Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ambient Particulate Collection in the Shanghai Suburban Sampling Site
2.2. PAH Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)
2.3. Source Apportionment Techniques of PAHs
2.4. Health Risk Assessment of PAHs
2.4.1. Average Dose Estimation
2.4.2. Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Size Distribution and Characteristics of Representative PAH Patterns
3.2. Possible Anthropogenic Source Apportionment of PAHs in PM1.1
3.3. Carcinogenic Risk and Mutagenicity of PAHs in PM1.1 and PM2.0
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PAHs | polycyclic aromatic hydrocarbons |
NOAA | National Oceanic and Atmospheric Administration |
NSAAQS | National Secondary Ambient Air Quality Standards |
PM1.1 | fine particles with a diameter of 1.1 μm or less |
PM1.1–2.0 | fine particles with sizes from1.1 to 2.0 μm |
PM2.0–3.3 | fine particles with sizes from 2.0 to 3.3 μm |
PM2.0 | fine particles with sizes equal and below 2.0 μm |
PM2.5 | fine particles with sizes equal and below 2.5 μm |
PM3.3–7.0 | fine particles with sizes from 3.3 to 7.0 μm |
HYSPLIT | Hybrid Single Particle Lagrangian Integrated Trajectory |
GC-MS | Gas Chromatography-Mass spectrometry |
GDAS | Global Data Assimilation System |
USEPA | United States Environmental Protection Agency |
LMW PAHs | low molecular weight PAHs |
MMW PAHs | middle molecular weight PAHs |
HMW PAHs | high molecular weight PAHs |
TEF | toxic equivalency factors |
CANPAHs | carcinogenic PAHs |
COMPAHs | combustion-derived PAHs group |
BaP-TEQ | carcinogenic equivalent |
DB[a,h]A | Dibenz[a,h]anthracene |
BaP | Benzo[a]pyrene |
BaA | Benzo[a]anthracene |
BbF | Benzo[b]fluoranthene |
BkF | Benzo[k]fluoranthene |
IcdP | Indeno[1,2,3-c,d]pyrene |
ANT | Anthracene |
BghiP | Benzo[g,h,i]perylene |
CHR | Chrysene |
FLA | Fluoranthene |
FL | Fluorene |
PYR | Pyrene |
PHE | Phenanthrene |
LADD | lifetime average daily intake |
ILCR | individual lifetime cancer risk |
N | north |
S | south |
E | east |
W | west |
WD | wind direction |
References
- Vu-Duc, N.; Phung Thi, L.A.; Le-Minh, T.; Nguyen, L.A.; Nguyen-Thi, H.; Pham-Thi, L.H.; Doan-Thi, V.A.; Le-Quang, H.; Nguyen-Xuan, H.; Thi Nguyen, T.; et al. Analysis of Polycyclic Aromatic Hydrocarbon in Airborne Particulate Matter Samples by Gas Chromatography in Combination with Tandem Mass Spectrometry (GC-MS/MS). J. Anal. Methods Chem. 2021, 2021, 6641326. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, A.M.; Custódio, D.; Cerqueira, M.; Nunes, T.; Pio, C.; Lucarelli, F.; Calzolai, G.; Nava, S.; Diapouli, E.; et al. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci. Total Environ. 2017, 595, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ishaq, M.; Khan, M.A. Effect of vehicle exhaust on the quantity of polycyclic aromatic hydrocarbons (PAHs) in soil. Environ. Monit. Assess. 2008, 137, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Castañeda, D.M.; Teixeira, E.C. Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmos. Environ. 2014, 96, 186–200. [Google Scholar] [CrossRef]
- Wang, Q.; Kobayashi, K.; Lu, S.; Nakajima, D.; Wang, W.; Zhang, W.; Sekiguchi, K.; Terasaki, M. Studies on size distribution and health risk of 37 species of polycyclic aromatic hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban area of Shanghai city, China. Environ. Pollut. 2016, 214, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ren, P.; Sun, Y.; Ma, X.; Liu, X.; Na, G.; Yao, Z. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. Environ. Sci. Pollut. Res. 2013, 20, 5753–5763. [Google Scholar] [CrossRef]
- Hassanien, M.A.; Abdel-Latif, N.M. Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. J. Hazard. Mater. 2008, 151, 247–254. [Google Scholar] [CrossRef]
- Agudelo-Castañeda, D.; Teixeira, E.; Schneider, I.; Lara, S.R.; Silva, L.F.O. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 2017, 224, 158–170. [Google Scholar] [CrossRef]
- Kozáková, J.; Leoni, C.; Klán, M.; Hovorka, J.; Racek, M.; Koštejn, M.; Ondráček, J.; Moravec, P.; Schwarz, J. Chemical characterization of PM1-2.5 and its associations with PM1, PM2.5-10 and meteorology in urban and suburban environments. Aerosol Air Qual. Res. 2018, 18, 1684–1697. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 2009, 43, 812–819. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chao, S.; Cao, H.; Zhang, A.; Yang, Y. Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci. Total Environ. J. 2018, 644, 20–30. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.W.; Cheng, H.R.; Lv, X.P.; Gong, W.; Wang, X.M.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef]
- Tao, Y.; Yin, Z.; Ye, X.; Ma, Z.; Chen, J. Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai. Atmos. Pollut. Res. 2014, 5, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.X.; Kong, L.D.; Du, C.T.; Zhanzakova, A.; Fu, H.B.; Tang, X.F.; Wang, L.; Yang, X.; Chen, J.M.; Cheng, T.T. Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmos. Environ. 2017, 167, 625–641. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Luo, Z.; Chen, L.; Meng, H.; Zhao, J. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomassEffects of the cellulose. Bioresour. Technol. 2017, 235, 256–264. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, X.; Liu, M.; Zhu, J.; Yang, J.; Du, W.; Zhang, X.; Gao, D.; Qadeer, A.; Xie, Y.; et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China. Chemosphere 2019, 217, 298–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Gao, Y.; Chen, J.; Li, Y.; Jiang, P.; Zhang, J.; Yu, H.; Wang, W. Comparative study of PAHs in PM1 and PM2.5 at a background site in the north China plain. Aerosol Air Qual. Res. 2019, 19, 2281–2293. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, J.; Shi, G.; Sun, X.; Chen, Z.; Xu, S. Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai. Environ. Geochem. Health 2011, 33, 515–523. [Google Scholar] [CrossRef]
- Sahanghai Environment Protection Bureau. Shanghai Environmental Bulletin (2017). 2017. Available online: https://sthj.sh.gov.cn/assets/html/110939-02.pdf (accessed on 20 July 2018).
- Wang, Q.; Liu, M.; Yu, Y.; Du, F.; Wang, X. Black carbon in soils from different land use areas of Shanghai, China: Level, sources and relationship with polycyclic aromatic hydrocarbons. Appl. Geochem. 2014, 47, 36–43. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Chemical partitioning of fine particle-bound metals on haze–fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmos. Environ. 2015, 36, 142–150. [Google Scholar]
- Wang, Q.; Morita, J.; Gong, X.; Nakamura, S.; Suzuki, M.; Lu, S.; Sekiguchi, K.; Nakajima, T.; Daisuke, N.; Miwa, M. Characterization of the Physical Form of Allergenic Cry j 1 in the Urban Atmosphere and Determination of Cry j 1 Denaturation by Air Pollutants. Asian J. Atmos. Environ. 2012, 6, 33–40. [Google Scholar] [CrossRef]
- Chang, K.F.; Fang, G.C.; Chen, J.C.; Wu, Y.S.; Tao, Y.; Mi, S.; Zhou, S.; Wang, S.; Xie, X.; Gulia, S.; et al. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environ. Pollut. 2014, 192, 1171–1179. [Google Scholar]
- Wu, M.; Sun, R.; Wang, M.; Liang, H.; Ma, S.; Han, T.; Xia, X.; Ma, J.; Tang, L.; Sun, Y.; et al. Analysis of perfluorinated compounds in human serum from the general population in Shanghai by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chemosphere 2017, 168, 100–105. [Google Scholar] [CrossRef]
- Bulejko, P.; Adamec, V.; Schüllerová, B.; Skeřil, R. Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: A 5-year study. Environ. Sci. Pollut. Res. 2016, 23, 20462–20473. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W. Size characteristics and health risks of inorganic species in PM1.1 and PM2.0 of Shanghai, China, in spring, 2017. Environ. Sci. Pollut. Res. 2020, 27, 14690–14701. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, B.; Tao, J.; Cao, J.; Zhang, Z.; Wu, C.; Wang, J.; Li, J.; Zhang, L.; Han, Y.; et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmos. Res. 2017, 183, 322–330. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011; pp. 1–1466.
- Oswer U.S.E.P.A. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA: Washington, DC, USA, 2009; Volume I.
- Del Rosario Sienra, M.; Rosazza, N.G.; Préndez, M. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos. Res. 2005, 75, 267–281. [Google Scholar] [CrossRef]
- Possanzini, M.; Di Palo, V.; Gigliucci, P.; Tomasi Scianò, M.C.; Cecinato, A. Determination of phase-distributed PAH in Rome ambient air by denuder/ GC-MS method. Atmos. Environ. 2004, 38, 1727–1734. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kuhns, H.; Etyemezian, V.; Green, M.C.; Chow, J.C.; Watson, J.G. The Treasure Valley secondary aerosol study II: Modeling of the formation of inorganic secondary aerosols and precursors for southwestern Idaho. Atmos. Environ. 2003, 37, 525–534. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Agudelo-Castañeda, D.M.; Teixeira, E.C.; Schneider, I.L.; Rolim, S.B.A.; Balzaretti, N.; e Silva, G.S. Comparison of emissivity, transmittance, and reflectance infrared spectra of polycyclic aromatic hydrocarbons with those of atmospheric particulates (PM1). Aerosol Air Qual. Res. 2015, 15, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Fan, S.; Meng, Q.; Sun, Y.; Zhang, J.; Zu, F. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences. Atmos. Environ. 2014, 89, 207–215. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.M.; Wade, T.L.; Sericano, J.L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos. Environ. 2003, 37, 2259–2267. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.S.; Yin, H.L.; Wang, X.H.; Ye, C.X. Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmos. Res. 2007, 85, 429–441. [Google Scholar] [CrossRef]
- Hamid, N.; Syed, J.H.; Junaid, M.; Mahmood, A.; Li, J.; Zhang, G.; Malik, R.N. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. Sci. Total Environ. 2018, 619–620, 165–175. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 2010, 408, 5550–5558. [Google Scholar] [CrossRef]
- Chang, K.F.; Fang, G.C.; Chen, J.C.; Wu, Y.S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environ. Pollut. 2006, 142, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.; Wang, C.H. Chemical partitioning of fine particle-bound metals on haze–fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmos. Environ. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Zheng, X.; Zhang, S.; Song, S.; Li, J.; Hao, J. Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci. Total Environ. 2014, 470–471, 76–83. [Google Scholar] [CrossRef]
- Song, H.; Zhang, Y.; Luo, M.; Gu, J.; Wu, M.; Xu, D.; Xu, G.; Ma, L. Seasonal variation, sources and health risk assessment of polycyclic.pdf. Atmos. Pollut. Res. 2019, 10, 105–114. [Google Scholar] [CrossRef]
- Dan, M.; Zhuang, G.; Li, X.; Tao, H.; Zhuang, Y. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmos. Environ. 2004, 38, 3443–3452. [Google Scholar] [CrossRef]
- De Kok, T.M.C.M.; Driece, H.A.L.; Hogervorst, J.G.F.; Briedé, J.J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res.-Rev. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef]
- Traversi, D.; Festa, E.; Pignata, C.; Gilli, G. Aero-dispersed mutagenicity attributed to particulate and semi volatile phase in an urban environment. Chemosphere 2015, 124, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef]
PAH Ratio | Value Range | Source | Reference |
---|---|---|---|
LMW/HMW | <1 | Pyrogenic | Zhang, Wei et al., 2008 |
>1 | Petrogenic | ||
COMB/PAHs | ~1 | Combustion | Ravindra, Khaiwal 2008 |
Fl/(Fl+Pyr) | <0.5 | Petrol emissions | Ravindra, Khaiwal 2008 |
>0.5 | Diesel emissions | ||
ANT/(ANT+PHE) | <0.1 | Petrogenic | Pies, Carmen et al., 2008 |
>0.1 | Pyrogenic | ||
FLA/(FLA+PYR) | <0.4 | Petrogenic | Roberto, J. 2009 |
0.4–0.5 | Fossil fuel combustion | ||
>0.5 | Grass, wood, coal combustion | ||
BaA/(BaA+CHR) | <0.2 | Petrogenic | Akyüz et al., 2010, Yunker et al., 2002 |
0.2–0.35 | Coal combustion | ||
>0.35 | Vehicular emissions, combustion | ||
IcdP/(IcdP+BghiP) | <0.2 | Petrogenic | Yunker, Mark B. et al., 2002 |
0.2–0.5 | Petroleum combustion | ||
>0.5 | Grass, wood, coal combustion | ||
Bap/BghiP | <0.6 | Non-traffic emissions | Katsoyiannis 2007 |
>0.6 | Traffic emissions |
City | Site Description | Year | Sample Matrix | 16 PAHs ng/m³ | Ref. | |
---|---|---|---|---|---|---|
Summer | Other | |||||
Shanghai | Urban/industrial | 2017 | PM1.1 | 2.86 (13 PAHs) | 2.41 spring | This study |
TSP | 4.28 | 4.83 | This study | |||
Canoas | Roadside/traffic | 2011~2013 | PM1.0 | 1.32 | 2.02 winter | D.M. (2014) [36] |
Sapucaia do Sul | Urban road/traffic | 2011~2013 | PM1.0 | 1.57 | 3.05 winter | D.M. (2014) |
Shanghai | Suburban | 2015 | PM1.1 | 4.97 (37 PAHS) | Wang (2016) [6] | |
Nanjing | Suburban | 2009~2010 | PM2.1 | 30.76 | 43.5 spring | HE 2014 [37] |
Urban | PM2.1 | 25.92 | 56.92 spring | HE 2014 | ||
Xi’an | Urban | 2013 | PM1.1 | 3.4 | 33 winter | Ren 2017 [28] |
TSP | 6 | 57 winter | Ren 2017 | |||
Guangzhou | Urban | 2013 | PM1.1 | 2.2 | 4.4 winter | Ren 2017 |
TSP | 2.8 | 18 winter | Ren 2017 |
Concentrations (pg/m3) | PM/TSP (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM1.1 | PM1.1–2.0 | PM2.0–3.3 | PM3.3–7.0 | >7.0 μm | TSP | PM1.1 | PM1.1–2.0 | PM2.0–3.3 | PM3.3–7.0 | >7.0 μm | ||
Spring AVG. | LMW | 95.0 | 69.5 | 66.9 | 72.4 | 62.7 | 366.3 | 25.9 | 19.0 | 18.3 | 19.8 | 17.1 |
MMW | 810.9 | 392.0 | 224.9 | 187.0 | 225.9 | 1840.6 | 44.1 | 21.3 | 12.2 | 10.2 | 12.3 | |
HMW | 1502.1 | 542.5 | 235.7 | 153.9 | 185.7 | 2619.9 | 57.3 | 20.7 | 9.00 | 5.87 | 7.09 | |
TPAHs | 2407.9 | 1004.0 | 527.4 | 413.3 | 474.2 | 4826.8 | 49.9 | 20.8 | 10.9 | 8.56 | 9.82 | |
COMPAHs | 2198.0 | 889.3 | 438.9 | 348.9 | 385.1 | 4260.3 | 51.6 | 20.9 | 10.3 | 8.19 | 9.04 | |
CANPAHs | 1608.2 | 604.9 | 285.8 | 199.8 | 240.1 | 2938.8 | 54.7 | 20.6 | 9.73 | 6.80 | 8.17 | |
Late summer AVG. | LMW | 144.7 | 36.6 | 42.6 | 35.3 | 49.1 | 308.2 | 46.9 | 11.9 | 13.8 | 11.4 | 15.9 |
MMW | 1072.3 | 118.8 | 124.8 | 114.9 | 159.8 | 1590.6 | 67.4 | 7.469 | 7.846 | 7.225 | 10.0 | |
HMW | 1638.7 | 219.5 | 203.1 | 131.1 | 188.2 | 2380.5 | 68.8 | 9.22 | 8.53 | 5.51 | 7.91 | |
TPAHs | 2855.6 | 374.8 | 370.5 | 281.3 | 397.1 | 4279.3 | 66.7 | 8.76 | 8.66 | 6.57 | 9.28 | |
COMPAHs | 2442.0 | 328.2 | 306.5 | 235.5 | 329.7 | 3642.1 | 67.0 | 9.01 | 8.42 | 6.47 | 9.05 | |
CANPAHs | 2118.7 | 242.8 | 242.3 | 180.2 | 232.3 | 3016.3 | 70.2 | 8.05 | 8.03 | 5.97 | 7.70 |
PAHs | Spring | Late Summer | |||||
---|---|---|---|---|---|---|---|
F 1 | F2 | F3 | F1 | F2 | F3 | F4 | |
BaA | 0.950 | 0.204 | 0.223 | 0.879 | 0.113 | 0.333 | 0.239 |
BaP | 0.938 | 0.264 | 0.213 | 0.037 | 0.870 | 0.446 | 0.169 |
CHR | 0.925 | 0.270 | 0.255 | 0.771 | 0.176 | 0.254 | 0.312 |
BghiP | 0.918 | 0.366 | 0.144 | 0.944 | −0.013 | −0.212 | 0.095 |
BkF | 0.877 | 0.408 | 0.248 | −0.200 | 0.835 | −0.310 | 0.291 |
IcdP | 0.868 | 0.426 | 0.249 | 0.731 | 0.506 | −0.008 | −0.108 |
BbF | 0.864 | 0.409 | 0.279 | 0.378 | 0.857 | 0.002 | 0.256 |
PHE | 0.849 | 0.361 | 0.376 | 0.825 | 0.357 | 0.212 | 0.320 |
FLA | 0.787 | 0.001 | 0.605 | 0.196 | 0.312 | −0.049 | 0.865 |
ANT | 0.758 | 0.161 | 0.481 | 0.865 | −0.118 | −0.002 | −0.134 |
DahA | 0.232 | 0.928 | 0.222 | 0.144 | 0.169 | 0.932 | 0.030 |
FL | 0.626 | 0.661 | 0.227 | 0.317 | 0.328 | 0.783 | 0.002 |
PYR | 0.233 | 0.359 | 0.895 | 0.261 | 0.641 | 0.551 | −0.030 |
Variance (%) | 62.8 | 18.6 | 15.6 | 35.6 | 25.2 | 18.0 | 9.41 |
Sources | industrial emissions, diesel vehicle emissions | gasoline vehicle emissions | coal combustion, roadside soil particle | stationary sources, diesel vehicle emissions | biomass and coal combustion | gasoline vehicle emissions | roadside soil particle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wang, Q.; Nakajima, D.; Lu, S.; Xiao, K.; Chowdhury, T.; Suzuki, M.; Liu, F. Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai. Processes 2021, 9, 2016. https://doi.org/10.3390/pr9112016
Wang W, Wang Q, Nakajima D, Lu S, Xiao K, Chowdhury T, Suzuki M, Liu F. Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai. Processes. 2021; 9(11):2016. https://doi.org/10.3390/pr9112016
Chicago/Turabian StyleWang, Weiqian, Qingyue Wang, Daisuke Nakajima, Senlin Lu, Kai Xiao, Tanzin Chowdhury, Miho Suzuki, and Fenwu Liu. 2021. "Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai" Processes 9, no. 11: 2016. https://doi.org/10.3390/pr9112016
APA StyleWang, W., Wang, Q., Nakajima, D., Lu, S., Xiao, K., Chowdhury, T., Suzuki, M., & Liu, F. (2021). Industrial Source Contributions and Health Risk Assessment of Fine Particle-Bound Polycyclic Aromatic Hydrocarbons (PAHs) during Spring and Late Summer in the Baoshan Area, Shanghai. Processes, 9(11), 2016. https://doi.org/10.3390/pr9112016