Ionic Conductivity of Hybrid Composite Solid Polymer Electrolytes of PEOnLiClO4-Cubic Li7La3Zr2O12 Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goodenough, B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.C.; Pandey, G.P. Solid Polymer electrolytes: Materials designing and all-solid-state-battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164. [Google Scholar] [CrossRef]
- Liang, J.; Luo, J.; Sun, Q.; Yang, X.; Li, R.; Sun, X. Recent progresson solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019, 21, 308–334. [Google Scholar] [CrossRef]
- Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R 2019, 136, 27–46. [Google Scholar] [CrossRef]
- Seki, S.; Susan, M.A.B.H.; Kaneko, T.; Tokuda, H.; Noda, A.; Watanabe, M. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J. Phys. Chem. B 2005, 109, 3886–3892. [Google Scholar] [CrossRef]
- Money, B.K.; Hariharan, K.; Swenson, J. Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ion. 2014, 262, 785–789. [Google Scholar] [CrossRef]
- Nicotera, I.; Ranieri, G.A.; Terenzi, M.; Chadwick, A.V.; Webster, M.I. A study of stability of plasticized PEO electrolytes. Solid State Ion. 2002, 146, 143–150. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Pandey, G.P.; Hashmi, S.A.; Agrawal, R.C. Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles. Solid State Ion. 2008, 179, 543–549. [Google Scholar] [CrossRef]
- Croce, F.; Sacchetti, S.; Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 2006, 162, 685–689. [Google Scholar] [CrossRef]
- Sun, H.Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H.-J. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J. Electrochem. Soc. 2000, 147, 2462–2467. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, M.; Hu, Y.Y. Lithium ion pathway within Li7La3Zr2O12-Polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. Engl. 2016, 55, 12538–12542. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Lee, C.-H.; Yu, J.-H.; Doh, C.-H.; Lee, S.-M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 2015, 274, 458–463. [Google Scholar] [CrossRef]
- Langer, F.; Bardenhagen, I.; Glenneberg, J.; Kun, R. Microstructure and temperature dependent lithium ion transport of ceramic–polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7La3Zr2O12. Solid State Ion. 2016, 291, 8–13. [Google Scholar] [CrossRef]
- Bashiri, P.; Prasada Rao, T.; Naik, V.M.; Nazri, G.A.; Naik, R. AC conductivity studies of polyethylene oxide-garnet-type Li7La3Zr2O12 hybrid composite solid polymer electrolyte films. Solid State Ion. 2019, 343, 115089. [Google Scholar] [CrossRef]
- Buschmann, H.; Dolle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A.; et al. Structure and dynamics of the fast lithium ion conductor Li7La3Zr2O12. Phys. Chem. Chem. Phys. 2011, 13, 19378. [Google Scholar] [CrossRef] [Green Version]
- Rangaswamy, E.; Wolfenstein, J.; Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 2012, 206, 28–32. [Google Scholar] [CrossRef]
- Shao, C.; Liu, H.; Yu, Z.; Zheng, Z.; Sun, N.; Diao, C. Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte by chemical co-precipitation method. Solid State Ion. 2016, 287, 13–16. [Google Scholar] [CrossRef]
- Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q. Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2014, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727. [Google Scholar] [CrossRef]
- Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J.B. PEO/garnet composite electrolytes for sold state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Khamzin, A.A.; Popov, I.I.; Nigmatullin, R.R. Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Phys. Rev. E 2014, 89, 032303. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part C 1996, 14, 99. [Google Scholar] [CrossRef]
- Baltá Calleja, F.J.; Hay, I.L.; Keller, A. Diffraction effects in single crystals and spherulites of poly(ethylene oxide). Kolloid ZU Z Polym. 1966, 209, 128–135. [Google Scholar] [CrossRef]
- Miyazawa, T.; Fukushima, K.; Ideguchi, Y. Molecular vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol. J. Chem. Phys. 1962, 37, 2764. [Google Scholar] [CrossRef]
- Choi, B.-K. Optical microscopy study on the crystallization in PEO-salt polymer electrolytes. Solid State Ion. 2004, 168, 123. [Google Scholar] [CrossRef]
- Xi, J.; Qiu, X.; Zhu, W.; Tang, X. Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery. Micropor. Mesopor. Mater. 2006, 88, 1–7. [Google Scholar] [CrossRef]
- Armand, M.B.; Bruce, P.G.; Forsyth, M.; Scrosati, B.; Wieczorek, W. Polymer electrolytes. In Energy Materials; Bruce, D.W., O’Hare, D., Walton, R.I., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jaipal Reddy, M.; Chu, P.P.; Subba Rao, U.V. Study of multiple interactions in mesoporous composite PEO electrolytes. J. Power Sources 2006, 158, 614–619. [Google Scholar] [CrossRef]
- Wieczorek, W.; Raducha, D.; Zalewska, A.; Stevens, J. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J. Phys. Chem. B 1998, 102, 8725–8731. [Google Scholar] [CrossRef]
- Karmarkar, A.; Ghosh, A. A comparison if ion transport in different polyethelene oxide-lithium salt composite electrolytes. J. Appl. Phys. 2010, 107, 104113. [Google Scholar] [CrossRef]
- Choudhary, S.; Sengwa, R.J. Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta 2017, 247, 924–941. [Google Scholar] [CrossRef]
- McLin, M.G.; Angell, C.A. Contrasting conductance/viscosity relations in liquid states of vitreous and polymer solid electrolytes. J. Phys. Chem. 1988, 92, 2083–2086. [Google Scholar] [CrossRef]
- Angell, C.A. Mobile ions in amorphous solids. Annu. Rev. Phys. Chem. 1992, 43, 693–717. [Google Scholar] [CrossRef]
- Ratner, M.A.; Shriver, D.F. Ion Transport in Solvent-Free Polymers. Chem. Rev. 1988, 88, 109–124. [Google Scholar] [CrossRef]
- Pradhan, D.K.; Karan, N.K.; Thomas, R.; Katiyar, R.S. Coupling of conductivity to the relaxation process in polymer electrolytes. Mater. Chem. Phys. 2014, 147, 1016–1021. [Google Scholar] [CrossRef]
- He, R.; Kyu, T. Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 2016, 49, 5637–5648. [Google Scholar] [CrossRef]
- Fu, G.; Kyu, T. Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 2017, 33, 13973–13981. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes. J. Appl. Phys. 2015, 117, 174103. [Google Scholar] [CrossRef]
Sample | Δε | σdc (S cm−1) | τj (ms) | τs (μs) | τR (μs) | α | β | γ | τs/τj |
---|---|---|---|---|---|---|---|---|---|
PEO15LiClO4 | 15 | 5.8 × 10−7 | 1.22 | 38.8 | 0.35 | 0.68 | 0.65 | 1.0 | 0.032 |
PEO12LiClO4 | 18 | 6.0 × 10−5 | 0.15 | 1.38 | 0.32 | 0.82 | 0.60 | 1.0 | 0.009 |
PEO10LiClO4 | 20 | 9.5 × 10−5 | 0.11 | 1.33 | 0.29 | 0.84 | 0.53 | 1.0 | 0.012 |
PEO15LiClO4-LLZO | 15 | 1.4 × 10−4 | 0.06 | 0.28 | 0.24 | 0.80 | 0.65 | 1.0 | 0.005 |
PEO12LiClO4-LLZO | 20 | 2.2 × 10−4 | 0.05 | 0.12 | 0.04 | 0.88 | 0.70 | 0.65 | 0.002 |
PEO10LiClO4-LLZO | 24 | 3.0 × 10−5 | 0.45 | 3.30 | 0.40 | 0.85 | 0.60 | 0.65 | 0.007 |
Sample | Ea (eV) | To (K) |
---|---|---|
PEO15LiClO4 | 0.32 | 175 |
PEO12LiClO4 | 0.09 | 192 |
PEO10LiClO4 | 0.09 | 197 |
PEO15LiClO4-LLZO | 0.07 | 185 |
PEO12LiClO4-LLZO | 0.05 | 198 |
PEO10LiClO4-LLZO | 0.09 | 185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashiri, P.; Rao, T.P.; Nazri, G.-A.; Naik, R.; Naik, V.M. Ionic Conductivity of Hybrid Composite Solid Polymer Electrolytes of PEOnLiClO4-Cubic Li7La3Zr2O12 Films. Processes 2021, 9, 2090. https://doi.org/10.3390/pr9112090
Bashiri P, Rao TP, Nazri G-A, Naik R, Naik VM. Ionic Conductivity of Hybrid Composite Solid Polymer Electrolytes of PEOnLiClO4-Cubic Li7La3Zr2O12 Films. Processes. 2021; 9(11):2090. https://doi.org/10.3390/pr9112090
Chicago/Turabian StyleBashiri, Parisa, T. Prasada Rao, Gholam-Abbas Nazri, Ratna Naik, and Vaman M. Naik. 2021. "Ionic Conductivity of Hybrid Composite Solid Polymer Electrolytes of PEOnLiClO4-Cubic Li7La3Zr2O12 Films" Processes 9, no. 11: 2090. https://doi.org/10.3390/pr9112090
APA StyleBashiri, P., Rao, T. P., Nazri, G. -A., Naik, R., & Naik, V. M. (2021). Ionic Conductivity of Hybrid Composite Solid Polymer Electrolytes of PEOnLiClO4-Cubic Li7La3Zr2O12 Films. Processes, 9(11), 2090. https://doi.org/10.3390/pr9112090