Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates Characteristics
2.2. Experimental Design
2.3. Experimental Setup
2.4. Analytical Methods
2.5. Statistical Analysis
Second-Order Polynomial Regression
2.6. Life Cycle Assessment
- Goal and scope definition;
- Process design and construction of mass and energy balances for the inventory analysis;
- Impact assessment using SimaPro software;
- Interpretation of the assessment and improvements suggestions.
3. Results and Discussion
3.1. Box–Behnken Analysis
3.1.1. Biogas Yields
3.1.2. Monitoring Results
3.2. Statistical Analysis Results
3.2.1. Polynomial Model
3.2.2. Combination 7 Biogas Composition
3.3. Life Cycle Assessment Results
3.3.1. Process Design and Construction of Mass and Energy Balances for the Inventory Analysis
3.3.2. Impact Assessment Using SimaPro Software
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoo, S.-H.; Kwak, S.-Y. Electricity Consumption and Economic Growth in Seven South American Countries. Energy Policy 2010, 38, 181–188. [Google Scholar] [CrossRef]
- Garcia, C.; Gonzalez, O.; Baez, O.; Tellez, L.; Obando, D. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía: Bogota, Colombia, 2016.
- Unidad de Planeación Minero Energética. Available online: http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO.aspx (accessed on 10 May 2021).
- Rodríguez, R.; Gauthier-Maradei, P.; Escalante, H. Fuzzy spatial decision tool to rank suitable sites for allocation of bioenergy plants based on crop residue. Biomass Bioenergy 2017, 100, 17–30. [Google Scholar] [CrossRef]
- Serna, L.V.D.; Toro, J.C.S.; Loaiza, S.S.; Perez, Y.C.; Alzate, C.A.C. Agricultural waste management through energy producing biorefineries: The Colombian case. Waste Biomass Valorization 2016, 7, 789–798. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Merrylin, J.; Poornima Devi, T.; Kavitha, S.; Sivashanmugam, P.; Kumar, G.; Rajesh Banu, J. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [Google Scholar] [CrossRef]
- Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy Fuels 2015, 29, 8088–8094. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Poquet, V.; Papirio, S.; Trably, E.; Rintala, J.; Escudié, R.; Esposito, G. Semi-continuous mono-digestion of OFMSW and co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content. J. Environ. Manag. 2019, 231, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Kuthiala, S.; Angelidaki, I. Co-Digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 2018, 159, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jingura, R.M.; Matengaifa, R. The potential for energy production from crop residues in Zimbabwe. Biomass Bioenergy 2008, 32, 1287–1292. [Google Scholar] [CrossRef]
- Katuwal, H.; Bohara, A.K. Biogas: A Promising Renewable Technology and Its Impact on Rural Households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef]
- Ingrao, C.; Bacenetti, J.; Adamczyk, J.; Ferrante, V.; Messineo, A.; Huisingh, D. Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of life cycle assessments. Renew. Energy 2019, 136, 296–307. [Google Scholar] [CrossRef]
- Ruiz, D.; Miguel, G.S.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total Environ. 2018, 633, 1418–1428. [Google Scholar] [CrossRef]
- Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Amado, M.; Carrasco, J.; Ochoa, L.D.; Rangel, C.J.; Becerra, A.P.; Cabeza, I.O.; Acevedo, P.A. Technical and environmental analysis of large-scale pig manure digestion through process simulation and life cycle assessment. Chem. Eng. Trans. 2021, 87, 439–444. [Google Scholar] [CrossRef]
- Mendieta, O.; Castro, L.; Escalante, H.; Garfí, M. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresour. Technol. 2021, 326, 124783. [Google Scholar] [CrossRef]
- Informe de Sostenibilidad Postobon; Postobon: Bogotá, Colombia, 2021.
- Fondo de Estabilización de Precios del Cacao. Informe de Gestión 2019; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2019. [Google Scholar]
- Censo Pecuario Nacional Año 2021; Instituto Colombiano Agropecuario—ICA: Bogota, Colombia, 2021.
- Vargas, A.K.N.; Calderón, J.; Velásquez, D.; Castro, M.; Núñez, D.A. Biological system analysis for domestic wastewater treatment in Colombia. Ingeniare 2020, 28, 315–322. [Google Scholar] [CrossRef]
- Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [Google Scholar] [CrossRef]
- Rojas, F.; Sánchez, E.J.S. Guia Ambiental Para el Cultivo Del Cacao; Ministerio de Agricultura y Desarrollo Rural: Bogota, Colombia, 2013.
- Beniche, I.; Hungría, J.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.A. Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Convers. Biorefin. 2020, 11, 2133–2145. [Google Scholar] [CrossRef]
- Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [Google Scholar] [CrossRef]
- Cabeza, I.; Thomas, M.; Vásquez, A.; Acevedo, P. Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chem. Eng. Trans. 2016, 49, 385–390. [Google Scholar] [CrossRef]
- Suarez, D.; Castellanos, J.; Acevedo, P.; Santis, A.; Rodriguez, C.; Cabeza, I.; Hernandez, M. Data processing for anaerobic digestion reactor: Instrumentation, acquisition. In Proceedings of the 15th IWA World Conference of Anaerobic Digestion, Beijing, China, 17–20 October 2017. [Google Scholar]
- Khoshnevisan, B.; Tsapekos, P.; Alvarado-Morales, M.; Angelidaki, I. Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresour. Technol. 2018, 247, 486–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Wu, S.; Dong, R. Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: Titration methodologies. Chem. Eng. Technol. 2016, 39, 599–610. [Google Scholar] [CrossRef]
- Joyce, R.M. Experiment optimization in chemistry and chemical engineering, S. Akhnazarova and V. Kafarov, Mir Publishers, Moscow and Chicago, 1982, 312 pp. Price: $9.95. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 372. [Google Scholar] [CrossRef]
- Mäkelä, M. Experimental design and response surface methodology in energy applications: A tutorial review. Energy Convers. Manag. 2017, 151, 630–640. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Lemos, V.A.; de Carvalho, V.S.; da Silva, E.G.P.; Queiroz, A.F.S.; Felix, C.S.A.; da Silva, D.L.F.; Dourado, G.B.; Oliveira, R.V. Multivariate optimization techniques in analytical chemistry—An overview. Microchem. J. 2018, 140, 176–182. [Google Scholar] [CrossRef]
- ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework; International International Standard for Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ammar, M.; Korai, R.M.; Ahmad, N.; Ali, A.; Khalid, M.S.; Zou, D.; Li, X.J. Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl. Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Alvarez, R.; Lidén, G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energy 2008, 33, 726–734. [Google Scholar] [CrossRef]
- Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 2014, 105, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- Bajpai, P. Process parameters affecting anaerobic digestion. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Lei, Z.; Adachi, Y.; Kobayashi, M.; Zhang, Z.; Shimizu, K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. Bioresour. Technol. 2021, 326, 124782. [Google Scholar] [CrossRef]
- Singh, B.; Szamosi, Z.; Siménfalvi, Z. State of the art on mixing in an anaerobic digester: A review. Renew. Energy 2019, 141, 922–936. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Zhao, X.; Wu, D.; Wang, X.; Peng, X. Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance. Biochem. Eng. J. 2018, 130, 1–9. [Google Scholar] [CrossRef]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef]
- Nges, I.A.; Björnsson, L. High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 2012, 47, 62–70. [Google Scholar] [CrossRef]
- Bouallagui, H.; Lahdheb, H.; Romdan, E.B.; Rachdi, B.; Hamdi, M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manag. 2009, 90, 1844–1849. [Google Scholar] [CrossRef]
- Martínez, E.J.; Gil, M.V.; Fernandez, C.; Rosas, J.G.; Gómez, X. Anaerobic codigestion of sludge: Addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS ONE 2016, 11, e0153139. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhi, Z.; Zhen, G.; Lu, X.; Bakonyi, P.; Li, Y.-Y.; Zhao, Y.; Rajesh Banu, J. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 2019, 253, 40–49. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour. Technol. 2016, 219, 738–748. [Google Scholar] [CrossRef]
- Liu, X.; Gao, X.; Wang, W.; Zheng, L.; Zhou, Y.; Sun, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renew. Energy 2012, 44, 463–468. [Google Scholar] [CrossRef]
- Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D.M. Pilot-Scale anaerobic co-digestion of the OFMSW: Improving biogas production and startup. Sustainability 2018, 10, 1939. [Google Scholar] [CrossRef] [Green Version]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Rigon, M.R.; Zortea, R.; Moraes, C.A.M.; Modolo, R.C.E. Suggestion of life cycle impact assessment methodology: Selection criteria for environmental impact categories. In New Frontiers on Life Cycle Assessment—Theory and Application; IntechOpen: London, UK, 2019. [Google Scholar]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresour. Technol. 2017, 223, 237–249. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and environmental assessment of residual bio-wastes management strategies. J. Clean. Prod. 2021, 285, 124815. [Google Scholar] [CrossRef]
- Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Front. Bioeng. Biotechnol. 2016, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadhukhan, J.; Sen, S.; Gadkari, S. The mathematics of life cycle sustainability assessment. J. Clean. Prod. 2021, 309, 127457. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, C.; Hernández, M.A.; Bayona, O.L.; Camargo, H.A.; Cabeza, I.O.; Candela, A.M. Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Convers. Biorefin. 2021, 11, 261–274. [Google Scholar] [CrossRef]
CIR | SS | PM | RBFDI | Inoculum | ||
---|---|---|---|---|---|---|
pH (1:5 Extract) | 5.42 ± 0.13 | 7.55 ± 0.15 | 7.16 ± 0.22 | 4.2 ± 0.20 | ||
Moisture b | % | 89.62 ± 0.07 | 39.56 ± 0.03 | 74.65 ± 0.02 | 70.67 ± 0.03 | 91.45 ± 0.02 |
KTN c | % | 0.70 ± 0.02 | 0.91 ± 0.07 | 1.38 ± 0.08 | 1.16 ± 0.01 | |
TS | % | 10.37 ± 0.02 | 60.43 ± 0.18 | 29.32 ± 0.04 | 26.12 ± 0.01 | 20.50 ± 0.01 |
VS | % | 7.94 ± 0.01 | 8.49 ± 0.04 | 22.92 ± 0.07 | 22.73 ± 0.07 | 16.72 ± 0.08 |
C/N | 59.57 | 14.88 | 33.18 | 48.01 | ||
COD b | g L−1 | 8.17 | 109.5 | 24.6 | 8.62 |
Combination | C/N | % a | OLR (g VS Fed Day−1) |
---|---|---|---|
C-1 | 25 | 0 | 3.25 |
C-2 | 45 | 0 | 3.25 |
C-3 | 25 | 100 | 3.25 |
C-4 | 45 | 100 | 3.25 |
C-5 | 25 | 50 | 2.5 |
C-6 | 45 | 50 | 2.5 |
C-7 | 25 | 50 | 4 |
C-8 | 45 | 50 | 4 |
C-9 | 35 | 0 | 2.5 |
C-10 | 35 | 100 | 2.5 |
C-11 | 35 | 0 | 4 |
C-12 | 35 | 100 | 4 |
C-13 | 35 | 50 | 3.25 |
Combinations | Stabilization Day | Daily Biogas Production (mL Day−1) | CH4 (%) | Biogas Yield (mL g−1 VS) | VS of Digestate (g L−1) | COD of Digestate (g L−1) | Average pH | tVFA/Alkalinity Ratio |
---|---|---|---|---|---|---|---|---|
C-1 | 17 | 375.62 | 46.9–52.7 | 138.33 | 32.16 | 17.5 | 6.86 | 0.57 |
C-2 | 16 | 1400.58 | 50.7–51.3 | 744.31 | 22.5 | 16.15 | 6.67 | 0.37 |
C-3 | 17 | 1333.42 | 57.5–59.9 | 313.73 | 55.66 | 12.49 | 7.06 | 0.41 |
C-4 | 17 | 795.71 | 52.4–54.5 | 322.5 | 10.71 | 13.45 | 6.88 | 0.23 |
C-5 | 14 | 618.63 | 54.2–55.8 | 411.17 | 14.43 | 13.72 | 6.76 | 0.22 |
C-6 | 16 | 1707.29 | 57.9–59.5 | 736.7 | 23.63 | 11.5 | 6.27 | 0.64 |
C-7 | 14 | 2200.15 | 54.7–57.5 | 617.98 | 17.4 | 18.87 | 7.50 | 0.21 |
C-9 | 15 | 794.21 | 58.9–59.1 | 463.02 | 23.82 | 18 | 6.60 | 0.39 |
C-10 | 16 | 725.94 | 56.4–59 | 531 | 11.64 | 16 | 6.92 | 0.18 |
C-11 | 17 | 2110.35 | 54.3–55.4 | 446.49 | 14.92 | 10.8 | 6.33 | 0.33 |
C-12 | 11 | 1230.99 | 49.8–50.3 | 363.52 | 14.92 | 18 | 6.85 | 0.45 |
C-13 | 9 | 884.10 | 49.8–50.1 | 396.59 | 62.84 | 15.91 | 6.37 | 0.97 |
Emissions to Air a | g Day−1 |
---|---|
Carbon Monoxide, Fossil | 7.62 |
Hydrogen Sulfide | 1.67 × 10−01 |
Methane, Fossil | 7.08 |
NMVOC, Non-Methane Volatile Organic Compounds, Unspecified Origin | 7.43 × 10−01 |
Methane, Biogenic | 4.72 × 10+01 |
Nitrogen, Atmospheric | 5.08 × 10+01 |
Carbon Dioxide, Biogenic | 2.53 × 10+04 |
Carbon Disulfide | 6.27 × 10−02 |
Impact Category | Unit | Total |
---|---|---|
Abiotic Depletion of Fossil Fuels (ADF) | MJ | 1.05 |
Global Warming Potential (GWP) | kg CO2 eq | 8.80 × 10−02 |
Ozone Layer Depletion (ODP) | kg CFC-11 eq | 4.58 × 10−09 |
Human Toxicity (HT) | kg 1,4-DB eq | 3.42 × 10−02 |
Terrestrial Ecotoxicity (TE) | kg 1,4-DB eq | 5.57 × 10−02 |
Photo-Oxidation Formation (POF) | kg C2H4 eq | 1.34 × 10−05 |
Acidification Potential (AP) | kg SO2 eq | 2.61 × 10−04 |
Eutrophication Potential (EP) | kg PO4 eq | 2.04 × 10−04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosquera, J.; Rangel, C.; Thomas, J.; Santis, A.; Acevedo, P.; Cabeza, I. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 2021, 9, 1875. https://doi.org/10.3390/pr9111875
Mosquera J, Rangel C, Thomas J, Santis A, Acevedo P, Cabeza I. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes. 2021; 9(11):1875. https://doi.org/10.3390/pr9111875
Chicago/Turabian StyleMosquera, Jhessica, Carol Rangel, Jogy Thomas, Angelica Santis, Paola Acevedo, and Ivan Cabeza. 2021. "Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence" Processes 9, no. 11: 1875. https://doi.org/10.3390/pr9111875
APA StyleMosquera, J., Rangel, C., Thomas, J., Santis, A., Acevedo, P., & Cabeza, I. (2021). Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes, 9(11), 1875. https://doi.org/10.3390/pr9111875