo et al. [19], the detailed
measurements to determine the geometric, chemical, and physical characteristics of the
PEMFCs’ materials is a complex and time-consuming task. In addition, many of the
measurement methods are ex situ and even destructive. Additional difficulties must be
overcome if novel materials like ultra-thin membranes with reinforced short-side-chain
PFSA, typical for modern automotive applications, are used. Dickinson and Smith [20]
pointed out that there is a lack of information in the scientific literature for models and
material properties for other PFSAs than Nafion®. However, the models developed for
Nafion® 117/125 have been frequently used and showed promising results [12,20,21].

To get a first overview of the influence of model and material parameters on the
performance of a PEMFC, Karpenko-Jereb et al. [22] conducted a study on the impact
of parameters using a 3D CFD model. They showed that reference exchange current
density (RECD), the transfer coefficient, the ionic conductivity, and the porosity of the
GDL have the biggest influence on the simulated current density. Another possibility
to determine the main influencing parameters of a mathematical model is a sensitivity
analysis. Vetter and Schumacher [23] made a comprehensive sensitivity analysis of a macro-
homogeneous, steady-state, two-phase flow model. They showed that the three most
influential parameters of their model on fuel cell performance are membrane properties:
the diffusion coefficient of water in ionomer, the ionic conductivity, and the electro-osmotic
drag coefficient. Laoun et al. [24] conducted a sensitivity analysis determining the variance-
based sensitivity indices. The authors stated that the membrane thickness, GDL thickness
and porosity, and the (exchange) current density have the most significant impacts on the
power density of the fuel cell.

The parameterization of the unknown parameters is challenging. A very compre-
hensive review of available material data in the scientific literature can be found in [21].
Recently, some authors used the data-driven parameterization [25–27]. Goshtasbi et al. [28]
created a framework on efficient parameterization based on the extended local sensitivity
analysis from in [29]. The D-optimality criterion was used to find an optimal subset of
parameters. Abaza et al. [30] used the coyote optimization algorithm to find the optimal
estimation of PEMFC parameters. They compared the results with four other optimizers
to demonstrate effectiveness and robustness and used two different PEMFCs to validate
the results. The authors of [31–33] used the (particle) swarm optimizer in comparison to
genetic algorithms (GA) for the parameterization of mechanistic models. Recently, with the
increasing computing power and popularity of neural networks, Yuan et al. [34] improved
the deer hunting optimization algorithm with neural networks to find the most suitable set
of parameters with the highest accuracy. Fathy and Rezk [35] implemented the multi-verse
optimizer to get the best parameter set under different operating conditions. They revealed
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that the multi-verse optimizer provided better and faster results than other applied opti-
mization algorithms, such as GA, bee colony algorithm, or hybrid adaptive differential
evolution (HADE). Mo et al. [36] applied a hybrid differential evolution algorithm to
optimize the parameters of an electrochemical PEMFC model. Measurements of the fuel
cell stack U-I curve and species inlet conditions were used as input parameters for the
optimization. Similar, Sun et al. [37] and Gong et al. [38] used the HADE algorithm with a
novel scaling factor and improved dynamic crossover probability for the parameterization
of an electrochemical PEMFC model. The bee colony foraging mechanism enhances the
local search. The results showed better identification of nonlinear parameters than other
applied methods. In [39] they proposed a dynamic differential evolution algorithm with
collective guidance factor to find the parameters of a mechanistic model.

This work aims to demonstrate the parameterization of a hybrid 3D analytic-numerical
PEM fuel cell model with a standard measurement procedure for a fuel cell stack. A
differential-evolution optimization algorithm and Nelder–Mead simplex algorithm from
the open-source Python package scipy.optimize [40] were applied to find the best set of
parameters in the bounds of known physical values. Six measurement series—three load
steps and three polarization curves—with different operating temperatures and gas inlet
pressures were available for optimization and validation. It was the specific challenge of
the discussed model setup that the fuel cell stack was operated at low temperatures of
52–55 °C (cooling inlet). The fuel cell stack system is self-humidifying as there is no external
humidifier. The low operating temperatures were chosen to ensure a stable operation of
the stack, because temperatures above 60 °C would unnecessarily dry out the membrane
and could damage it. The measurements showed strong temperature dependence, even
with only 3 K temperature difference at the cooling inlet, a significant difference in the
polarization curves was visible. Therefore, special attention was paid to the temperature-
dependent terms in the governing equations. The values obtained for the parameters will
be used to parameterize a more detailed 3D CFD model in the future.

2. Materials and Methods
2.1. Numerical Model and Governing Equations

The transient, single-phase, isothermal, and hybrid analytical-numerical 3D model
of a PEMFC implemented in AVL CRUISE™ M software was used for the simulations.
The model, developed by Tavčar and Katrašnik [13], assumes the gas species in the channel
flow direction (z-direction) to be 1D and solved numerically and the species concentrations
perpendicular to the gas flow in the channel are calculated analytically in 2D (x, y-direction).
The pressure drop in the GDL perpendicular to the gas flow in the channels is neglected.
The model for the gas flow is coupled with an electrochemical sub-model. The electrode
kinetics are reduced to the oxygen reduction reaction (ORR) of the cathode catalyst layer
(CCL), which is assumed to be infinitesimally thin. The schematic overview of the modeled
fuel cell is shown in Figure 1. A representative unit of assumed parallel channels and
ribs is extracted. In the direction of the gas flow in the channel, this unit is discretized
into an arbitrary number of slices with length L. The domains of the slice are as follows:
cathode and anode channel, GDL parts under-channel, GDL parts under-rib, thin CCL
and membrane. While the original model of Tavčar and Katrašnik [13] neglected the
electrical conductivity of the GDL, the current implementation considers its ohmic losses.
Liquid water is assumed to be present only inside the membrane. Its transport by water
diffusion and electro-osmotic drag is assumed as being perpendicular to the membrane
plane. Convection due to pressure differences between anode and cathode and a gas
crossover through the membrane were not considered. The water content of the membrane
is in equilibrium with the relative humidity of the gases mixture at the interface with the
CL/GDL.
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Figure 1. Schematic view of the modeled fuel cell. Co-flow or Counter-flow of Oxygen and Hydrogen
is possible. A representative unit of the fuel cell with length L is extracted. Each section of the fuel
cell is sliced into cathode and anode channel, GDL parts under-channel, GDL parts under-rib, and
thin CCL and membrane. Based on [13].

A more detailed view on the assumptions made during the development of the
numerical model can be found in [13].

2.1.1. Governing Equations

The full set of equations of the hybrid 3D numerical model can be found in [13].
The following equations are highlighted because some of their parameters are used as
design variables for the numerical optimization.

Species Transport in Gas Channels

The gas is assumed to be ideal and the species transport is modeled by Stefan–Maxwell
diffusion. Only water vapor is modeled; liquid water is not considered in channels and
GDLs, resulting in a single-phase approach. The species transport equation is divided into
a 2D and a 1D part. In a channel slice it reads as follows [13]:

dc
dt

= ∇2(Dc− c̃V)︸ ︷︷ ︸
2D

− ∂z(vc)︸ ︷︷ ︸
1D

= 0 (1)

With the concentration of species c in the channels and the velocity v in channel
direction (z-direction). V represents the potential flow part of the gas flow in x- and y-
direction. Due to steady-state assumption of the gas dynamics, the time derivative of the
species concentration in Equation (1) is set to 0. The binary diffusion coefficient D and
the average species concentration c̃ are constant in one slice. As there is no liquid phase,
the relative humidity can reach values higher than 1. This was an indirect indication of
liquid water formation.

Species Transport in GDLs

No gas flow (zero velocity) is assumed in z-direction in GDLs. Therefore, Equation (1)
simplifies to

dc(x, y)
dt

= ∇2(DGDL c(x, y)− c̃ V(x, y)) = 0 (2)

where DGDL is the diffusion coefficient in the GDL. It is derived from the binary diffusion
coefficient in gas channels by dividing D through the tortuosity τGDL of the GDL

DGDL =
D

τGDL
. (3)
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Electrochemical Reactions

The Butler–Volmer equation (BVE) is a relationship between the potential of an electro-
chemical system and its current density. The BVE states that the current density increases
exponentially with activation overvoltage. In an electrochemical system such as a fuel
cell, two independent BVEs for ACL and CCL can be employed. As the electrokinetics are
reduced to the CCL by the model used, only the following BVE was applied [13,41]:

i = i0

 pO2

pre f
e

αnF
RT ηact −

(
pH2O

pre f

)λ

e−
(1−α)nF

RT ηact

 (4)

where i0 represents the exchange current density, pO2 and pH2O are partial pressures of
oxygen and water, λ stoichiometry ratio, α transfer coefficient, n number of exchanged
electrons, F Faraday’s constant, T temperature and ηact activation overpotential of the
electrode. The exchange current density i0 is related to the reference exchange current
density i0,re f at reference temperature Tre f and pressure pre f [13,41]

i0 = i0,re f

(
pO2

pre f

)bO2
(

pH2O

pre f

)bO2

e
Eact,i0

R

(
1

Tre f
− 1

T

)
(5)

With pO2 and pH2O partial pressures of oxygen and water, bO2 and bH2O oxygen and
water exponent and Eact,i0 the activation energy of exchange current density.

Ionic Conductivity

The ionic conductivity of the membrane was calculated using the following Arrhenius
approach with a reference ionic conductivity σion,re f at reference temperature Tre f and
reference membrane water content Cw,re f [5]:

σion = σion,re f
Cw

Cw,re f
e

Eact,σion
R

(
1

Tre f
− 1

Tmem

)
(6)

With Cw actual water content of the membrane, Eact,σion activation energy, and Tmem
actual temperature of the membrane.

2.2. Numerical Optimization

Optimization algorithms search in general for the minimum of an objective func-
tion f (x) with one or more design variables x from the feasible design space X . [42]

minimize
x

f (x)

subject to x ∈ X
(7)

With x = [x1, x2, . . . , xn] for n-dimensional design variables. x can be varied to find
the minimum of the objective function f (x).

There are two general optimization strategies, local optimization and global opti-
mization. The local optimization aims to find the minimum near a starting point and the
solution must not necessarily be a global minimum. In general, mathematical models of
fuel cells are nonlinear, numerically stiff and non-differentiable. Therefore, optimization
algorithms that rely on the derivative of the objective function are not applicable. Direct
methods (e.g., Powell’s Method and Nelder–Mead Simplex Algorithm (NMSA)), stochastic
methods (e.g., simulated annealing, natural evolution strategies) or population methods
(e.g., genetic algorithms, differential-evolution, particle swarm optimization) are applied in
case of non-differentiable objective functions. Whereas direct methods do not necessarily
find the global minimum, stochastic and population methods search the given design space
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for the global optimum. Stochastic methods rely on pseudorandom strategies, such as
Latin Hypercube Sampling (LHS) or Sobol sampling, to sample the design space and to
escape local optima to enhance the probability of finding the global optimum. In contrast
to direct and stochastic methods, population strategies do not move a single point toward
the optimum, but use many design points (individuals) distributed throughout the design
space. The information of the distributed design points is exchanged between the points to
find the global minimum [42,43].

The scipy.optimization module from Python provides several local and global
optimization algorithms. The differential evolution algorithm [43] gave the best and fastest
results as a first indication of where to find the global minimum. The best combination
of design variables from the differential-evolution optimizer was used as a starting point
for a local optimizer, the Nelder–Mead Simplex Algorithm [44], to find the optimum
more accurately.

As the simulations are transient, the objective value YObj is the integrated sum of
the difference between the measured and the simulated voltage or current. As shown
in Section 2.3, each of the three available measured polarization curves is based on six
measured operating points. In the simulations, a current ramp from 0.02–1 A/cm2 with a
total time of 720 s (which corresponds to a slope of 1.4 mA/cm2 per second) was defined.
The difference of the simulated and measured voltage was then integrated over time to
get the objective variable. For Umeas(t) between the measured operating points, piecewise
linear interpolation was applied.

YObj,PC =
∫
|(Umeas(t)−Usim(t))|dt (8)

The second set of available measured data were three load steps with voltage driven
stacks, thus the difference between simulated and measured current was integrated.

YObj,LS =
∫
|(Imeas(t)− Isim(t))|dt (9)

All available measurements were used to optimize the parameters. Therefore, an ap-
propriate combination of the objective value with weighting factors needed to be imple-
mented. The results from the load steps were weighted with 2/3, whereas the polarization
curves were weighted with 1/3. The three load steps and three polarization curves were
weighted equally among themselves. The reason for shifting the weighting factor to the
results of the load steps was that the focus was on the transient response of the FC and
therefore, the main concern was to reproduce the measured load steps with as little error
as possible.

2.3. Experimental Results

The measurement data used in this work were obtained using a dedicated test stand
equipped with a commercial 30 kW fuel cell stack, the associated balance-of-plant compo-
nents and a specifically designed measurement and control system. As the test stand has
also been used for measurements in other publications and to avoid redundancy with other
articles, the authors refer the reader to the work in [25,45] for a more detailed presentation
of the test stand setup.

For the optimization of the parameters and validation of the simulation results, 6
measurement series were available, divided into three polarization curves and three load
steps. Table 1 gives an overview of the measured data series.

For all measurements, the stoichiometry at the cathode was λcat = 2 for current
densities below 0.12 A/cm2 and λcat = 1.5 for current densities exceeding 0.22 A/cm2.
Anode stoichiometry was a product of mixing the recirculated humid hydrogen with dry
hydrogen from the hydrogen storage system. The rotational speed of the hydrogen recir-
culation pump (HRP) was set to a constant value, hence the anode stoichiometry was not
constant. It ranged from approx. 6 at low currents to 1.6 at high currents. The anode inlet
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relative humidity was set to 99% and the pressure was set to a constant value (1700 mbar
or 1400 mbar). Ambient air conditions during the measurements can be found in Table 2.

Table 1. Available measurement series from the test stand.

Name Type Anode Inlet Pressure Cooling Inlet Temperature
- - mbar °C

P1 Polarization Curve 1700 55
P2 Polarization Curve 1700 52
P3 Polarization Curve 1400 55
L1 Load Step 1700 55
L2 Load Step 1700 55
L3 Load Step 1700 55

Table 2. Ambient air conditions during measurements at the test stand.

Parameter Unit Value

Temperature °C 23
Pressure mbar 983
Relative Humidity % 48

A constant air inlet temperature of 40 °C could be achieved due to an air cooler down-
stream of the compressor. The polarization curves were recorded by current controlled
stack at different cooling inlet temperatures and anode inlet pressures, as shown in Table 1.

Figure 2. Measured polarization curves for different anode pressures and cooling inlet temperatures.

For each of the measured polarization curves six measured points in the current
range of 0.1–1 A/cm2 were available, as shown in Figure 2. The series of measurements
with the load steps were recorded by voltage-controlled stack. Three different load steps
were available:

• L1 is recorded with cell potential from 844 mV to 792 mV to 844 mV
• L2 is recorded with cell potential from 666 mV to 640 mV to 666 mV
• L3 is recorded with cell potential from 834 mV to 630 mV to 834 mV

Which corresponds to approximately 0.12 A/cm2 to 0.22 A/cm2 to 0.12 A/cm2 for
L1, 0.73 A/cm2 to 0.85 A/cm2 to 0.73 A/cm2 for L2 and 0.12 A/cm2 to 0.95 A/cm2 to
0.12 A/cm2 for L3. Figure 3 shows the measured cell potential and cell current over time.
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Figure 3. Cell potential and current density of measured load steps.

3. Results
3.1. Hybrid 3D Model Details

The analyzed commercial PEMFC consisted of bipolar plates made of fuel cell grade
graphite, carbon paper GDLs with hydrophobic PTFE coating, and an ultra-thin automotive-
grade PEM made from SSC-PFSA with reinforcement. The thicknesses of the fuel cell
components are listed in Table 3.

Table 3. Dimensions of fuel cell components. Thicknesses for GDL (at 1 MPa compression) and
membrane were taken from manufacturers datasheet.

Cathode Anode Membrane
Parameter Unit BPP GDL CL BPP GDL

Thickness mm 1.65 0.21 0.01 1.65 0.21 0.015
Channel width mm 1.1 0.6
Channel height mm 0.5 0.5

The model consisted of three different circuits: (1) gas circuit, (2) electrical circuit,
and (3) thermal circuit to set the operating temperature. In the direction of the gas flow
in the channel, the fuel cell was divided into six slices, which was a compromise between
accuracy and computation time. Species mass flows, pressures, and temperatures were
applied as described in Section 2.3.

Parameterization

Numerical optimization algorithms were used to find the best values for a selected
set of parameters. The following parameters were design variables for the optimization
process (1) RECD, (2) activation energy of exchange current density of the CCL, (3) transfer
coefficient of the CCL, (4) reference membrane ionic conductivity, (5) activation energy
of the ionic conductivity, (6) electrical conductivity, (7) porosity, and (8) tortuosity of the
GDL. Table 4 gives an overview of the used material parameters and the design variables
are marked with �. As the electrochemical parameters of the CCL are mostly unknown,
a common practice is to use these parameters for calibration of the electrochemical model,
see, e.g., in [18,46–48]. As the temperature influence of the RECD was unknown, the acti-
vation energy of the Arrhenius term (see Equation (5)) was selected as a design variable.
Although the ionic conductivity could be found in datasheets of the membrane in H-form
and for fully hydrated membrane at a reference temperature, the temperature dependence
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was not available for the given membrane material. Therefore, the activation energy of the
temperature dependence and the ionic conductivity were added to the design variables for
the optimization process. Due to the lack of information on the water sorption behavior
of the used membrane, the model suggested by Springer [5] was applied. The water dif-
fusion coefficient and electro-osmotic drag coefficient were taken from standard ionomer
material. For the fluid flow through porous media, the porosity is crucial. As shown
by Karpenko-Jereb et al. [22] and d’Adamo et al. [19] the porosity of the GDLs has a sig-
nificant influence on the species transport, electric conductivity and, therefore, current
density. Thus, the porosity was added to the design variables for numerical optimization.
Although the tortuosity of the GDLs can be estimated with the porosity as proposed by [49]
(Other relationships in the literature can be found in [49–51].), it was used as a design
variable as well.

Table 4. Assumed material parameters of the investigated fuel cell. Effective values are shown for
material properties of GDL. Parameters marked with � are design variables for numerical optimiza-
tion.

Parameter Unit BPP GDL CCL Membrane

Density kg/m3 1900 2000 1980
Electrical Conductivity S/m 2000 �
Porosity - �
Tortuosity - �

Ionic Conductivity
σion,re f S/m �
CW,re f - 14
Reference Temperature °C 55
Activation Energy J/mol �

Water Diffusion Coefficient
DW,re f m2/s 2.16× 10−11

CW,re f ,DW - 1
Reference Temperature °C 25
Activation Energy J/mol 19,809

Electro-osmotic Drag Coef.
ndrag,re f - 0.1136
CW,re f ,ndrag

- 1
Equilibrium Water Content - Springer

Transfer Coefficient - �
Exchange Current Density

RECD A/cm2 �
Reference Temperature °C 55
Activation Energy J/mol �

Water Exponent - 1
Oxygen Exponent - 0.75

3.2. Optimization

The results of the optimization process and the comparison between the measured
values from the test stand with the simulated results are described in this section. The nu-
merical optimization with the differential-evolution algorithm was started with the bounds
shown in Table 5. The differential-evolution strategy was set to ’best1bin’. This strategy
chooses two members randomly and their difference is used for the mutation of the best
member to construct a trial vector. For more information, see in [40,52]. The initial sampling
of the design space was done with the Latin hypercube sequence to maximize the coverage
of the available parameter space. The recombination constant (crossover probability) was
left to the default number of 0.7. The relative tolerance for convergence was set to 0.01.
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The global optimization with the differential-evolution algorithm was stopped after 72 h or
1412 function evaluations to limit the computation time. One simulation of a design point
takes around 170 s for all six cases. The design point with the lowest integrated difference
between simulated and measured value, see Equation (9), was calculated at iteration 957.
The set of parameters from the differential-evolution algorithm was used as a starting
point for the NMSA to perform a local optimization. The absolute tolerance and function
tolerance of the Nelder–Mead Algorithm were set to 0.01. This condition was met after 745
model evaluations. Figure 4 shows the course of the objective value over the iterations of
the model. Not every parameter combination leads to a good result. If the simulation time
exceeds a certain value, the design point is not feasible and the objective value is set to
an artificially high value (1000) not to influence the optimization result. In Figure 4 these
values are not shown.

Figure 4. Course of the objective value from (a) differential-evolution and (b) Nelder–Mead Simplex
Algorithm. Panel (a) shows a narrowing of the objective value for higher iterations. (b) The course of
the objective value shows fast convergence to the minimum after ~200 function evaluations and the
stopping criteria was met after 745 iterations.

The bounds specified in Table 5 were used by the differential-evolution algorithm
for the sampling of the design space, whereas the implemented NMSA searched for the
minimum without bounds. Therefore, it would be possible to get parameters outside of
the specified bounds with the NMSA. The final design variables with the lowest integrated
difference are shown in Table 5.

Table 5. Bounds of the design variables for global optimization and results from the numerical optimization process.
DiffEvo represents the values obtained from the differential-evolution algorithm. These parameters are used as starting
vector for the Nelder–Mead Simplex Algorithm to find the local minimum more accurately. The final set of parameters is
shown in row NelderMead.

Parameter i0,re f Eact,i0,re f α σion,re f Eact,σ,ion σelec,GDL εGDL τGDL
Unit A/cm2 J/mol - S/m J/mol S/m - -

Bound min 2.00× 10−4 50,000 0.3 4 10,000 80 0.4 1
Bound max 2.00× 10−3 250,000 0.4 20 50,000 390 0.8 3

DiffEvo 4.884× 10−4 226,071 0.333 14.97 66,037 356.6 0.63 1.16
NelderMead 6.732× 10−4 213,475 0.32 14.03 35,486 355.8 0.69 1.00

The values obtained from numerical optimization for the design variables agree well
with the standard physical values found in the literature, as shown below.
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3.2.1. Activation Energies

As in the introduction already mentioned, the measurements showed strong tempera-
ture dependence, therefore the activation energies of the Arrhenius terms in the exchange
current density (Eact,i0,re f ) and the ionic conductivity (Eact,σ,ion) showed higher values
than in the literature found. For the activation energy of the exchange current density, a
common value is Eact,i0,re f = 66× 103 J/mol [22,48] and for the activation energy of the
ionic conductivity near Eact,σ,ion = 10× 103 J/mol, e.g., Eact,σ,ion = 10, 542 J/mol [5] or
Eact,σ,ion = 9894 J/mol [53] for Nafion® N117 .

3.2.2. Reference Exchange Current Density and Transfer Coefficient

The exact values for the RECD and transfer coefficient of the CCL were not known.
Therefore, these variables were used for the calibration of the model. The value presented,
e.g., in [54] with 3× 10−9 A/m2

Pt, for the ORR with Pt-C is specified per unit area of metal,
while the model used in this work relates the RECD to the active area of the fuel cell.
Since the real surface area of the platinum for the CCL is unknown, the value obtained
from the optimization process cannot be directly compared with values from the literature.
The optimized transfer coefficient with α = 0.33 lies within the bounds for oxygen reduction
reactions (ORR) of hydrogen fuel cells (0.1 to 0.5) as shown in [55].

Ionic Conductivity

The ionic conductivity of the membrane can be found in the datasheet provided by
the manufacturer with 14 S/m for fully hydrated membrane at a temperature of 25 °C.
The obtained value from the optimization process is with 14 S/m at Tre f = 55 °C lower
for the higher reference temperature (The higher the temperature, the higher the ionic
conductivity). The reasons for this difference can be that there is an uncertainty if the values
from the datasheet were obtained with a fully hydrated membrane activated with 10%
H2SO4 at 80 °C or the reference water concentration Cw,re f = 14 is not the highest possible
water concentration of the used membrane. As the water sorption isotherm was not known
and the relationship from Springer [5] was used for the simulations, the uncertainty may
be in the use of this relationship. However, the obtained value is within physical bounds
for SSC-PFSA ionomers [56–58].

3.2.3. GDL Electrical Conductivity

The effective electrical conductivity of the GDL σelec,gdl = 355.8 S/m is higher than
given by the datasheet of the manufacturer with 262.5 S/m at 1 MPa compression. The exact
value of the stacked cells’ compression is unknown, so this could be a reason for the higher
value. Another factor is the calculation of the effective value of porous media. The effective
electrical conductivity is a function of the bulk electrical conductivity and the porosity of the
GDL. Several different relationships can be found in the literature, see in [19]. As proposed
by Bruggeman [50] and adapted by Das et al. [59] the relationship of effective and bulk
conductivity can be given with

σe f f = σbulk · (1− ε)1.5 (10)

With σbulk the bulk conductivity of the solid and ε the porosity of the material. How-
ever, the software used has implemented the following relationship for the effective con-
ductivity:

σe f f = σbulk · (1− ε) (11)

The effective value was specified during the optimization process and the software
calculated the bulk electrical conductivity with the above relationship. The bulk electrical
conductivity and the solid fraction of the porous media were then used to determine the
ohmic losses of the GDLs. The electrical conductivity of commercially available carbon
paper GDLs with hydrophobic treatment ranges from 150–350 S/m (effective value in an
uncompressed state); thus, the obtained value is comparable.
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3.2.4. GDL Porosity and Tortuosity

The porosity with εGDL = 0.69 and the tortuosity τGDL = 1.0 obtained from the
numerical optimization agree with common values for GDLs in the literature. In addi-
tion, the porosity can be estimated with the area weight given by the datasheet from the
manufacturer and an estimated compression of approx. 1 MPa with εGDL,est = 0.7. This
value is close to the result of the numerical optimization procedure. The tortuosity of the
GDL is mostly unknown, thus several relationships exist in the literature to determine it
from the porosity of the material, see in [19]. A value of about τGDL,expected = 1.38 could
be expected from the optimization process by applying the schemes on the determined
porosity. However, the obtained value of τGDL = 1.0 is low. The diffusion length of the
GDL and the thickness are not the same in reality. Moreover, τGDL = 1.0 is equivalent to
free diffusion of gas species through the GDL as the binary and actual diffusion coefficients,
see Equation (3) have the same value.

With the parameter set from the numerical optimization the following results can be
obtained.

Figure 5. Comparison of measured and simulated current values with parameters obtained from optimization procedure.
Load steps: (a) L1, (b) L2, (c) L3 and polarization curves: (d) P1, (e) P2, (f) P3. Simulated values show good agreement with
measured data.

The simulations showed very good agreement with the measurements, as can be seen
in Figure 5. Although the weighting factors favored the load levels, the results of the
simulated polarization curves differed only slightly from the measured data with average
relative errors of ∆P1 = 1.01 %, ∆P2 = 1.35 %, and ∆P3 = 0.54 %. The load step in the
high current region, L2, agreed very well, whereas L1 in the low current region showed
more deviation to the comparison data. However, the load step over the entire current
range, L3, agreed well with the measurements. In addition, the current after the load step
was represented well by the model. The small current steps before and after the main load
steps came from the measurement from the test stand and were necessary to ensure the
stable operation of the stack.

3.3. Species Mass Flows and Membrane Water Content

H2 and H2O-vapor mass flows at anode in- and outlet as well as O2, N2 and H2O-
vapor mass flows at cathode in- and outlet for load step L3 are shown in Figure 6. Negative
values indicate mass flows at outlets. It can be observed that the water vapor mass flow
at the anode outlet in Figure 6a increased after the load step and the operation of the fuel
cell at 0.95 A/cm2. The relative humidity also increased and remained at a constant value
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until the current dropped back to 0.12 A/cm2. The relative humidity at the cathode outlet
approached a maximum value of 1.5 after the load step to 0.95 A/cm2. The water vapor
mass flows at the anode and the cathode outlet increased steadily. Due to water diffusion
through the membrane, the water vapor concentration at the anode also increased.

Figure 6. Species mass flows of anode (a) and cathode (c) are shown for load step L3. Negative values represent outlet mass
flows. Relative humidities can be seen in panels (b,d). Values higher than 1 indicate that liquid water is present.

Figure 7 shows the membrane water content Cw for all three load steps over time. Cw
for load step L1 is lower than for L2 and L3. The current densities L2 and L3 after the load
step were much higher than for L1. Therefore more water was produced by the chemical
reaction in the CCL. This water increased the relative humidity in the cathode and was
sorbed by the membrane. The maximum membrane water content was given with 17.5.

Figure 7. Membrane water content Cw for load steps L1, L2 and L3. Cw depends on relative
humidities at interface to anode GDL and CCL. Max. membrane water content was Cw,max = 17.5

4. Conclusions

The parameterization of mechanistic models for PEMFCs is challenging. Developing
more sophisticated models with, e.g., anisotropic material properties, agglomerate models
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for CL or gas crossover in the membrane further exacerbates the problem. The measurement
methods to determine the necessary parameters are complex, expensive, and specialized
equipment is often needed, e.g., the porosity of the GDL can be measured via 3D XCT
methods, see [19]. This work demonstrated the efficient parameterization of a single-phase,
isothermal PEMFC model with measurements on a stack. The measurements showed
a strong temperature dependence and the operating temperature is relatively low with
52–55 °C (cooling inlet). Therefore, special attention was paid to the activation energies of
the Arrhenius terms of the RECD and the ionic conductivity of the membrane.

The following parameters were selected as design variables for numerical optimiza-
tion: (1) RECD of CCL, (2) activation energy of the exchange current density, (3) transfer
coefficient of the CCL, (4) reference membrane ionic conductivity, (5) activation energy of
the ionic conductivity, (6) electrical conductivity, (7) porosity, and (8) tortuosity of the GDL.
The numerical optimization was conducted with the Python package scipy.optimize.
The differential-evolution algorithm for global optimization and the Nelder–Mead algo-
rithm for local optimization were used. It was shown that both algorithms were well suited
for this type of engineering problem and fast convergence of the objective value was given.
With these optimized parameters, the simulated and measured polarization curves and
load steps agreed very well. Although numerical optimization had found good values
for the selected design variables, it does not necessarily replace advanced measurement
methods to determine the unknown parameters in advance. Further activities will be
necessary here in the future.

However, the measurement of the load steps and polarization curves in conjunction
with the in- and outlet mass flows, pressures, humidities and temperatures, and cooling
temperatures were sufficient to parameterize the fuel cell model used. Due to the lack
of measured material data, the optimized parameters were compared with values from
the literature. They agreed well with the typical physical values of the eight design
variables, although the exact values remain unknown. The obtained material parameters
will be used in the future to parameterize a more detailed 3D CFD model to analyze
the transient behavior of PEMFCs at low operating temperatures with high spatial and
temporal resolution.
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Abbreviations

The following abbreviations are used in this manuscript:

ACL Anode Catalyst Layer
BPP Bipolar Plate
BVE Butler–Volmer Equation
CCL Cathode Catalyst Layer
CL Catalyst Layer
FC Fuel Cell
GDL Gas Diffusion Layer
GHG Greenhouse Gases
LHS Latin Hypercube Sampling
LSC Long Side Chain
NMSA Nelder–Mead Simplex Algorithm
PEM Polymer Electrolyte Membrane
PEMFC Polymer Electrolyte Membrane Fuel Cell
PFSA Perfluoronated Sulfonic Acid
RECD Reference Exchange Current Density
SSC Short Side Chain

The following symbols are used in this manuscript:

σion,re f Reference ionic conductivity
Eact,σ,ion Activation energy ionic conductivity
i0,re f RECD CCL
Eact,i0,re f Activation energy RECD
α Transfer coefficient CCL
εGDL GDL porosity
τGDL GDL tortuosity
σelec,GDL Electrical conductivity
λ Stoichiometric factor
D Diffusion coefficient
Cw Membrane water content
U Electric potential
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13. Tavčar, G.; Katrašnik, T. An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells.
Energies 2013, 6, 5426–5485. [CrossRef]
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