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Abstract: Numerous studies have examined the relationship between technological development
and pollution. From a global economic perspective, the narrowing of one country’s technological
gap relative to the world technology frontier (due to the technological progress) may affect its
environmental pollution. However, few studies have focused on this issue. This study examined
the relationship between technology gap and air pollution both theoretically and empirically. The
theoretical model shows that narrowing the technology gap may help reduce pollution. Using patent
data from USPTO, as well as industrial level pollution and socio-economic data in China, this paper
found that the narrowing of technology gap plays a role in reducing air pollution emissions in China,
which confirms the theoretical model. This study provides a new perspective on the relationship
between technology progress and pollution.
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1. Introduction

Researchers have conducted numerous studies on technology and pollution, espe-
cially on their relationship. Some studies show that technological progress can improve
environmental quality by reducing energy use, changing consumption patterns, and de-
veloping cleaner and more efficient production technologies [1]. Other studies emphasize
that technological progress cannot replace the use of natural resources. Additionally,
technological progress can promote economic growth while increasing energy use and pol-
lution emissions [2,3]. Therefore, technological progress has the potential to both improve
environmental quality and increase potential environmental risks [4,5]. However, these
discussions are limited to the absolute level of technological progress, and no consensus
has been reached on whether technological progress increases or decreases pollution.

Research on the four common air pollutants shows that between 1972 and 2002, the
real value of manufacturing output increased by 70% while the air pollution released by
manufacturers reduced by 60% in the United States [6]. The decline in manufacturing
pollution was predominantly due to technological innovation, while a small share of
the decline comes from changes in the composition of the manufacturing industry. This
raises the question: Do technological progress and changes in the composition of the
manufacturing industry reduce pollution in other countries? This study compares the
growth rates of technological progress, which is measured by the number of residents’
patent applications over the years and carbon emissions between China and the United
States using the data from the World Development Indicators (WDI) database in Figure 1.
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Figure 1. Trends of the growth rate of technological progress and carbon emission in China and the United States. Data
source: Calculated by the author using data from the WDI database.

From the left part of Figure 1, we can see that China has a higher growth rate in patent
applications than the United States. Patent applications are widely used as a proxy variable
for technological progress. China may have had more technological progress between
1985 and 2013. If China’s development is similar to that of the United States, technological
progress will play a major role in reducing pollution, and therefore the growth rate of
carbon emissions in China will likely be lower than that of the United States. However,
the right part of Figure 1 suggests something different. Technological progress may play
a different role in the reduction of carbon emissions in different countries due to limited
analysis of the absolute level of technological progress.

In an open economy, technological progress has two meanings, absolute level and
relative technology progress [7]. The relative technology progress is the distance between
the country’s technology and the world technology frontier, which means technology gap.
The world’s technological frontier refers to the most technologically advanced economy
among the economies participating in trade in the world. A narrower technology gap
indicates a stronger comparative advantage at the technical level—it can improve the
position of the economy in the international economy [8], make the country responsible
for cleaner production, and indirectly affect the environment of the economy. This idea is
linked to research on international trade and environmental pollution.

The technology gap is a factor that affects international trade. The research on technol-
ogy gap was first proposed by Posner in 1961 [9]. In this paper, he discussed the relationship
between technology gap and trade. The existence of technological gaps between different
countries can enable the technologically leading countries to have a comparative advantage
in exporting technology-intensive products and monopolize exports for a period of time. At
the same time, due to the demonstrative effect of technology spillover, technology is gradu-
ally imitated and mastered by importing countries, which in turn causes the technological
gap to converge, the comparative advantage gradually disappears, and the international
trade based on the technological gap also disappears. To sum up, the technological gap
will affect a country’s international trade [10], technological progress, and other key factors
that affect pollution caused by production activities. Therefore, at least from the indirect
mechanism, the technology gap affects pollution. However, few studies have focused on
this issue.

The relative speed of technological progress in various countries determines the tech-
nology gap of countries, which largely determines the international division of labor. If
technology in an economy develops but the world technological frontier advances faster,
then the decrease in pollution caused by this technological progress may be offset by the
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pollution transfer caused by the weakening of the international industrial competitiveness
of the economy. Therefore, under the conditions of an open economy, the technological
progress of an economy not only affects the environment through a series of domestic mech-
anisms but also leads to changes in the technology gap between the economy and the world
technology frontier. This, in turn, changes the international division of labor, indirectly
affecting the environment of the economy through international trade and investment.

In international trade, the United States is already near the world’s technology frontier
and in a high-end position in the international division of labor. It is responsible for
high-end production, and this type of production emits less pollution. The status of the
international division of labor brought by the technological progress of the United States
has not changed much. Therefore, the changes in its technological progress are mainly to
reduce pollution through improved production technology, rather than to affect pollution
through changes in international trade [6]. However, non-frontier countries have different
characteristics. For instance, China’s technological progress is rapid, promoting economic
growth, which, in turn, increases pollution. However, prior studies have shown that
technological gaps affect CO2 emissions. In terms of the relationship between technological
progress and environmental pollution, countries cannot focus only on their technological
progress; they must also account for their relative distance to the world technology frontier
and speed of technological progress. Thus, if China’s technological progress is fast enough
to narrow the gap between its own and the world’s frontier technological level, we define
it as a technology gap, and it may change China’s manufacturing industry composition
and reduce pollution.

Therefore, when studying the relationship between technology and pollution, it is not
enough to explore the effect of the absolute level of technological progress on pollution.
Attention must be paid to technological progress at the relative level, that is, the technology
gap to the world frontier. However, existing studies have rarely considered whether
changes in the technology gap affect pollution. This study attempts to distinguish the
effects of technological gaps and absolute-level technological progress on carbon emissions,
providing a new perspective for narrowing the technological gaps and reducing pollution.

This study aims to figure out whether the narrowing of technological gap caused by
technological progress reduces air pollution and its potential mechanisms. First, on the basis
of the Schumpeter growth model, we built a theoretical model to analyze the impact of the
technology gap and technology progress on environmental pollution. Second, we examined
the theoretical model by using industry level data in China, a good and representable
sample to examine the impact of technological gap on air pollution empirically. The
results show that technology gap due to technology progress reduces air pollution in Chia.
Third, we further discuss the potential mechanisms and find that industrial comparative
advantage plays a role.

The contributions of this paper lie in the following two areas. On the one hand,
when the relationship between technology and pollution is studied, it is not enough to
explore the effect of the absolute level of technological progress on pollution. Attention
must be paid to technological progress at the relative level, that is, the technology gap to
the world frontier. Few studies have considered whether changes in the technology gap
affect pollution. Hence, this paper fills this gap by attempting to distinguish the effects of
technological gaps and absolute-level technological progress on carbon emissions, both
theoretically and empirically, providing a new perspective for narrowing the technological
gaps and reducing pollution. On the other, this paper further discusses how the narrowing
of technology gap alleviates air pollution from the industrial comparative advantage
perspective, which contributes to the literature about how technology progress affects
the environment.

2. Literature Review

Prior research has provided ample evidence on the relationship between technological
progress and environmental pollution. This section reviews the literature on technology
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progress, technology gaps, and carbon emissions. The basic consensus is that technological
progress can directly and indirectly affect carbon emissions. Regarding the direct mech-
anism of this effect, technological progress has been found to improve energy efficiency
and production methods, as well as decrease the use of polluting resources to reduce
carbon emissions. Levinson [6] showed that technological progress in the United States
has had a significant impact on carbon emissions. Acemoglu et al. [3] found that the initial
type of technology determines whether technological progress plays a role in increasing
or decreasing emissions. For instance, technological progress in the cleaning sector that
uses clean inputs will reduce carbon emissions, while technological progress in the dirty
sector that uses dirty inputs will increase carbon emissions [3]. Regarding the indirect
mechanism of the aforementioned effect, technological progress (one of the main sources
of economic growth) can impact carbon emissions by promoting economic growth. Prior
research has focused on analyzing the environmental Kuznets curve (EKC). Many scholars
believe that the impact of economic growth on pollution emissions occurs according to
the “inverted U” hypothesis; thus, when emission reduction technologies meet certain
conditions, environmental pollution will undergo an “inverted U” transformation [11–13].

The aforementioned studies discuss the effects of technological progress on pollution
emissions under closed economic conditions. As mentioned earlier, in the context of an
open economy, technological progress implies a change in the technological gap of a given
economy, which will affect its position in the global economy, thus altering international
trade patterns. A change in international trade patterns directly affects the economic envi-
ronment. Therefore, to examine how technological progress affects pollution, we should
not limit the study to a closed economy. It is also necessary to examine the environmental
effects caused by changes in the technological gap in the context of an open economy.

There are two main paths in the study of international trade patterns and environ-
mental pollution under open conditions: one is the international trade of products, and the
other is to discuss issues in the context of global value chains (GVC) from a production
perspective. The former is mainly concentrated on the pollution haven hypothesis (PHH),
theoretically exploring the existence of PHH [14–16] and empirically testing the reality of
PHH [17,18]. A technological gap exists among different countries; thus, the position of
countries in GVC varies [7]. In the global economy, technologically advanced countries will
transfer pollution production to technically underdeveloped countries and produce clean
products themselves. These underdeveloped countries undertaking pollution production
may become pollution paradises [3]. If such countries increase the speed of technological
progress and narrow the technological gap relative to the world technological frontier, they
can improve their position in the GVC and possibly reduce their pollution production.
Therefore, under the conditions of an open economy, technological progress can affect a
country’s environmental pollution by changing the technological gap of a country and its
global economic position.

It can be seen that what is important here is not the absolutely level of technological
progress but the relative technological progress. This study uses the technological gap to
portray the relative technological progress of a country. Compared with the literature on
technological progress and environmental pollution, the marginal contribution of this study
is its observation of the technological progress of an economy from a global perspective.
This study also examined the relative changes in the position of a country in the global
economy by analyzing its technological gap to assess the environmental effects of relative
technological progress. This is the first study to integrate technological progress, relative
technological gaps, and pollution into one theoretical model using the 1985–2011 data from
China’s industry sector to empirically verify the relationship between technology gaps and
carbon emissions.

3. Theoretical Model

On the basis of the Schumpeter growth model of Aghion et al. in [19], this study adds
pollution to the model to examine the effects of technological gaps on carbon emissions.
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In this model, there are m economies, which do not exchange goods or factors but share
technology. Each economy has a fixed population L, and we normalize it to 1; the aggregate
quantities are equal to per capita quantities. Each individual has two periods of survival
and has two units of labor endowment in the first period and no labor endowment in the
second period. The utility function is a linear function of consumption: U = c1 + βc2, where
c1 is the first period of consumption, c2 is the second period of consumption, and β ∈ (0, 1)
is the discount rate of the second period of consumption relative to the first period.

3.1. General Product Sector

The general product sector uses labor and intermediate products to produce general
products. The production function is as follows:

Yt = L1−α
∫ 1

0
A1−α

it xα
itdi α ∈ (0, 1) (1)

Yt is the general product quantity, while general products are used as inputs for
consumption, intermediate products, and enterprise innovation; L is labor supply; and
xit is the intermediate product i under time t and technology level Ait. It is assumed that
the general product sector is fully competitive. The general product sector can maximize
profits by choosing the amount of labor and intermediate inputs. Further, wt is used for
wages and pit for intermediate product prices for the intermediate products i at time t. The
profit maximization function of the general product sector is as follows:

max
{

L1−α
∫ 1

0
A1−α

it xα
itdi − wtL−

∫ 1

0
pitxitdi

}
(2)

Solving the profit-maximizing problem in function (2), we obtain the price of each
intermediate product.

pit = α(Ait/xit)
1−α (3)

3.2. Intermediate Product Sectors

In period t− 1, each intermediate product is capable of producing innovation with a
probability µe

it. If the innovation is successful, then the technical level of the sector becomes
the world’s technology frontier level At in period t. The growth rate of At is g. If the
intermediate product fails to innovate in period t − 1, the technical level in period t is
maintained at the level of t− 1. The technical level Ait of intermediate product i during
period t is defined as

Ait =

{
At with probability µe

it
Ai(t−1) with probability 1− µe

it

}
(4)

The effect of innovation only exists in the current period.
The intermediate product sector uses the general products as inputs. The intermediate

product sector that fails to innovate can only produce a one-unit intermediate product
with χ (χ > 1) units of general product input, and the production is carried out under
perfect competition conditions. Therefore, the cost of the intermediate product is χ, which
equals the price. Thus, the intermediate product price is pit = χ, and the profit is zero. The
intermediate product sector that innovates successfully can use one unit of general product
input to produce one unit of intermediate products. The profit of the successful innovator
in the intermediate product sector is χ− 1 per unit of the intermediate product. Combined
with formula (3), we obtain

xit = (α/χ)1/(1−α)Ait (5)

The profit of the intermediate product sector that successfully innovated during period t was
πit = (χ− 1)(α/χ)1/(1−α)Ait, which means πit = πAit, where π = (χ− 1)(α/χ)1/(1−α).
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3.3. Aggregate Behavior

A country’s average productivity At is defined as follows:

At =
∫ 1

0
Aitdi (6)

Replacing (5) in (1), we obtain Yt = ξ At, where ξ = (α/χ)α/(1−α).
Since the general production sector is fully competitive, the wages are as follows:

wt = (1− α)Yt = (1− α)ξAt (7)

The added value of the general product sector is the wage income, and the added
value of the intermediate product sector is the profit income. Per capita GDP is the sum of
the added value of each sector:

Gt = wt + µtπt = (1− α)ξ At + µtπAt (8)

3.4. Pollution Emission

Pollution was positively correlated with the scale of output. Economic growth and
technological progress are also important factors affecting pollution emissions. Therefore,
this study assumes that pollution is a function of per capita GDP growth rate, per capita
GDP, and technological progress At:

Pt = g′tF(Gt, At) = g′tG
a
t Ab

t (9)

where g′t is the per capita GDP growth rate, Gt is the per capita GDP, and At is technological
progress. Economic growth inevitably leads to an increase in pollution emissions; a > 0.

3.5. Innovation

In any given successful innovation probability µt, the R&D investment required for
each sector’s innovation is given by the cost function:

Nt−1 = ñ(µt)At =
(

ηµt + δµ2
t /2
)

At, η, δ > 0 (10)

where Nt−1 is the average number of products that must be used as an investment. ñAt
represents the “fishing-out effect”: the farther the technology frontier advances, the more
difficult it is to innovate. From Equation (10), the probability that a producer who invests
in nAt as an intermediate product for research and development investment will succeed
in the next phase of innovation is as follows:

µ̃(n) = ñ−1(µt) =

(√
η2 + 2δn− η

)
/δ (11)

The expected net income of the innovation sector is the difference in the profit of the
intermediate product sector and the innovation cost: βµtπAt − ñ(µt)At. In equilibrium, µt
will be chosen to maximize the expected net benefit.

The µt that satisfies the maximization of the expected net return is

µt = (βπ − η)/δ (12)

assuming η < βπ < η + δ. This assumption ensures that the equilibrium probability µt is
strictly between 0 and 1.
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3.6. Equilibrium Analysis

In equilibrium, the probability of innovation in each sector is the same: µe
it = µt, and

therefore the average productivity evolves as follows:

At = µt At + (1− µt)At−1 (13)

That is, the productivity parameter will be equal to At in the sector of the µt part (the
sector that successfully innovated in the t− 1 period) and equal to At−1 in the other (1− µt)
sectors (the sector that did not successfully innovate in period t− 1). Since innovation is
randomly distributed across sectors, the average Ai(t−1) in sectors without innovation will
be equal to the average At−1 in the economy.

The technical gap between a country and the world technology frontier is defined
as follows:

at = At/At ∈ (0, 1) (14)

Here, at obeys the following rules:

at = µt + [(1− µt)/(1 + g)]at−1 (15)

The larger the value of at, the smaller the gap between the technical level of a country
and the world technology frontier.

Assuming that the credit market is complete, each innovator can borrow money
from other young people indefinitely, according to the current interest rate r = β−1 − 1.
After the project is successful, they promise to repay the debt. Then, µt will be chosen
as unconstrained to maximize the expected net benefit. This means µt = µ∗, where
µ∗ = (βπ − η)/δ, and the equilibrium R&D consumption is

N∗t−1 = n∗At = ñ(µ∗)At (16)

At this time, at+1 = µ∗ + [(1− µ∗)/(1 + g)]at ≡ H1(at) (17)

In the long run, it will converge to steady-state values:

a∗ = (1 + g)µ∗/(g + µ∗) ∈ (0, 1) (18)

The steady-state per capita income is

Gt
∗ = [(1− α)ξa∗ + µ∗π]At (19)

Its growth rate is the same as the technology frontier At.
Substituting (17) and (19) into (9) can result in pollution, as follows:

Pt = g′tG
a
t Ab

t = g
{
[(1− α)ξa∗ + µ∗π]At

}a Ab
t = g{[(1− α)ξa∗ + µ∗π]}ab−a

t Aa+b
t (20)

Taking logarithm (20),

lnPt = lng + a ln((1− α)ξa∗ + µ∗π) + (−a)lnat + (a + b)lnAt (21)

Therefore, pollution is a function of the technological gap at and economic growth At.
The narrowing of the technology gap means that as at increases, the value of ln(at)

increases as well. Additionally, (at) has a coefficient of (−a) < 0 for the logarithm of
pollution emissions. This shows that narrowing the technology gap will lead to a decline
in pollution. The possible economic channel is that when the technology gap narrows (i.e.,
at increases), the country’s position in global value chain increases. Thus, the country can
produce environment-friendly products, and thus it can improve its industrial structure and
facilitate cleaning production. Therefore, when the technology gap is narrowed, pollution
emissions are reduced.
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The coefficient of the logarithm of At to the logarithm of carbon emissions is (a + b). If
a >−b, then At plays an increasing role in emissions. At this time, the effect of technological
progress on carbon emissions is not enough to offset the increase in economic growth; as
a whole, a country’s technological progress plays a role in increasing emissions. When
a < −b, the effect of technological progress on carbon emissions is greater than the effect of
increasing emissions; then, technological progress will play a role in reducing emissions.
Therefore, the effects of technological progress on carbon emissions are not uniform and
depend on the relative power between the direct emission reduction effects of technological
advancement and growth increase emission effects.

4. Empirical Design

This study focuses on the relationship among technological gaps, technological
progress, and pollution emissions. The conclusion of the theoretical model in the pre-
vious section indicates that the narrowing of the technological gap between a country, and
the world technological frontier will reduce the country’s pollution emissions. Next, this
study constructs China’s industry-level data to empirically explore whether the role of
technology gaps in carbon emissions is consistent with the theoretical model’s conclusions.

4.1. Method

On the basis of the theoretical model, this study used the system GMM method to
conduct empirical analysis. The empirical model is as follows:

lnCO2it = β0 + β1lnCO2it−1 + β2techit + β3techgapit + β4Zit + µi + µt + εit (22)

where lnCO2it is the logarithm of carbon dioxide emissions; techgapit is the logarithm of
the industry technology gap; techit is the logarithm technology of the industry; and Zit
indicates the control variables, including the logarithms of industry added value, industry
capital stock, industrial labor force, and industry total energy use. The empirical model
(22) focuses on the coefficient of the technology gap.

The effect of technological progress on carbon emissions is difficult to determine.
While technological progress plays a role in reducing emissions, it also promotes economic
growth and brings about carbon emissions. If the direct effect of technological progress
in reducing emissions is greater than the indirect effect of promoting economic growth,
technological progress generally plays a role in reducing carbon emissions, whereas tech-
nological progress plays a role in increasing emissions. This study used data from China’s
industry sector to empirically explore whether the effect of the technology gap on carbon
emissions is consistent with the conclusions of the theoretical model and also helps us
understand whether China’s technological progress plays an overall role in increasing or
decreasing emissions.

Light and heavy industries generally differ in their degree of dependence on tech-
nology and polluting emissions; technological gaps and technological progress may play
different roles in their carbon emissions. To explore this issue, this study divided the data
into light and heavy industry sectors. On the basis of the benchmark model, we added
dummy variables for the light and heavy industries sector and interaction terms between
the dummy variables and all the explanatory variables of the benchmark model to construct
an empirical model (23):

lnCO2it = β0 + β1lnCO2it−1 + β2techit + β3techgapit + β4Zit
+κ0indusit + indusit × (κ1lnCO2it−1 + κ2techit + κ3techgapit + κ4Zit)

+µi + µt + εit

(23)

In model (23), the indusit is an industry grouping dummy variable. If indusit is 0,
the industry is a light industry, and a heavy industry if indusit equals 1. β2 and β3 are
the effects of technological progress and the technological gap in carbon emissions in the
light industry, respectively. Model (23) focuses on κ2 and κ3. If these two coefficients are
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significant, the effects of technological progress and technological gaps on carbon emissions
are significantly different between the light and heavy industries.

4.2. Data and Variable
4.2.1. Industry Consolidation and Matching

This study attempted to analyze China’s industry-level carbon emissions, economic
input and output, and technical data from 1985 to 2011. Since its publication in 1984,
China’s National Economic Industry Classification Standard has undergone three revisions
in 1994, 2002, and 2011.

These revisions have led to mismatches in the economic industry before and after
classification. Therefore, it is necessary to merge the Chinese industry’s classifications
over the years. Following Chen [20], we matched industry classifications from 1985 to
2011. The technical data used in this study are from the U.S. Patent and Trademark Office
(USPTO) patent application database, and there is no industry classification information in
the USPTO raw data. Hsu et al. in [21] and Bhattacharya et al. in [22] matched the three-
digit technical classification code of the USPTO patent with the United States double-digit
industry code. United States industry classification criteria can be obtained using their
classification methods. Then, according to the four-digit industry comparison between
China and the United States, the two-digit industry in both countries was matched.

The matching results are listed in Table 1. To explore whether technological progress
and gap play different roles between light and heavy industries, this study refers to
Chen [20] to separate the two industry sectors. The US_SIC code values of 10, 12, 13, 14, 20,
21, and 22 (industry merge with original US_SIC codes 22, 23, 24), 24, 25, 26, 27, and 39 are
regarded as light industry, and other industries are regarded as heavy industries.

4.2.2. Variables and Descriptive Statistics

First, we constructed the input and output data of China’s industry level from 1985
to 2011, including the total industrial output value, added value, capital stock, labor, and
total energy consumption. This study refers to the method used by Chen [20] to unify
the industrial caliber, using 1990 as the base period for price deflation. The missing value
is supplemented by linear interpolation. Ex-factory price indices of industrial producer
(1985–2011) (preceding year = 100) that comes from the “2012 China Urban Life and Price
Yearbook” are employed as an output deflator index. The capital stock is deflated by the
price index for investment in fixed assets, and the data are from the “China Statistical
Yearbook”. The total industrial output value data were obtained from the “China Industry
Economy Statistical Yearbook”. Referring to Chen [20], we obtained the industrial added
value, capital stock, and labor data from 1985 to 2008.

Since the industrial value-added rate is not given in the 2009–2011 statistical yearbook,
this study assumed that the industrial value-added rate is stable and uses the mean value
of the industrial value-added rate in 2005–2007 to represent the industrial value-added rate
in 2009–2011. We then used the industrial output value data of 2009–2011 to multiply the
industrial added-value rate to calculate the industrial added-value data for 2009–2011 and
then used the price index to convert the industrial value-added data into a sequence with a
constant price of 1990, and the missing value was supplemented by linear interpolation.
The capital stock of 2009–2011 was constructed as follows: First, we obtained the original
value of fixed assets, net fixed assets, and accumulated depreciation data of the sub-sectors
from 2008 to 2011 from the China Industrial Economics Statistical Yearbook. Then, we
calculated the depreciation rate from these three data points. The difference between the
original value of the fixed assets in the current year and the original value of the fixed
assets in the previous year was used to construct the current annual investment amount;
we used the fixed asset investment price index to convert it into a sequence based on
1990. Then, we obtained all caliber investment data at comparable prices. Finally, we used
the perpetual inventory method to estimate the industrial capital stock. The total energy
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consumption data of the industry was obtained from the China Energy Statistics Yearbook,
and the missing value was supplemented by linear interpolation.

Air pollution variable is the core variable of this paper. This paper used carbon emis-
sions to represent pollution because greenhouse gases are an important part of air pollution
caused by economic growth. There are many methods to measure carbon emissions. Some
measurement methods pay attention to the carbon emissions caused by production [23,24],
and some pay attention to the carbon footprint [25]. This paper focuses on the carbon
emissions directly related to a country’s economic growth. Therefore, the carbon emissions
were calculated by using the energy consumption used in production to represent air
pollution. This study used energy consumption data to estimate CO2 emissions on the
basis of the methodology provided by the United Nations Intergovernmental Panel on
Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Since the
National Bureau of Statistics adjusted the energy data in 2008, the data for 1995–2011 are
based on the data reported in the China Energy Statistics Yearbook since 2008. At the same
time, this paper summarized data from the China Energy Statistics Yearbook from 1985
to 1994. Using the above methods and data, this study estimated industry carbon dioxide
emissions data from 1985 to 2011 in China. Missing values were supplemented using linear
interpolation methods.

There were three methods employed to measure the technology gap: indicator method,
index method, and frontier production function method.

The basic logic of using the indicator method to measure the technological gap is to
select an indicator to measure the technical level, and then measure the technological gap
between the sample points by using the difference in the indicator value of different sample
points. The indicators to measure the technical level include production input–output indi-
cators and R&D input–output indicators. The production input–output indicators mainly
include labor productivity or total factor productivity [26–28]. The R&D input and output
indicators mainly include the number of patent applications and the proportion of R&D
expenditure in GDP [7,21]. The index method such as superlative index method improves
the traditional production input–output indicators. It is not restricted by the setting of the
production function form and is used to calculate the total factor productivity [28–30]. The
core of the frontier production function method is to calculate the frontier and calculate the
degree of inefficiency of the sample points compared to the technological frontier [31,32].

Among the three measurement methods, the index method and the frontier production
function method need to use the traditional production input indicators of the world’s
technological frontier. We want to obtain comparable data across countries and industries.
There are doubts about the comparability of economic and social indicators among different
countries, different industries, and different years. Therefore, we selected the R&D input-
output index method in the index method to measure the technology gap. Referring to
Hsu et al. [21], we used the patent data of the USPTO to construct technology variables.
Using patent information as a “technical” proxy indicator has several advantages: patents
are open data, provide a wealth of information, include all countries and technology types,
are relatively standardized inventions, and provide longer time-series data [33].

In this paper, the technology gap was calculated as follows:

Technology GapCit = Technology ProgressCit/Technology Frontierit (24)

where C denotes China, i denotes the industry, t denotes time, and the technology gap
value is between 0 and 1; the larger the value, the smaller the gap between the industry
and the world technology frontier level.

This study used the Harvard Business School patent inventor database [34] to obtain
patent data to proxy for the technology gap and technological progress. There is a certain
time lag between patent approval and patent applications. In the literature, patent data
from the previous period is usually put into the model as a technical variable [22]. We used
patent data from the Chinese industry level and from the world technology frontier. We
calculated the patent number for each industry in each year on the basis of the year the
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patent is approved. The technical level of an industry in a certain year is the number of
patents approved by the USPTO in the industry in the previous year. This study also used
this dataset to construct the world technology frontier and thus obtain a proxy variable of
the industry-level technology gap. The world technology frontier of industry i in year t
refers to the largest technical index value of the industry i among all countries in year t
obtained in the data. The technological frontiers of different industries in different years
may appear in different countries.

The number of patents approved does not comprehensively reflect the technical level
of a particular industry. For example, the number of patents approved in industry i is
larger than that approved in industry j, but this does not mean that the technical level
of industry i is higher than that of industry j. The number of patent citations reflects
the influence of patents, which can better capture the total quality and market value
of patents [35–37]. Therefore, this study used patent citation numbers as another proxy
indicator of the industry’s technical variables.

When using patent citations as a proxy variable, we should note that it is difficult to
assess whether the patents that were approved in 2000 and cited 10 times are of higher
quality than those approved in 2008 that were only cited five times. This truncation error
must also be considered. In this study, the weighting factor developed by Hall et al. in [35]
was used to adjust for patent citations.

In the empirical estimation, all variable values were logarithmically taken, and the
descriptive statistics of the data are shown in Table 1. In this study, the technical variables
were lagged by one year, and the data for 1984–2010 were used. The data for the other
variables were data from the period of 1985–2011. In this empirical estimation, all variable
values were taken as logarithms. Descriptive statistics of the data are presented in Table 1.
The technical variables were lagged by one year, which means that the technical data
were from 1984 to 2010 and industrial panel data were from 1985 to 2011. As shown in
Table 2, the logarithmic average of carbon emissions and carbon emission intensity of
the light industry was lower than that of the heavy industry. The capital stock, energy
consumption, total number of employed workers, industrial added value, and the total
industrial output value of heavy industry were all higher than those of the light industry.
From the perspective of the number of patents, the average value of the logarithm of the
technological progress of the light industry and the logarithm of the technological gap were
slightly smaller than that of the heavy industry. It can be seen from descriptive statistics
that although heavy industries bring more added value, they also consume more energy
and capital, and the data do not reflect the technical advantages of the heavy industry
sector over the light industry sector.

Table 1. Descriptive statistics.

Light Industry

Variable Definition Observation Mean Std. Dev. Min Max

lnpat patent number 324 5.082 2.478 −13.816 9.263
lntechgapp patent gap 324 −6.409 1.646 −13.816 −3.444

lncit patent citation 324 −1.447 2.710 −13.816 0.548
lntechgapc citation gap 324 −7.203 2.173 −13.816 −2.484

lnco2 CO2 emission 324 7.279 1.792 4.184 10.842
lnco2den CO2 emission density 324 1.446 1.691 −2.727 4.756

lncap capital stock 324 6.273 1.361 3.219 9.089
lnene energy consumption 324 6.957 1.274 4.420 9.356
lnlab number of employees 324 5.270 1.062 2.944 7.603
lnval industrial added value 324 5.832 1.203 3.466 9.196

lngross total industrial output 324 6.672 3.089 0.000 12.943

compareadv industry explicit
comparative advantage 85 2.085 2.646 0.104 9.154
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Table 1. Cont.

Heavy Industry

Name Observation Mean Std. Dev. Min Max

lnpat patent number 243 5.919 1.889 0.693 10.366
lntechgapp patent gap 243 −6.278 1.503 −10.697 −3.473

lncit patent citation 243 −1.462 2.496 −13.816 0.557
lntechgapc citation gap 243 −7.069 2.022 −13.816 −3.007

lnco2 CO2 emission 243 9.243 1.757 6.500 12.748
lnco2den CO2 emission density 243 2.309 2.308 −3.308 6.183

lncap capital stock 243 7.622 1.129 5.004 10.367
lnene energy consumption 243 8.635 1.175 6.457 11.197
lnlab number of employees 243 6.172 0.812 3.664 7.591
lnval industrial added value 243 6.934 1.309 4.691 10.490

lngross total industrial output 243 8.058 3.006 0.000 13.075

compareadv industry explicit
comparative advantage 119 0.779 0.3232 0.108 1.867

Table 2. Baseline estimation results.

Dependent Variable: Logarithm of Carbon Emissions

(1) (2)

First-order lag term for the logarithm
of carbon emissions

1.062 *** 0.981 ***
(18.82) (23.41)

Logarithm of technology gap −0.204 * 0.00364
(−1.95) (0.13)

Logarithm of technology progress 0.0667 * −0.00767
(1.77) (−0.70)

Control variable YES YES
Time fixed effect YES YES

Industry fixed effect YES YES
Observations 546 546

Sargan p 0.710 0.694
ar2p 0.0665 0.473

Notes: Z-value in parentheses, * p ≤ 0.10, *** p ≤ 0.01.

To make a clearer comparison of the technological gap between light and heavy
industries, this study depicts the values of the technological gap and the difference in
technology gaps in Figure 2. The left part of Figure 2 shows the trend of technological gaps
over time in terms of patent quantity and quality in various industries in China from 1982
to 2010. The trends of the two indicators were relatively consistent. It can be seen from the
figure that the gap between China’s technological level and technological-frontier countries
rapidly narrowed from 1982 to 1990; however, it experienced a relatively gradual decline
from 1990 to 1995 and continued to shrink rapidly from 1995 to 2010.

The right part of Figure 2 shows the logarithm of China’s light industry technology
gap minus the logarithm of the heavy industry technology gap. A difference greater than
0 means that the technology of the light industry has a smaller gap relative to the world
technology frontier, and a difference less than 0 indicates that the heavy industry has a
smaller gap relative to the world technology frontier. It can be seen from the figure that
before 2000, the technological gap in heavy industry was smaller, whereas after 2000, the
technological gap in the light industry was smaller.
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Figure 2. Technology gap in light industry and heavy industry from 1982 to 2010 in China.

The mechanism analysis component of this study examined how technology gaps
affect carbon emissions. The analysis believes that narrowing the technological gap will
change the comparative advantage of a country relative to international competition and
enable the country to improve its industrial structure and engage in more advanced and
cleaner production, thereby reducing carbon emissions. What is more important in this
mechanism is the industry-level comparative advantage data of a country. This study used
data from the World Input–Output Database (WIOD) to estimate the industry’s explicit
comparative advantage on the basis of the added value of manufacturing exports.

This study adopted the industry-explicit comparative advantage index to measure the
industry’s explicit comparative advantage in export value:

Rij =
EXij

EXj
/

EXi
EX

(25)

EXij is the export value of country i and industry j, and EXj is the sum of the export
value added of industry j of all countries.EXi is the sum of export value added of all
industries in country i. EX is the sum of export value added of all industries in all countries.
Export value-added data can be calculated using the Koopman, Powers, Wang, and Wei
(KPWW) [38] method with the world input–output table. After calculating the explicit
comparative advantage of the industry, this study matched the industry classification of the
WIOD data with the industry classification of this study and finally obtained the explicit
comparative advantage data of industries between 1995 and 2011.

5. Results
5.1. Baseline Estimation Results

The empirical study used the system GMM with a two-stage robust standard error
model. The estimated results are listed in Table 3. The Sagan test of the models in the
empirical estimates (1) and (2) in Table 2 did not reject the null hypothesis; there were
no over-constrained problems. The AR (2) test in the estimation result (2) indicates that
there was no second-order sequence correlation in the residual term, indicating that the
instrumental variable was valid.
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Table 3. Estimation results including market impact.

Dependent Variable: Logarithm of Carbon Emissions

(1) (2)

First-order lag term for logarithm of
carbon emissions

0.894 *** 0.940 ***
(42.36) (88.91)

Logarithm of technology gap −0.207 −0.263 ***
(−1.44) (−2.66)

The quadratic term of the logarithm
of the technology gap

−0.0234 * −0.0216 ***
(−1.71) (−2.87)

Logarithm of technology progress −0.0850 * −0.0390 ***
(−1.80) (−3.55)

Marketization
−0.290 ***

(−3.71)
Control variable YES YES
Time fixed effect YES YES

Industry fixed effect YES YES
Observations 546 546

Sargan p 0.539 0.693
ar2p 0.856 0.582

Note: Z-value in parentheses, * p ≤ 0.10, *** p ≤ 0.01.

In model (1) of Table 2, the technology gap and progress are indexed with patent
numbers, while in model (2), the technical variables are constructed by patent citation.
The empirical result of model (1) shows that the proxy variable of the technology gap was
negatively correlated with carbon emissions. The widening of the technology gap will
increase carbon emissions, which is consistent with the theoretical conclusion. A possible
explanation is that when a country’s technological progress in an industry becomes closer
to the world technological frontier, it will acquire an advantageous position in international
production and transfer the labor- and resource-intensive production to other economies,
thus decreasing pollution during production. This means that the technological gap may
have a monotonous diminishing impact on carbon emissions. To verify this effect, this
study added the quadratic term of the technology gap to the following empirical estimation:
the technical level of the patent quantity agency plays a role in increasing carbon emissions.

The empirical results of model (2) show that the coefficient of the technology gap
was not significant. This result may have been due to missing variables. The patent data
used here were patents filed and approved in the United States between 1984 and 2010.
During this period, China’s marketization process continued to advance, and its openness
has continuously increased. An increasing number of Chinese innovation entities have
applied for patents in the United States. Therefore, the number of patents approved in
the United States used in this study not only portrays technological progress but also
reflects China’s marketization process. However, estimations using patent citations to
measure technological variables do not control the degree of marketization, thus causing
the problem of missing variables and resulting in likely bias estimation results.

5.2. Estimation Results Including Market Impact

According to the previous analysis, Chinese industry-level patent data are patents
filed and approved in the United States. The number of patents in this study may not only
depict some technological advances but also portray the marketization process in China.
To verify this problem, this study compared the 1997–2009 China marketization index
data published by Fan et al. (2011) with patent numbers and patent citations by Chinese
companies in the USPTO. Given that the numerical difference between the marketization
index and the patent data is large, for the convenience of comparison, the data were
transformed logarithmically, and the values after this logarithmic data are plotted with
time in Figure 3.
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Figure 3. Marketization index logarithm and technical variable logarithmic time trend graph.

As shown in Figure 3, the logarithm of the number of patents and the marketization
index were relatively consistent, and the number of patents increased more rapidly than
the marketization index. After dividing the logarithm of the number of patents by two, we
found that the trend of the 1/2 logarithm of the number of patents was consistent with the
trend of the marketization index logarithm. Therefore, this study believes that the number
of patents portrays not only technological progress but also the marketization process. The
trend in patent citations is not consistent with the market trends.

Since the marketization data of Fan et al. (2011) are based on data at the provincial
level, it is difficult to add this index as a control variable in the empirical model of this
study. To control the degree of marketization, this study regarded 1/2 logarithm of the
number of patents as a proxy variable of the marketization process.

As mentioned earlier, it is necessary to further analyze whether the effect of the
technology gap on carbon emissions is monotonous, and therefore the secondary term
of the technology gap was added to the empirical estimation in this study. The results
are listed in Table 4. In the estimation in Table 3, the Sagan test did not reject the null
hypothesis, there was no second-order serial correlation in the residual term, and the model
setting was reasonable. From the estimation results, when the degree of marketization was
not controlled, the technological gap coefficient was negative and insignificant, and the
quadratic term coefficient was negative and significant. After controlling for marketization,
we found that the effect of the technology gap on carbon emissions showed a monotonous
diminishing effect. Technological progress has significantly reduced carbon emissions,
contradicting previous analyses. This result also indicates that the estimation results that
omit market-oriented variables may be biased.

5.3. Heterogeneity Analysis

The empirical model points out that it is necessary to explore whether technological
gaps and progress play different roles in light and heavy industries. Thus, we then estimate
the empirical model (23). In model (23), a dummy variable for light and heavy industry
group is added, and the value of the group dummy variable does not change with time.
To avoid collinearity, the estimation does not control for the time fixed effect. In addition,
the dummy variable and interaction terms for all interaction terms are added to the model.
To avoid the problem of collinearity, the estimation does not control for individual fixed
effects. The group estimation results are listed in Table 4.
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Table 4. Heterogeneity analysis.

Dependent Variable: Logarithm of Carbon Emissions

(1) (2)

First-order lag term for logarithm of carbon emissions 0.237 0.326
(0.72) (0.93)

Logarithm of technology gap 0.162 −0.0278
(1.55) (−0.42)

Interaction terms of technology gap and grouping dummy variables −0.265 −0.262 **
(−1.43) (−2.45)

Logarithm of technology progress −0.0909 * −0.00644
(−1.76) (−0.23)

Interaction terms of technology progress and grouping dummy variables 0.145 0.136 **
(1.60) (2.52)

Marketization −0.191 ***
(−4.72)

Interaction terms of Marketization and grouping dummy variables 1.190 ***
(4.15)

Control variable YES YES
Observations 546 546

Sargan p 0.883 0.260
ar2p 0.179 0.394

Note: Z-value in parentheses, * p ≤ 0.10, ** p ≤ 0.05, *** p ≤ 0.01.

The estimated coefficient of technological progress and the technological gap reflect
the effect of technological progress and the technological gap on carbon emissions in the
light industry. The coefficients of the interaction terms between technological progress and
technological gaps and grouped dummy variables reflect whether there are differences in
the effects of technological advances and technological gaps on carbon emissions in light
and heavy industries. Neither the Sagan test or the AR(2) test estimated in Table 5 reject the
null hypothesis, and therefore the model setting and the selection of instrumental variables
are reasonable.

Table 5. Full sample mediation effect estimation results.

Coef. Std. Err. Z P > Z

Sobel −0.248 0.091 −2.714 0.007
Goodman-1 −0.248 0.092 −2.698 0.007
Goodman-2 −0.248 0.091 −2.730 0.006

Coef. Std. Err. Z P > Z

Indirect effect −0.248 0.091 −2.714 0.007
Direct effect 0.181 0.155 1.172 0.241
Total effect −0.066 0.131 −0.507 0.612

First, we focused on the effects of technology gaps on carbon emissions. In the estima-
tion without marketization control, the technology gap coefficient was not significant. In
the estimation of controlling marketization, the technology gap had no significant impact
on the carbon emissions of the light industry sector, but the effect of the technology gap on
carbon emissions was significantly different in the light and heavy industry sectors. The F
test showed that the sum of coefficients of technology gap and interaction of technology
gap and grouping variables was negative and significantly different from 0, which indi-
cates that the technology gap will significantly reduce the carbon emissions of the heavy
industry sector.

Therefore, the results in Table 4 show that the narrowing of the technology gap had a
positive impact on reducing the carbon emissions of China’s heavy industry sector. The
reason for this may be that China’s heavy industrial sector experienced extensive growth
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in the early days, with low technological content and relatively low-end production. As
the technology of the heavy industry sector continues to approach the world technology
frontier, the innovative capacity of the heavy industry sector has improved. In the interna-
tional division of labor, the division in China’s heavy industry sector has gradually become
high. As a result, the technology gap has narrowed, and the heavy industry sector’s carbon
emissions have reduced.

Then, we focused on the effect of technological progress on carbon emissions. The
estimated results without control of marketization show that technological progress plays a
role in reducing emissions in the light industry sector, and there is no significant difference
in the role played by the light and heavy industries. The F test showed that the sum
of the coefficients of technological progress and the interaction terms of technological
progress and dummy variables were not significantly different from 0. This shows that
when marketization is not controlled, technological progress will play a greater role in
reducing emissions in the light industry sector. In the estimation that marketization is
added as a control variable, technological progress does not have a significant effect on
carbon emissions in the light industry sector, but this effect is significantly different in
the light and heavy industry sectors. The F test shows that the sum of the coefficients of
technological progress and the interaction terms of technological progress and dummy
variables were positive and significantly different from 0; this indicates the increasing
effect of China’s technology on the heavy industry sector’s carbon emissions. A possible
reason for this result is that technological progress in the heavy industry sector has brought
about an improvement in production methods and an increase in industrial added value.
Therefore, the indirect increase in emissions brought about by technological progress in the
heavy industry sector may be greater than the direct reduction in emissions. Technological
progress in the heavy industry sector has arguably played a role in increasing emissions.

The results of the analysis of technological progress and the technological gap seem to
be contradictory; however, they are not. If there is only technological progress in the heavy
industry, and the technological gap has not narrowed, the division of labor will not change,
and only technological progress will play a role. When the technological gap narrows and
the division of labor in the heavy industry sector is optimized, then not only technological
progress but also the technological gap is at play.

On the basis of the previous analysis, we found that China’s technological progress
generally plays a role in reducing emissions, but technological progress in the heavy
industry sector increases emissions. Technological progress is still meaningful for reducing
carbon emissions, and it is necessary to pay attention to the types of technological progress
in the heavy industry sector to promote the development of clean technology. At the same
time, narrowing the technology gap will significantly reduce China’s carbon emissions,
and the role of the technology gap will be more significant in the heavy industry sector.

5.4. Mechanism Analysis

The previous analysis assumes that the technological gap may affect carbon emissions
by changing a country’s industrial comparative advantage in the world economy, thereby
obtaining a cleaner production division in the international division of labor. To verify this,
we used Sobel and Goodman mediation tests. The intermediary variable is a dominant
comparative advantage. First, a full sample estimation is conducted. The estimation
controlled the time and industry fixed effects. The control variables included the level of
technological progress, level of marketization, logarithm of capital stock, logarithm of total
energy consumption, logarithm of the industrial labor force, and logarithm of industry
added value. After all the variables were centrally processed, a mediation effect test was
carried out. The test results are shown in Table 5.

It can be observed from Table 6 that both the Sobel test and the Goodman test sig-
nificantly rejected the null hypothesis, indicating that there was a mediating effect. The
indirect effect was significantly negative; that is, the technological gap had significantly
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reduced carbon emissions through a comparative advantage. The insignificant total and
direct effects indicated that there was a masking effect.

Table 6. Mediating effect test based on sub-samples of light and heavy industries.

Light Industry Heavy Industry

Coef. Std. Err. Z P > Z Coef. Std. Err. Z P > Z

Sobel −0.430 0.174 −2.476 0.013 0.011 0.209 0.053 0.957
Goodman-1 −0.430 0.176 −2.439 0.015 0.011 0.214 0.052 0.958
Goodman-2 −0.430 0.171 −2.516 0.012 0.011 0.204 0.055 0.956

Coef. Std. Err. Z P > Z Coef. Std. Err. Z P > Z

Indirect effect −0.430 0.174 −2.476 0.013 0.011 0.209 0.053 0.957
Direct effect −0.916 0.217 −4.229 0.000 −0.136 0.468 −0.290 0.772
Total effect −1.346 0.246 −5.461 0.000 −0.125 0.511 −0.244 0.807

Notes: Coef.: coefficient; Std. Err.: standard error.

Next, the samples were divided into light and heavy industry groups, and a mediation
effect test was performed. The results are provided in Table 6. The test results after grouping
showed that the light industry group had a significant partial mediating effect. Technology
gaps affect carbon emissions by influencing an industry’s explicit comparative advantages.
However, the mediation effect of the heavy industry group was not significant. The
mediation effect test shows that the mechanism of the technological gap in carbon emissions
affects the emissions by influencing a country’s industry’s apparent comparative advantage.
This mechanism was fully reflected in the analysis of the light industry sector. The heavy
industry sector has always been a weak sector in China. Although the technological gap
has been narrowing and the comparative advantage of China’s heavy industry sector has
continued to increase, this may have more of a role in enabling China’s heavy industry
sector to develop many industries from scratch in the international division of labor.
However, the process of transforming from quantity to quality has not yet been realized.

6. Conclusions

Technological progress has changed the international production division and trade
pattern by narrowing the technological gap relative to international frontiers, which affects
pollution. From the perspective of the global economy, a country’s technological progress
implies a change in the technology gap, resulting in changes to the division of international
production and industrial competition, which in turn influences trade patterns. These
industrial structure and trade patterns directly affect air pollution. This study developed
a Schumpeter growth model incorporating technological progress, the technology gap,
and pollution to explore the effect of technology gaps on pollution, and then empirically
examined the model using the data of China. The main results are as follows: First, the
theoretical model showed that narrowing the technology gap reduces pollution, while the
technology progress’s effect remains unsure. Second, the empirical results showed that
narrowing the gap between China’s industrial technology and the world technology frontier
significantly reduces carbon emissions, indicating that narrowing the technology gap is
crucial for a country’s growth and environment. Third, there are significant differences
in the effects of technological progress on carbon emissions between light and heavy
industries: innovation in the heavy industry sector has played a role in increasing emissions.
Lastly, the mechanism analysis showed that the industry’s explicit comparative advantage
is the intermediary variable of the technology gap and carbon emissions. The narrowing of
the technological gap will reduce carbon emissions by influencing the industry’s apparent
comparative advantage, and this effect is even more pronounced in the light industry sector.

At present, the economies of all countries influence each other, and the technological
gap has a significant impact on a country’s status in the world economy. This study shows
that the technological gap will affect a country’s carbon emission level and that narrowing
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the technology gap is crucial for a country’s growth and environment. Hence, the policy
implications may be that a country must pay attention not only to its technological progress
but also to the relative speed of its technological progress relative to the progress of the
world technology frontier. Maintaining high-speed technological growth and continuously
narrowing the technological gap will not only benefit economic growth but also contribute
to green development. At the same time, empirical data research at the industry level
in China show that technological progress and technological gaps in the heavy industry
sector with advanced manufacturing industries, such as major equipment, need substantial
further attention.
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Appendix A

Table 1. Matching of industries.

USA_SIC Industry Name CN_SIC Industry Name

Lightindustry

10 Metal, mining
8 Extracting and dressing of ferrous metal mines

9 Extracting and dressing of non-ferrous metal ores

12 Coal mining 6 Coal exploitation and washing

13 Oil and gas extraction 7 Exploitation of petroleum and natural gas

14 Nonmetallic minerals, except fuels 10 Extracting and dressing of nonmetal ores

20 Food and kindred products

13 Manufacturing of agricultural and non-staple foodstuff

14 Foodstuff manufacturing industry

15 Beverage manufacturing industry

21 Tobacco products 16 Tobacco industry

22,23,31

Textile mill products 17 Textile industry

Apparel and other textile products 18 Manufacturing industry of textile costumes, shoes, and caps

Leather and leather products 19 Manufacturing industry of leather, fur, feather (cloth with
soft nap) and their products

24 Lumber and wood products 20 Wood processing and manufacturing industry of wood,
bamboo, rattan, palm, and straw-made articles

http://cdi.cnki.net/Search/ReportPreview?FileName=N2012080023000041
http://cdi.cnki.net/Titles/SingleNJ?NJCode=N2019110002
http://cdi.cnki.net/Titles/SingleNJ?NJCode=N2011050044
https://data.cnki.net/trade/Yearbook/Single/N2009060138?z=Z024
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5F1RRI
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5F1RRI
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Table 1. Cont.

USA_SIC Industry Name CN_SIC Industry Name

25 Furniture and fixtures 21 Furniture manufacturing

26 Paper and allied products 22 Papermaking and paper product industry

27 Printing and publishing 23 Printing industry and reproduction of record media

39 Miscellaneous manufacturing
industries

24 Manufacturing industry for culture, education,
and sports goods

42 Artwork and other manufacturing industries

H
eavy

industry

28 Chemical and allied products

26 Chemical feedstock and chemical manufacturing industry

27 Medicine manufacturing industry

28 Chemical fiber manufacturing industry

29 Petroleum and coal products 25 Petroleum processing, coking, and nuclear fuel manufacture

30
Rubber and miscellaneous

plastics products
29 Rubber production industry

30 Plastic industry

32 Stone, clay, and glass products 31 Non-metallic minerals product industry

33 Primary metal industries
32 Ferrous metal smelting and extrusion

33 Non-ferrous smelting and extrusion

34,35,38

Fabricated metal products 34 Metalwork industry

Industrial machinery
and equipment 35 General-purpose equipment manufacturing industry

Instruments and
related products

36 Specialized facility manufacturing industry

41 Manufacturing industry of instruments and meters, and
machinery for culture and office

36
Electronic and other electric

equipment

39 Electric machinery and equipment manufacturing industry

40 Manufacturing industry of communication equipment,
computers, and other electronic equipment

37 Transportation equipment 37 Transport and communication facilities of the
manufacturing industry

49
Electric, gas, and
sanitary services

11 Other mining industries

44 Production and supply of electric power and heat power

45 Gas generation and supply

46 Water production and supply

Industry deleted 43 Processing of discarded resources, and waste and scrap
recovery
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