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Abstract: The global coronavirus pandemic continues to restrict public life worldwide. An effective
means of limiting the pandemic is vaccination. Messenger ribonucleic acid (mRNA) vaccines currently
available on the market have proven to be a well-tolerated and effective class of vaccine against
coronavirus type 2 (CoV2). Accordingly, demand is presently outstripping mRNA vaccine production.
One way to increase productivity is to switch from the currently performed batch to continuous
in vitro transcription, which has proven to be a crucial material-consuming step. In this article,
a physico-chemical model of in vitro mRNA transcription in a tubular reactor is presented and
compared to classical batch and continuous in vitro transcription in a stirred tank. The three models
are validated based on a distinct and quantitative validation workflow. Statistically significant
parameters are identified as part of the parameter determination concept. Monte Carlo simulations
showed that the model is precise, with a deviation of less than 1%. The advantages of continuous
production are pointed out compared to batchwise in vitro transcription by optimization of the space–
time yield. Improvements of a factor of 56 (0.011 µM/min) in the case of the continuously stirred
tank reactor (CSTR) and 68 (0.013 µM/min) in the case of the plug flow reactor (PFR) were found.

Keywords: mRNA; SARS-CoV-2; vaccines; digital twin; quality by design; process analytical technology;
continuous manufacturing

1. Introduction

In the past 1.5 years, mRNA-based vaccines have become increasingly relevant due to
the COVID-19 pandemic. In contrast to classical vaccines, which use a protein or inactivated
virus to stimulate the immune response, mRNA-based vaccines introduce the protein-
coding information in the form of mRNA directly into the patient’s cells, causing them to
produce the antigen themselves [1–3]. In contrast to deoxyribonucleic acid (DNA)-based
vaccines, this form of vaccination offers the advantage that no alteration of the recipient
genome can be altered by recombination events [4,5]. Two of the first vaccines against SARS-
CoV-2 approved in Europe and the United States were mRNA-based vaccines [6,7]. The
state of the art of industrial production of this class of vaccines is based on so-called in vitro
transcription, which is an enzymatically catalyzed reaction [8]. Against the background
of the dynamic pandemic situation, this process, which is carried out in batches, has
limitations in terms of scale and the associated production capacity [9]. A switch to
continuous production, as also demanded by the European Medical Association [10] and
Food and Drug Administration [11], is to be aimed at, due to the advantages in agility,
flexibility, quality, and costs [12]. The control strategy to be developed in the context
of a quality-by-design (QbD)-based process development, to ensure the quality target
product profile (QTPP), requires design spaces [13]. These can be defined via validated
process models in order to avoid out-of specification (OOS) batches [14,15]. On the other
hand, advanced process control can be realized on the basis of a validated process model
developed digital twin [16]. Although basic research on the fundamental processes of
in vitro transcription can be found, to our knowledge there is no publication of a digital
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twin for continuous in vitro transcription that explicitly addresses QbD-compliant model
validation and the requirements for a digital twin in good manufacturing process (GMP)-
compliant production. The aim of this work is therefore to fill this critical gap, in which
distinct and quantitative criteria for assessing validity and suitability as a predictive process
model and digital twin are demonstrated. In addition, the extensive studies are used to
quantify the advantages in terms of space–time yield, representative of speed and capacity,
of continuous production over a batchwise production. Furthermore, these results have
been incorporated into an extensive study comparing batchwise and continuous total
processes in a recently published paper and could be used to determine the optimal
operating points for in vitro transcription. The presented digital twins lay the foundation
for future experimental validation.

1.1. State of the Art of IVT

In vitro transcription describes an enzymatic reaction in which mRNA is produced
from template DNA. Traditionally, T7, SP6, or T3 RNA polymerase are used as enzymes
that act as catalysts for the reaction. In addition to the enzyme, nucleotides are required as
substrates for in vitro transcription, as well as MgCl2 as a cofactor of the polymerase. The
reaction scheme was adapted from the literature considering the in vitro transcription by
T7 RNA polymerase [17]. The reaction is divided into the following reaction steps: initiation
(Equations (1)–(5)), elongation (Equation (6)), and termination (Equation (13)) [17–19]. Dot
signs refer to a bound complex of the indicated components.

Reversible reactions are described by equilibrium constants Ki, whereas irreversible
reactions are characterised by rate constants kI, kE, and kT. The initiation step of in vitro
transcription is described in this work using a mechanism that considers both the random
binding of the first nucleotide, GTP, and that of the promoter (D) located on the DNA
template. Initiation is completed with the irreversible formation of an enzyme–DNA–RNA
complex, which is described by E·D·Mj. The elongation of the mRNA occurs when a
nucleotide (ATP, CTP, GTP, UTP; summarized as NTP) is reversibly bound by the enzyme
(E) and forms a complex together with the DNA and the already formed RNA. Through an
irreversible reaction, the nucleotide is bound to the RNA and an inorganic pyrophosphate
(PPi) is cleaved off. Nucleotides can bind to the free enzyme, to the promoter–enzyme
complex, and to the transcription complex. This leads to a competitive situation and
consequently to competitive inhibition (Equations (7)–(12)). In addition, the resulting
pyrophosphate has a negative influence on the transcription rate because it can temporarily
bind to the nucleotide binding site of both the freely soluble T7 RNA polymerase and the
enzyme–DNA–RNA complex [17,20,21]. Once the mRNA has reached its final length, the
transcription complex spontaneously dissolves, releasing the mRNA product (Mn) and
leaving both the enzyme and the template DNA unbound [17].

Initiation:

E + GTP

KI
G︷︸︸︷

 E · GTP (1)

E + D
KD︷︸︸︷

 E · D (2)

E · GTP + D
KD︷︸︸︷

 E · GTP · D (3)

E · D + GTP

KI
G︷︸︸︷

 E · D · GTP (4)

E ·D · GTP
kI︷︸︸︷→ E · D ·M1 (5)
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Elongation:

E · D ·Mj + NTP

KNTP︷︸︸︷

 E · D ·Mj · NTP

KE︷︸︸︷→ E · D ·Mj+1 + PPi (6)

Competitive Inhibition:

E + NTP

KI NTP︷︸︸︷

 E · NTP (7)

E · D + NTP

KI NTP︷︸︸︷

 E · D · NTP (8)

E + PPi

KI PPi︷︸︸︷

 E ·PPi (9)

E · D + PPi

KI PPi︷︸︸︷

 E · D ·PPi (10)

E · D ·Mj + NTP

KI NTP︷︸︸︷

 E · D ·Mj · NTP (11)

E · D ·Mj + PPi

KI PPi︷︸︸︷

 E · D ·Mj · PPi (12)

Termination:

E · D ·Mn

kT︷︸︸︷

 E + D + Mn (13)

To prevent the degradation of the mRNA in vitro it must be capped. This can be achieved
either co-transcriptionally, i.e., during the in vitro transcription, or post-transcriptionally in a
subsequent process step. The reaction schemes of the two capping mechanisms are shown
in Figure 1. In co-transcriptional capping, the mRNA is capped by the polymerase through
the addition of a cap analogue. Post-transcriptional capping is performed as a second
enzymatic reaction, using the vaccinia capping enzyme [22–24].

Post-transcriptional capping takes place in three successive reaction steps. First, the
γ-phosphate of the mRNA is hydrolysed with the help of a 5′-triphosphatase. Guanylyl-
transferase then transfers GMP derived from the substrate GTP to form the 5′-5′-linked
Gppp RNA. Finally, methylation occurs when an RNA (guanine-N7) methyltransferase
methylates the mRNA with the co-substrate S-adenosyl-L-methionine (AdoMet) [25–27].

In contrast to post-transcriptional capping, co-transcriptional capping takes place dur-
ing in vitro transcription in a single reaction step. This is catalysed by the polymerase used,
which transfers the added cap analogue to the 5′ end of the mRNA. The cap analogues
are not incorporated into the mRNA during in vitro transcription because they lack a free
5′-triphosphate, such that they are only incorporated at the 5′-end of the mRNA. m7GpppG
is most frequently used as a cap analogue [27,28]. One problem with co-transcriptional
capping is that elongation occurs in the “wrong” direction, at the 3′-OH of the cap ana-
logue, resulting in mRNA with the cap in reverse orientation, which means it cannot be
translated [27,29]. One possible solution is to use anti-reverse cap analogues (ARCA) or
m7pppG modified at the 2’ position [27,30–32]. Another problem of co-transcriptional
capping is that the cap analogue competes with GTP as an initiator of in vitro transcription,
resulting in not all of the mRNA being capped [27]. This results in a capping efficiency of
60–80%, in contrast to approx. 100% for post-transcriptional capping. The latter, however,
has to catalyse three reactions instead of only one, which results in a longer production
time [1,22].
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Figure 1. Comparison of the two capping mechanisms. Left: post-transcriptional capping with a
two-step enzymatic reaction; right: co-transcriptional capping by adding a cap analog, catalysed by
the enzyme used in the in vitro transcription [33].

Since the costs of the input materials for in vitro transcription capping, especially the
cap analogue and the enzyme, account for most of the production costs, it makes sense
to switch the process from batch to continuous [9]. In this way, the use of cost-intensive
reagents can be reduced and, by using in situ product removal as well as substrate feed
and product recovery strategies, molecules such as enzymes, co-factors, or nucleotides can
be easily separated and returned to the process [22,34].

1.2. QbD-Based Process Development

QbD-based process development can be used to establish causality between process
parameters and the relevant quality attributes of the product. The holistic QbD approach
can ensure consistent product quality from development through piloting to production,
and is also applied in other pharmaceutical manufacturing applications [15,35]. Process
models can be used for the real-time prediction of quality attributes and their development
during the process. Thus, when optimising the process, changes to it are possible even
after submission. To achieve this, a digital representation of the process is needed, also
called a “Digital Twin” (DT).

A Digital Twin can be divided into five levels (cf. Figure 2), whereby the first three
levels reflect purely digital models, and the level of detail increases per level. The first
step consists of a steady-state model that describes the process with the help of time-
independent mass and energy balances. This is used in the first design phase of the process
for initial optimisation and calculation procedures [36–39]. If the steady-state model is
extended by accumulation terms and the system dynamics, the second stage of a digital
twin is reached. This is a dynamic model that becomes time dependent through the time
derivative of all variables of interest. It is used for the identification of optimal operational
conditions, scaling-up design, and process control [36,40–42]. The final stage of a purely
digital model is the validated model, which must be validated against process data. This
extends the capabilities of the dynamic process model by considering phenomena such
as inhibition, which increases the number of states. It also includes equipment constraint
terms such as working capacity and hydraulics. The penultimate step to a complete digital
twin is the digital shadow. This is a validated model that can be executed in real time
based on automatic inputs via a data link with the physical process. Model-based control
is the final stage of a digital twin and involves closed-loop control. It also enables online
optimisation of the process. The digitalisation infrastructure enables the implementation of
control structures based on the model-based predictions [36].

QbD is based on a validated design space in which consistent quality can be ensured
and which can be spanned through experimentation or by rigorous process models. The
workflow for developing a QbD process is shown in Figure 3 [43,44].
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digital shadow to a model-based control [36].
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Figure 3. Workflow of model validation based on a QbD-oriented approach [43]. In a first step, the QTPPs are defined.
Subsequently, the CQAs are defined and a risk assessment of the influence of various process parameters on the CQAs
is carried out. The risk assessment results in a design space for the process parameters to be investigated, which can be
examined either via experiments or by means of a rigorous process model. Based on the results, a control strategy is defined,
which can be continuously compared online via PAT with the actual state of the system. Strict implementation of this
strategy allows continuous process optimization.

First, the definition of a quality target product profile (QTPP) is necessary. The QTPP
is related to the quality, safety, and efficacy of the active ingredient, as the QTPPs may affect
the bioavailability, the strength of the effect, and the stability of the active ingredient [45].
Characteristics that, when controlled within a certain limit, range, or distribution, lead
to the desired product quality are called critical quality attributes (CQAs) and must be
defined and ranked [46–48].



Processes 2021, 9, 1967 6 of 22

CQAs are the basis for further process development and need to be dynamically
adapted as new knowledge is gained about the process or product. They are obtained
through experimentation and risk management, the latter including risk assessment, which
should be carried out at the beginning of process development. It serves to define the scope
for process design by identifying relationships, known and hypothetical, between material,
equipment, and process parameters and CQAs. The risk assessment can be carried out
with the help of the Ishikawa analysis, which is shown in Figure 4 [48,49].
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On the main branches, in the Ishikawa diagram, the effects, such as material properties,
equipment design, and process parameters, which can affect CQAs, such as yield, purity,
or generally the process capability, are shown. To obtain a more detailed description
of the relationship between cause and risk, the main branches are further broken down
into subsidiary branches. The prior knowledge gathered by the process development
team determines the level of detail in the diagram. The Ishikawa diagram can be used to
determine critical process parameters (CPPs) and the limits within which they must be
maintained during the process. CPPs should consequently be part of the process control
strategy [48].

In Table 1 and graphically in Figure 4, the failure mode effect analysis (FMEA) is
shown. It is used for quantitative risk analysis by weighting the CPPs obtained from
the Ishikawa diagram regarding their effects on the CQAs as well as their probability of
occurrence of the risk during the process of in vitro transcription with co-transcriptional
capping. In addition, the possible interactions of certain parameters can be considered.
This is achieved by linking the parameters but requires an even more comprehensive prior
knowledge of the system properties, which is rarely the case, so this is not considered
here [48].

The definition of the design space, which follows the risk analysis (see Figure 3), is
traditionally achieved by experimentation. Design-of-experiments (DoE) methods are
usually used to reduce the experimental effort and the use of costly feedstocks, such as
the cap analogue and the enzyme in the case of IVT [9]. However, even by reducing
the experimental design to a minimum number of experiments, the financial cost of the
raw materials is significant. The final steps of QbD-based process development are the
development of a process analytical technology (PAT)-supported control strategy and
continuous improvement. Both are considered in detail by Kornecki et al. [48,50].
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Table 1. Failure mode effect analysis (FMEA) of key process parameters in in vitro transcription. The severity and the
probability of occurrence are multiplied together, resulting in a risk score. This determines whether a parameter must be
investigated by univariate (UV) or multivariate (MV) analysis as part of the model validation procedure. Colors indicate
risk scores from low (gray, green) to medium (yellow) to high (red).

Risk Severity Occurrence Risk Score Characterization
Transcript

length 5 1 5 UV For a product not variable. Relevant for process
change for product changeover.

Sequence 3 1 3 UV For a product not variable. Relevant for process
change for product changeover.

RNA
polymerase

concentration
9 6 54 MV

Influences kinetics and is therefore important for
process optimization. Can be freely selected within

the economic limits of the design space.

Nucleotide
concentration 9 8 72 MV

Influences kinetics and is therefore important for
process optimization. Can be freely selected within

the economic limits of the design space.

Cap analogue
concentration 9 6 54 MV

Influences kinetics and is therefore important for
process optimization. Can be freely selected within

the economic limits of the design space.

Template
concentration 7 8 56 MV

Influences kinetics and is therefore important for
process optimization. Can be freely selected within

the economic limits of the design space.

Duration 10 4 40 MV Great influence on hydrodynamics (back-mixing,
flow regime, residence time)

Throughput 8 4 32 MV Great influence on hydrodynamics (back-mixing,
flow regime, residence time)

L/D 7 3 21 MV Great influence on hydrodynamics (back-mixing,
flow regime, etc.)

Kinetics 10 1 10 UV Primarily based on Michaelis constants, can be the
subject of imprecise determination

Temperature 8 0 0 X Severely impacts kinetics/enzyme stability, can be
easily controlled at the known optimum

pH 7 0 0 X Severely impacts kinetics/enzyme stability, can be
easily controlled at the known optimum

The use of predictive models allows a design space to be defined in a resource-
efficient manner and a quantitatively defined and knowledge-based process optimum to be
determined. They enable a reduction in experimental effort because they are derived from
physico-chemical and thus do not lose their validity when the limits of the design space are
exceeded. Thus, process design becomes possible not only on a purely empirical basis, but
also leads to a model- and data-based process evaluation. A prerequisite for the possibility
of using predictive models is that they can be shown to be at least as accurate and precise
as the experiments they are intended to replace [44,48]. The proof can be provided by
following the workflow for process development and validation shown in Figure 5 and
includes four different decision criteria for each development and validation step [44,49].
After defining the model task and application, the model depth is determined. This is
achieved based on existing prior knowledge and the literature. Verification of the model
can be achieved by testing the energy and mass balance using simplified case studies. One-
parameter-at-a-time studies can be used to infer the sensitivity of the model and determine
whether the model behaves as expected. To identify the impact of each parameter, the
deviations of the parameters from the center point must be large. By applying DoE
principles to create a screening design as a plan for the simulation studies, the sensitivity
of the model can be quantified. Unlike the one-parameter-at-a-time studies, the area
investigated in the DoE should be within the system boundaries. The quantification of
the results can be achieved with the help of statistical evaluations such as partial least
squares (PLS) stress diagrams. The final step is to investigate the precision and accuracy
of the model at different operating points using, e.g., Monte Carlo simulations. As a rule,
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the results of the simulation studies are compared with experimental data for final model
validation [44,48].
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Figure 5. Decision tree for a process model validation according to Sixt et al. The application allows
a quantitative evaluation of the model quality based on mechanistic and statistical decision criteria.
A rigorous execution of the procedure leads to a distinctively and quantitatively validated rigorous
process model. Solid lines describe the process of a decision, dashed lines show the affiliation of the
decision criteria to the respective decision points.
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2. Modeling of In Vitro Transcription

Three different reactors are considered in the modeling of in vitro transcription, with
balancing taking place in the system boundaries shown in Figure 6.
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2.1. In Vitro Transcription and Co-Transcriptional Capping Kinetics

The kinetics of in vitro transcription and the co-transcriptional capping were equal
for all operation modes. The equations were adopted from the literature and are based on
Michaelis–Menten-type kinetics with consideration of byproduct inhibition. The maximum
reaction rate was a function of the turnover rate (keff) and the enzyme concentration (cE).

rmax = ke f f ·ce. (14)

The reaction rate of the in vitro transcription with co-transcriptional capping is given by

r = rmax

1+∑N
j=1

KM,NTP,j
cNTP,j

·(1+ cPPi
KI,PPi

+∑N
i=1

cNTP,i
KI,PPi

)+
KM,DNA

cDNA
·[1+ KG

cGTP
·(1+ cPPi

KI,PPi
+∑N−1

i=1
cNTP,i

KI,NTP,i
)]

· ccap
ccap+KM,cap

· cmRNA
cmRNA+KM,mRNA

(15)

and describes the influence of the concentrations of the nucleotides (cNTP), the pyrophos-
phate (cPPi ), the promoter (cDNA), and the cap analogue (ccap), as well as the mRNA (cmRNA)
and the inhibition by the nucleoside tri phosphates (KI,NTP) and the pyrophosphate (KI,PPi ).
KM,NTP, KM,DNA, KM,cap, and KM,mRNA are the Monod constants of the nucleotides, the
promoter, the cap analogue, and the mRNA, respectively. KG represents the dissociation
constant for initial GTP binding, cGTP is the concentration of guanosine triphosphate.
The equation in the square brackets in the denominator of the first fraction describes the
initiation process of in vitro transcription, which is characterized by the binding of the
promoter to the enzyme. The kinetics of this process are modeled by the binding of the
GTP, the inhibition by the pyrophosphate, and the competition of the substrate nucleotides,
without GTP.

2.2. Batch and CSTR Production

The production of mRNA in a stirred tank reactor was described by the general mass
balance equation for stirred tank reactors. The change in mass over time is equal to the
sum of mass flow into and out of the reactor and the mass produced or consumed in a
particular reaction, described by r according to the kinetic equations given above.

The changes in product and substrate concentrations over time were calculated by

dcmRNA
dt

=

( .
Vin·cmRNA,in −

.
Vout·cmRNA

)
V

+ r. (16)
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dcNTP,i

dt
=

( .
Vin·cNTP,i,in −

.
Vout·cNTP,i

)
V

− fi·nmRNA·r (17)

dcPPi
dt

=

( .
Vin·cPPi,in −

.
Vout·cPPi

)
V

+ (nmRNA − 1)·r (18)

dccap

dt
=

( .
Vin·ccap,in −

.
Vout·ccap

)
V

− r (19)

dcAdoHcy

dt
=

( .
Vin·cAdoHcy,in −

.
Vout·cAdoHcy

)
V

+ r (20)

where f is the relative portion of the base contained in the mRNA, nmRNA is the transcript
length of the mRNA, cAdoHcy is the S-Adenosyl L-homocysteine concentration,

.
V is the

volumetric flowrate either in or out of the reactor, and V is the reaction volume.
The change in volume over time was calculated using a volume balance:

dV
dt

=
.

Vin −
.

Vout. (21)

The process was either simulated in batch mode where incoming and outgoing streams
were set to zero, or as a continuously stirred tank reactor (CSTR), where the volumetric
flux into and out of the reactor were equal in magnitude and greater than zero.

2.3. Plug Flow Tubular Reactor

The development of fundamental equations for reaction processes and kinetics in
continuous flow systems has been reported in the literature as early as 1931 by Benton [52].
Comprehensive analysis of these equations and their dimensional analysis as well as
the provision of a boundary condition was performer by Hulburt [53]. The effect of
axial dispersion on residence time distribution and concentration profiles of solutes in flow
reactors and similar tubular channels was extensively studied and described by Danckwerts
in 1953 [54], who derived the well-known Danckwerts boundary conditions, as well as
by Taylor [55] and his solution for the axial dispersion coefficient, which was modified
by Aris in 1956 [56], also known as the Taylor–Aris solution. Bischoff and Levenspiel
showed the interrelationship of the different models for longitudinal and radial dispersion
present at that time in 1962 [57,58]. Major contributions to the understanding of laminar
dispersion were made by Wissler [59], Ananthakrishnan et al. [60], and Chee-Gen and
Ziegler [61], who investigated the validity of Taylor and Aris’s solution for different flow
regimes. Wissler also provided an alternative inlet boundary condition, in which the limit
of large Peclet numbers provides better results for the semi-infinite reactor when compared
to the Wehner–Wilhelm equation [62]. Among the first works, Trivedi and Vasudeva [63]
extensively studied the reduction in dispersion by different vessel geometries, such as coiled
helices, when compared to the straight tube, which was the model geometry primarily
investigated up to this point in time. In this context, Saxena and Nigam [64] demonstrated
the effect of coiled configurations for flow inversion on the residence time distribution
and provided a correlation including a design parameter, which interconnects dispersion
and the number of bends. Westerterp et al. [65–67] compared the standard dispersion
model with other model solutions and introduced the so-called wave model, based on
hyperbolic equations opposed to parabolic as in the dispersion model, for the description of
longitudinal dispersion in tubular reactors. Since then, many studies have been published
for chemical as well as pharmaceutical reaction processes; however, the axial dispersed plug
flow model as well as the boundary conditions for the closed–closed vessel as described by
Danckwerts have remained the model approach of choice due to their effective prediction
capabilities of non-ideal flow reactors.

The change in concentration over time was modeled by an axial dispersion model. In
this model, the overall concentration change is equal to the sum of the change in concentra-
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tion over the reactor length resulting from convection by the fluid velocity u, concentration
change by dispersion in analogy to Fick’s law, where the parameter Dax describes the extent
of back mixing and the concentration change due to reaction, r, according to the kinetic
equations given above

∂ci
∂t

= −u ·∂ci
∂z

+ Dax ·
∂2ci
∂z2 + r. (22)

The corresponding differential equations can be solved by the implementation of two
boundary conditions, which are shown in Equations (23) and (24).

∂c(z = L)
∂z

= 0 (23)

Dax·
∂c(z = 0)

∂z
= u· (c(z = 0) − cin) (24)

Table 2 shows the reference conditions for the in vitro transcriptions of all reactor types.
The values were adapted from the literature [3,9,17,68].

Table 2. Reference conditions for in vitro transcription.

Process Variable Value Unit

Transcript length 4079 Bases
RNA polymerase concentration 1 × 10−3 mM

Nucleotide concentration 5 mM
Cap analog concentration 9.1 mM
Template concentration 2 × 10−5 mM

Duration 9 h
Throughput 1 0.19 L/h

L/D 2 2500 -
Temperature 37 ◦C

1 For CSTR and PFR. 2 of the PFR.

3. Model Parameter Determination

Figure 7 shows a workflow for the model parameter determination. The fluid dynam-
ics (red) of the system are characterized by the axial dispersion coefficient. This can be
determined with the help of tracer experiments by inducing the tracer either as a pulse
or as a step [69]. Alternatively, correlations of the axial dispersion coefficient can be used.
Examples are the correlations for a long diffusion time, for experimentally determined
Peclet numbers, and for a packed bed according to Prausnitz [70].

The kinetics of the reactions that take place depend on the maximum reaction rate,
the Monod constants of the substrates and the promoter, which is located on the template
DNA. It is also influenced by the inhibition constants of the substrates and the products.
These parameters can be determined by evaluating the Lineweaver–Burk [71,72], the
Hanes–Woolf [73], or the Eadie–Hofstee diagrams [74].

Alternatively, if available, reaction parameters can be derived from the literature or
enzymatic databases [75].
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4. Model Validation
4.1. Sensitivity Analysis

The model validation starts with the model verification. Here, it is checked if the
syntax is correct, and a dimension analysis is performed. All mass balances must be closed,
and results of test simulations must correspond to the expert expectations. Characteristic
numbers describing fluid dynamics, e.g., Reynolds or Péclet, and mass transfer kinetics,
e.g., Schmidt, should be used to ensure the validity of the model. Model sensitivity should
first be investigated with respect to the influence of the individual model parameters. This
must be performed at least for the univariate parameters identified in the risk assessment. It
is better to perform this for all model parameters. The results are discussed in Section 4.1.1.

The model parameters to be investigated in the risk assessment as multivariate are
quantified with tools of statistical experimental design with respect to their sensitivity
(effect strength and direction), and their influence on the space–time yield by the multidi-
mensional design space is determined. The results are presented in Section 4.1.2. Finally,
it must be ensured that the prediction range due to the error in the model parameter
determination, determined by Monte Carlo simulation, is smaller than the experimental
error. This is discussed in Section 4.2.

4.1.1. One-Factor-at-a-Time

The obtained sensitivities by varying one factor at a time can be seen in Figure 8 for
selected factors. Since the selected reference operating point already achieves complete
conversion within the reaction time investigated, the same final concentration as in the
reference condition is achieved when the enzyme concentration is increased. However, as
expected, increasing the enzyme concentration has a positive effect on the kinetics, so that
the final capped mRNA concentration is reached earlier (Figure 8a). The Monod constant
of the cap analogue does not show a strong influence on the kinetics of production of the
capped mRNA (Figure 8b).

When the concentration is decreased, the reaction slows down so that less capped
mRNA is obtained at the end of the time period studied than in the reference condition.
Due to the similar mean reaction time in the batch and PFR scenarios, the concentration
profiles obtained correspond to each other with respect to the ordinate considered.

In the CSTR (Figure 8c,d), the same effects are observed, but the concentration profile
does not quantitatively match that of batch and PFR (Figure 8e,f) due to the constant
dilution by the input stream. This also causes a different final concentration.
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Figure 8. Sensitivity of the models obtained by one-parameter-at-a-time studies. (a) Batch reactor, variation in the T7 RNA
polymerase concentration; (b) batch reactor, variation in the Monod constant of the mRNA (lines are overlapping); (c) CSTR,
variation in the T7 RNA polymerase concentration; (d) CSTR, variation in the flow rate; (e) tubular reactor, variation in the
T7 RNA polymerase concentration; (f) tubular reactor, variation in the flow rate.

In contrast to the strong positive effect due to the change in enzyme concentration,
a change in the Monod constant of mRNA does not cause a deviation from the reference
concentration profile greater than five percent at any time.

The effect of throughput Q (omitted in the batch scenario) shows the expected negative
influence on the final concentration. This is due to the reduction in the residence time and
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thus the available reaction time. This observation based on the parameters fully examined
here is representative of the fact that there is no obvious error in the implementation, such
that part of the decision criterion for sensitivity is met.

4.1.2. Multiple Factors at a Time

Multiple-factors-at-a-time (MFAT) studies are performed to quantify the effects of the
process variables on space–time yield and also to map possible interactions between the
parameters. The parameters considered have a high risk score. The MFAT studies were
conducted on a DoE basis. The DoE was a two-stage partial factorial custom design to
allow for two-way interactions. Depending on the process model investigated, 8, 9, and
11 factors were examined for batch, CSTR, and PFR, respectively.

Figure 9 shows the results from the MFAT studies. As expected, the most significant
effects on the space–time yield for both CSTR and PFR are the reactor volume, since as the
volume decreases, the space efficiency increases, as does the volume flow rate, whereas as
the volume flow rate increases, the time efficiency increases. In addition, the nucleotide
concentrations as well as their interactions affect the target size. This is also the case with
the batch reactor. In contrast to the other two reactors, the enzyme concentration is the
most significant effect here, whereas it becomes insignificant in the CSTR and PFR, due to
the linear dependence of the space–time yield on the throughput.
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The partial least squares (PLS) loading plots, shown in Figure 10, make it possible
to recognise and understand linear dependencies of the covariance at a glance. In the
batch reaction all factors are positively correlated with STY (Figure 10a). In the case of the
CSTR, the volume is negatively correlated with STY, since higher values decrease the space
efficiency of the process (Figure 10b). For example, the space-time yield (STY) takes on
high values when the length-to-diameter ratio is high (Figure 10c) and the volume is low at
the same time. A linear dependency is only present for volume, while length and geometry
ratio can be considered independent variables due to their orthogonal position to STY.
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Finally, a preliminary design space can already be narrowed down by plotting the
STY over the most important influencing factors resulting from the effects analysis (see
Figure 11). In the case of the batch reactor (Figure 11a,b), the optimum can be located at
high template DNA and nucleotide concentrations. Within the “green” to “dark green”
regions, the STY drops to below 50% of the predicted optimum.

In the case of the CSTR (Figure 11c,d) and PFR (Figure 11e,f), the parameters that
emerge as most significant from the effects analysis are volume and throughput. The opti-
mum is found at low volume (lower bound here) and high throughput (upper bound here).
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A lower acceptable operating range can again be clearly defined via the contour limits. The
nucleotide concentration must also be increased with increasing throughput to achieve the
highest possible STY.
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Thus, from the MFAT studies, the interaction effects as well as a confined design
space emerged with clear and quantitative sensitivities, thus achieving the second
validation criterion.

4.2. Accuracy and Precision

Determination of model precision and accuracy is investigated here via Monte Carlo
studies. In this paper, the authors present only the results on precision. The design
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space described in the MFAT study is simulated here at the center point and the optimum
predicted from statistical regression. The reference STY (CP) is 50.0% higher for the batch
reactor at the optimum operating point (OOP), 41.6% higher for the CSTR, and 48.4%
higher for the PFR. Likewise, the final mRNA concentration increases from 4.9 µM to
7.3 µM (batch), from 4.3 µM to 6.0 µM (CSTR), and from 4.9 µM to 7.3 µM (PFR) (see
Figure 12). Both operating points show a maximum deviation of less than 1% from the
mean value for all reactors in the MC simulation.
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Figure 12. Deviation of the models obtained by the random variation of process variables with a standard deviation of
+/− 5% in Monte Carlo simulations. The left column shows the center point, the right column shows the optimal operating
point (derived from DoE) for (a,b) batch reactor, (c,d) CSTR, and (e,f) tubular reactor.
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Typical experimental reproducibilities are around 5%. With 30 simulations performed
with a normally distributed, random combination of the assumed model parameter errors of
5%, a t-test confidence interval of 94.97% is obtained with a certainty of 99%. The simulation
results deviating by less than 1% can be assumed as sufficiently accurate model predictions.
The third criterion is thus fulfilled with regard to precision.

4.3. Comparison of Batch and Continuous Production

Figure 13 shows the comparison of STY for batch reactor, CSTR, and PFR production.
The STY is 0.0136 µM/min in the case of a batch campaign. If this is compared to the STY
of the CSTR and the PFR at the same production time, the STY of the PFR is at an almost
equal level (0.0135 µM/min). However, the STY of the CSTR is only 82% (0.0112 µM/min)
of that of the batch reactor due to the dilution effect.
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Figure 13. Comparison of STY (space–time yield) for batch reactor, CSTR (continuous stirred tank
reactor), and PFR (plug flow reactor).

The advantages of continuous production are revealed when the time-dependent
STY of the batch reactor is compared with the constant STY of the CSTR and PFR over
production campaigns of several days. In the case of a three-day production campaign, the
STY of the batch reactor drops to 0.0017 µM/min. In comparison, the continuous reactors
show a higher STY by a factor of 66 (CSTR) and by a factor of 79 (PFR). If continuous
production is extended to 26 days, the benefits increase to a factor of 57 (CSTR) and 69 (PFR)
relative to the batch reactor.

Three-day continuous production is considered technically feasible and can be easily
integrated into a downstream process on a paragraph-by-paragraph basis. A 26-day con-
tinuous production, although allowing the greatest efficiency gains to be achieved, is more
technically challenging as it requires continuous reprocessing. Pioneering work on this is
already known for other stock systems [76]. A key technology to enable robust continu-
ous production over such a long period is the digital twin as the basis of a sophisticated
control strategy.

5. Conclusions

Due to the ongoing coronavirus pandemic, the demand for mRNA vaccines remains
very high and currently exceeds production capacity. In order to increase the productivity
of existing facilities, the conversion from the currently operated batch to continuous mRNA
production is a promising option.
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In this article, a distinct and quantitative validated process model for continuous
mRNA production in a tubular reactor was developed and compared to batch and continu-
ous mRNA production in an STR, applying the model validation workflow presented by
Sixt et al. [44].

The validated models describe mRNA formation and substrate consumption by a
Michaelis–Menten-type kinetic that was specifically derived for mRNA transcription. The
model includes the fluid dynamics of the PFR and can thus be used independently of the
scale of the reactor, as long as characteristic numbers such as Reynolds, Péclet, Sherwood,
and Schmidt remain constant, and the fluid dynamics have been determined experimentally
at the respective scale.

The model is thus also suitable for scale up, e.g., from laboratory to pilot or production
scale. For a process model to be applicable, it must also be accurate and precise.

• Model precision is defined by the combination of model depth and the influence of
experimental errors in model parameter determination on model prediction.

• If the process model has an accuracy comparable to the accuracy of replicates of
experiments, including errors from analytical procedures, it is considered accurate
and is thus capable of replacing experiments.

In this study, model accuracy was determined using Monte Carlo simulations and
was 99.7% for the PFR. For the batch and the CSTR, the accuracies were 99.95% and 99.1%,
respectively, for a variation in the model parameters of 5%.

All three models are thus accurate and can be used as digital twins for batch and
continuous mRNA production.

Considering a production time frame of 26 days, the improvements in the space–time
yield were determined to be higher by almost a factor of 70 for a tubular reactor compared
to a batchwise in vitro transcription.

The next research steps will focus on further experimental validation of the models
at the lab scale to test the robustness of the models when applied as digital twins in
combination with existing PAT strategies [16,48,49,76–78], for advanced process control
towards autonomous operation manufacturing concepts.
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