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Abstract: Small molecule lipophilicity is often included in generalized rules for medicinal chemistry.
These rules aim to reduce time, effort, costs, and attrition rates in drug discovery, allowing the
rejection or prioritization of compounds without the need for synthesis and testing. The availability
of high quality, abundant training data for machine learning methods can be a major limiting factor
in building effective property predictors. We utilize transfer learning techniques to get around
this problem, first learning on a large amount of low accuracy predicted logP values before finally
tuning our model using a small, accurate dataset of 244 druglike compounds to create MRlogP, a
neural network-based predictor of logP capable of outperforming state of the art freely available logP
prediction methods for druglike small molecules. MRlogP achieves an average root mean squared
error of 0.988 and 0.715 against druglike molecules from Reaxys and PHYSPROP. We have made the
trained neural network predictor and all associated code for descriptor generation freely available.
In addition, MRlogP may be used online via a web interface.

Keywords: lipophilicity prediction; logP prediction; transfer learning; physicochemical property
prediction

1. Introduction

Common rulesets used in drug discovery and medicinal chemistry, such as Lipinski’s
“rule of five” [1,2] and Oprea’s “rule of three” [3,4], aggregate properties of a molecule to
predict a further property such as in-vivo absorption or how ‘lead like’ and suitable for
medicinal chemistry efforts a molecule is. Central to many rulesets and compound filtering
criteria is lipophilicity, a measure of a unionized compound’s ability to dissolve or be held
in hydrophobic versus a polar solvent [5]. Compound lipophilicity is commonly expressed
as the log of the partition coefficient of compound distribution in an octanol/water system
and commonly referred to as logP. Assessing the partition coefficient on a log scale gives
rise to hydrophobic compounds having a positive logP and hydrophilic compounds having
a negative logP. Along with aggregation of this value with other properties as input
to predictors, it is also used on its own to perform in-vivo localization [6] and barrier
permeability predictions [7]. Hann and Keserü assessed approved drugs and identified
logP along with molecular weight as strong predictors of a compound achieving approved
drug status [8]. Experimental determination of logP can be performed using a range
of methods. However, certain cases exist where experimental determination is difficult.
In addition, the case for logP prediction on virtual compounds is compelling. Often,
medicinal chemistry efforts use calculated logP values to guide derivatization within
structural activity relationship exploration, each derivative having its logP predicted before
moving to costly synthesis and allowing efforts to be focused on only the most promising
compounds.
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1.1. Prediction of logP

Methods of logP prediction can be broadly placed into two classes, substructure and
whole molecule approaches [9], each class separated by one fundamental assumption, that
a molecule’s lipophilicity is additive, or that it is not, and it is more complex than simply a
sum of discrete substructure contributions. These substructures may be large moieties such
as ring systems, or smaller features such as atoms. Many freely-available logP predictors
are available, including substructure-based methods, such as ALOGP [10], XLOGP3 [11],
and JPlogP [12], along with programs using whole molecule methods such as ALOGPS [13],
MLOGP [14], VEGA [15], and UFZ-LSER [16]. Both ALOGP [10] and XLOGP3 [13] adopted
an atom-additive method for logP prediction, whereas XLOGP3 [13] utilizes larger molecu-
lar fragments, applying further correction factors to deal with intramolecular interactions.
Unlike substructure-based methods, MLOGP [14] uses 13 1D-topological parameters to
represent whole molecules via a multiple regression model. VEGA [15] predicts logP
values by considering the entire molecular graph and approximating intermolecular in-
teractive forces and their correlation to lipophilicity. UFZ-LSER [16] uses an empirical
treatment of molecular descriptors representing the entire molecule. Mannhold et al. [17]
evaluated and compared the performance of 30 logP predictors against one public and two
in-house datasets, discovering that a consensus model using the average of predictions
from top-ranked models outperformed the majority of predictors evaluated. Observing the
predictive power of consensus logP predictions, Plante et al. used consensus logP values in
the creation of the substructure-based method JPlogPcoeff [12]. JPlogPcoeff is trained on the
mean of predicted logPs for 89,517 diverse molecules from four freely available approaches
(ALOGP [10], XLOGP2 [18], XLOGP3 [11], and SlogP [19]). Linear regression was used
to fit coefficients for pre-defined atom-types relevant to logP prediction. Beyond this
parameterised model, a further predictor JPlogPlibrary [12] was developed which includes a
correction step, adding contributions from molecules similar to the prediction target from
experimental data in the PHYSPROP dataset [20].

Both JPlogPcoeff and JPlogPlibrary are shown to outperform the majority of logP predic-
tors when evaluated using their chosen high quality external test set containing experimen-
tally measured logPs for 707 molecules as created and published by Martel et al. [21].

1.2. Motivation for This Study

Building upon the value of consensus predictions identified by Mannhold et al. and
the demonstration by Plante that real world data can be used to further improve predictors
trained on non-experimental data, we set out to determine if modern machine learning
techniques could outcompete expertly crafted systems exploiting specialist chemical knowl-
edge as well as improving upon machine learning derived systems created at the beginning
of the current machine learning/AI revolution. In this work, we chose to add emphasis on
usability for drug discovery and medicinal chemistry where accurate logP predictions will
have the most impact, focusing prediction optimization efforts within druglike chemical
space. Whilst subjective, a convenient and widely used cheminformatics-based measure
of druglikeness exists in the quantitative estimate of drug-likeness (QED) score [22] as
developed by Bickerton et al., ranging between 0 and 1 with a score above 0.67 indicative
of a druglike molecule. This quantification of druglikeness greatly improves on previous
‘rule of thumb metrics’ such molecular weights between 150 and 500 Da, and a specified
number of hydrogen bond donors and acceptors. Examples of predictors tailored to areas
of chemical space can be found in literature with foci on peptides and certain compound
substructure classes [23]. The ultimate goal of our work was the creation of an open, freely
available, performant druglike small molecule logP predictor allowing easy integration
into existing drug discovery pipelines and also deployed on the web for rapid, iterative,
and design-led use.
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2. Materials and Methods

All code and derived datasets are available within the MRlogP source repository under
an open-source license, available at https://github.com/JustinYKC/MRlogP (accessed
on 23 July 2021). Dataset preparation, model training, and predictions were carried out
on a server with an Intel i7 8700 CPU, 32 GB RAM, and an NVIDIA GeForce RTX 2080 to
accelerate training, running Ubuntu 18.04.

2.1. Dataset Preparation

Our training, validation, and test sets described below all underwent the following
filters and transformations through custom Python (version 3.7.9) code calling RDKit [24]
(Version 2020.09.1.0): salt removal, standardization, uniquification, removal of molecules
containing disallowed atoms, retaining only C, N, O, S, F, Cl, Br, I, B, Si, and P atom contain-
ing molecules, MW ≤ 800, removal of pan assay interference compounds (PAINS) [25,26],
and finally the removal of molecules with QED [22] scores less than 0.67. Molecules were
represented as sets of molecular descriptors, capturing (i) atom connectivity with the circu-
lar Morgan fingerprint [27] as implemented in RDKit (version 2017.03.3), (ii) larger moieties
using the FP4 fingerprint as implemented in OpenBabel (version 2.4.1) [28] and Pybel [29]
(version 0.15.3), and finally (iii) 3D shape and electrostatics using the USRCAT [30] molec-
ular descriptor sets, as implemented in RDKit (version 2017.03.3). USRCAT descriptors
require generation of a single low energy conformer which was achieved using RDKit
and the techniques described by Ebejer et al. [31]. See source repository for all code and
resultant datasets for training, validation, and prediction.

Our training set, which we refer to as the 500k set, is derived from the 2019-05
release of the eMolecules database, obtained from www.eMolecules.com (accessed on
22 May 2019) and processed using the filtering and transformation steps defined above.
ALOGP [10], XLOGP2 [18], XLOGP3 [11], and SlogP [19] were used to predict logPs for each
molecule within the training set, which were then recorded and used to produce a Pandas
(Version 1.2.1) dataframe. The analysis revealed an average standard deviation across the
four logP predictors to be 0.415. To keep only molecules where a good consensus for the
predicted logP was achieved, molecules with consensus prediction standard deviations
greater than 2 times the average standard deviation were removed. This reduced the dataset
size to 20,545,077 molecules, a surprisingly small reduction, indicating good agreement
between the chosen logP predictors. Molecules were then placed in bins according to
their average predicted logP, each bin spanning one log unit from −5 to 10 (the chosen
prediction range of our logP predictor). In preparation for the application of diversity
picking a set number of molecules from each bin to create as flat as possible a distribution
of molecules across all bins, a simple algorithm was applied. Requesting 500,000 molecules
across the logP range spanned by 15 single log unit bins would ideally produce bins
contain 33,333 molecules each. However, extreme bins, such as those containing logPs
of -5 to -4, and 9 to 10 contained only 4 and 7 molecules, respectively. To reach the target
500,000 molecules, more are therefore evenly taken from every other bin. Our target
pick size from the bins spanning logPs from −5 to 10 contained 4, 9, 36, 18,290, 361,002,
1,767,551, 3,742,630, 4,446,441, 2,851,614, 848,808, 83,180, 1678, 62, 17, and 7 molecules,
respectively (see Supplementary Figure S1). Morgan fingerprints for all molecules were
used as input to the RDKit MaxMinPicker, allowing diverse picking of molecules from
within bins. Conformer generation failed on a small number of molecules with problems
such as incorrect bond orders, leaving our training dataset containing 498,426 molecules.
For the sake of brevity, we will refer to this as the 500k training dataset.

The Martel_DL dataset comprises 244 druglike filtered molecules from the high quality
experimentally determined logP dataset as published by Martel et al. [21]. All logP data in
this dataset were obtained using ultra-high-performance liquid chromatography. Standard
filters, transformations, and descriptor generation steps defined above were applied to
generate this Martel_DL (DrugLike) dataset (see Supplementary Table S5).

https://github.com/JustinYKC/MRlogP
www.eMolecules.com
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The Physprop_DL dataset contains 5638 molecules captured, filtered and transformed
using the dataset and descriptor generation steps above from the EPA’s (United State
Environmental Protection Agency, Washington, WA, USA) EPI software (http://esc.syrres.
com/interkow/EpiSuiteData_ISIS_SDF.htm), known as PHYSPROP and used extensively
in the creation of historically widely used logP predictors.

The Reaxys_DL test set comprises 20,067 molecules from Reaxys [32], an online web-
based chemistry database containing more than 500 million published experimental values
derived predominantly from medicinal chemistry and drug discovery programs.

2.2. Neural Network Architecture and Hyperparameters

We utilized a fully connected artificial neural network (ANN) in this study with the
goal of developing a predictor of logP tuned and highly accurate in predictions for druglike
small molecules. Defined in Python (version 3.7.9) using Keras (version 2.2.4), TensorFlow
(version 2.2.0), and cuDNN (version 7.6.5), a 5-layer sequential model was constructed,
comprising 1 input layer of 316 nodes to represent a molecule (128 values from FP4, 128
from ECFP4 and 60 from USRCAT), 3 hidden layers with variable numbers of nodes within
each to be optimized in hyperparameter scanning, and a single node output layer. A
parametric rectified linear unit (PReLU) and leaky rectified linear unit (LeakyReLU) were
employed over the commonly used ReLU activation functions to avoid non-zero gradients
and poor training performance [33]. Furthermore, a simple linear activation function was
used on the output layer to scale network outputs. Mean squared error (MSE) was used as
a loss function for the Adam optimizer with dropout rate applied during network training.
A simple grid search approach was taken to hyperparameter scanning for optimization
of the number of hidden layers, nodes per hidden layer, batch size, number of training
epochs, dropout rate, and learning rates. Model performance in the hyperparameter scan
was evaluated using root mean square error (RMSE), as shown in Equation (1).

RMSE =

√
1
n

n

∑
i=1

(
h
(
x(i)
)
− y(i)

)2 (1)

where n is the number of molecules in the dataset, h is our prediction function which
outputs a logP value for the i-th molecule in a dataset based on its features x, and y is the
measured logP value for the i-th molecule.

The final representative RMSE was then calculated as the average of three repeats.
Each repeat used a randomized 90–10 train-test split holdout validation of the 500k dataset
ensuring the number of validated molecules for each logP range remained proportional to
the number of training molecules within the 1 log unit range (see Supplementary Figure S1).
During hyperparameter optimization, a total of 1944 neural networks were constructed,
trained, and evaluated three times each with a shuffled dataset supplying training and test
data for RMSE calculation. See Supplementary Table S1 for hyperparameters explored. The
best 20 models, achieving the lowest average RMSE, were further reevaluated using 10-fold
cross validation. With the best network hyperparameters identified and evaluated in 10-
fold cross validation. The final network model was retrained using the entire 500k dataset.
We evaluated top performing hyperparameter scan models after retraining, calculating
RMSE values for the Martel_DL, Physprop_DL, and Reaxys_DL datasets (see results and
Table 1).

http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm
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Table 1. Performance of logP predictors against the three druglike test sets. MRlogPconsensus out-
performs JPlogP on the 3 druglike datasets. Transfer learning using the highly accurate Martel_DL
dataset to create the more performant MRlogP predictor further increases this performance gap,
improving prediction accuracy on the Reaxys_DL and Physprop_DL test sets.

Predictor

Performance (RMSE)

Martel_DL
(N = 244)

Reaxys_DL
(N = 20,067)

Physprop_DL
(N = 5638)

MRlogPconsensus 0.972 1.074 0.727
MRlogP - 0.988 0.715
JPlogP 1.007 1.196 0.738

In order to further improve prediction performance and create the best predictor
possible, techniques from transfer learning were applied using the highly accurate Mar-
tel_DL dataset (see Figure 1 for a schematic workflow representation). This essentially
applied a small correction to our already well-performing model trained on consensus data,
applying the small amount (244 molecules) of high-quality experimental data to converge
on a better predictor. Before tweaking the weights in the hidden layers, the output layer
of the pre-trained model was replaced with the new one, which was then trained to learn
weights from the new data. In the course of transfer learning, each of the hidden layers
in the pre-trained model were unfrozen and retrained on the new data set using a low
learning rate (1.31 × 10−5) so as not to entirely overwrite weights set through training on
the 500k dataset. Supplementary Table S4 shows the hyperparameters scanned for transfer
learning in this study.
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Figure 1. The workflow used in creation of the MRlogP logP predictor. Starting with a large dataset of druglike small
molecules and their predicted logPs from existing codes, the MRlogPconsensus logP predictor was created. Next, using
approaches from transfer learning, layers within the network were again trained, using highly accurate experimental data
with the aim of improving prediction accuracy in the final MRlogP predictor.
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3. Results
3.1. Arteficial Neural Network Training and Validation on Consensus logPs

Performing three repeats of each set of hyperparameters (see methods) allowed aver-
aging and prioritization of the top 20 parameter sets. These 20 models (see Supplementary
Table S2) defined by their hyperparameters were then taken forward for 10-fold cross
validation. All of these top 20 models had wide hidden layers, were trained with a high
number of epochs (either 25 or 30) and a learning rate of 1 × 10−4, and had dropout rates
of 0.1 or 0.2.

Cross validation showed the best performing model to have 5 layers (3 hidden layers
along with input and output layers), 1264 nodes, a batch size of 32, trained for 30 epochs,
a 0.2 dropout rate, and a 1 × 10−4 learning rate. Moreover, folds evaluated with this
model were more homogeneously spread around the median without outliers and had
smaller RMSEs within the interquartile range, indicating a robust and general model (see
Supplementary Figure S2). The performance of this final model was evaluated against
the three druglike test sets after retraining on the whole 500k dataset, achieving RMSEs
of 0.972, 1.074, and 0.727 on Martel_DL, Reaxys_DL, and Physprop_DL, respectively (see
Table 1). This final model was named MRlogPconsensus, indicating it was trained solely on
consensus prediction data.

3.2. Transfer Learning

With MRlogPconsensus achieving an RMSE around 1 log unit, an improved model was
achieved through application of transfer learning techniques (see Methods), correcting
MRlogPconsensus using experimental data in the form of 244 molecules in the Martel_DL
dataset. Transfer learning created an ANN predictor we term MRlogP, demonstrating an
improvement on the remaining Reaxys_DL and Physprop_DL datasets, scoring 0.988, and
0.715, respectively (Table 1). Figure 2 shows MRlogP predicted logPs against measured logP
values within the Reaxys_DL (left) and Physprop_DL (right) test sets. The high density
of data points observed around the line for both Reaxys_DL and Physprop_DL measured
logPs with negative values are, however, predicted with higher RMSE by MRlogP. This is
most clearly shown for Reaxys, with a wide range of predicted logPs (0–4) for measured
logP values between −2 and −5. This can be seen later in Figures 2 and 3, with large
RMSEs present in the most negative logP bins.
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Figure 2. MRLogP predicted logPs vs. measured logPs for the Reaxys_DL (left) and Physprop_DL
(right) datasets. Deviation from theoretical perfect predictor performance (dashed black line of y = x)
allows performance visualization, with deviations contributing to higher root mean squared errors
(RMSEs), our chosen performance metric.

3.3. Performance Comparison

A performance comparison of MRlogP and MRlogPconsensus was carried out against,
to our knowledge, and at the time, the best freely available logP predictor JPlogP as
implemented in the Chemistry Development Kit (CDK) [34]. Table 1 shows performance
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of these three predictors against the three test sets. Martel_DL is left out of the MRlogP
performance evaluation, as this predictor was cross trained on the dataset. MRlogPconsensus
is able to outperform JPlogP on all of the three druglike test sets. Moreover, it outperforms
JPlogP on the Reaxys_DL test set containing both negative and positive logPs more akin
to the range encountered in medicinal chemistry and drug discovery programs. MRlogP
improves the predictions further and demonstrates that small amounts of experimental
data may be used to correct predictors built on low quality consensus predictions.

We may observe the impact that the abundance of training data has on predictor
performance in Figure 3, showing the number of molecules within logP bins and predictor
performance. This striking plot shows RMSE (as measured from the Reaxys_DL dataset) as
expected to be inversely correlated with the number of molecules present within each logP
bin. In short, ANNs are very good at making predictions concerning representations of
molecules similar to those present in training sets. See Supplementary Figure S3 for similar
training set bin occupancy along with predictor performance for the Physprop_DL dataset.
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Figure 3. Histogram of logP bin occupancy in the 500k training set (grey bars, counts on left y-axis),
along with MRlogP bin performance on the Reaxys_DL test set (black stars). JPlogP performance
shown for comparison (grey circles). As expected, performance of MRlogP is highly dependent on
the number of example molecules present within a logP bin. With little training data at extremes of
the logP range (-5 to -2 and 6 to 10), MRlogP is less accurate within these ranges.

4. Discussion

We have created a logP predictor, optimized for molecules in druglike chemical
space. We developed, to our knowledge, the best performing freely available druglike
small molecule logP predictor. In addition, we demonstrated how relatively few ex-
perimental measurements may be used to perform a correction on models trained with
consensus predicted data. This method essentially created a rough estimator of logP
which is then refined using the highly accurate logP data present within the Martel et al.
dataset. It is hoped that this work, whilst offering scientists the ability to perform more
accurate predictions on their own molecules of interest, also opens further transfer learning
possibilities for accurate physicochemical property prediction using limited high accu-
racy experimental measurement. MRlogP is available to run locally and for inclusion
in existing drug discovery pipelines (all associated code freely available on GitHub at
https://github.com/JustinYKC/MRlogP accessed on 23 July 2021), along with a simple
and easy to use web-based version at https://similaritylab.bio.ed.ac.uk/mrlogp.
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