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Abstract: Preparative and process chromatography is a versatile unit operation for the capture,
purification, and polishing of a broad variety of molecules, especially very similar and complex
compounds such as sugars, isomers, enantiomers, diastereomers, plant extracts, and metal ions such
as rare earth elements. Another steadily growing field of application is biochromatography, with
a diversity of complex compounds such as peptides, proteins, mAbs, fragments, VLPs, and even
mRNA vaccines. Aside from molecular diversity, separation mechanisms range from selective affinity
ligands, hydrophobic interaction, ion exchange, and mixed modes. Biochromatography is utilized
on a scale of a few kilograms to 100,000 tons annually at about 20 to 250 cm in column diameter.
Hence, a versatile and fast tool is needed for process design as well as operation optimization and
process control. Existing process modeling approaches have the obstacle of sophisticated laboratory
scale experimental setups for model parameter determination and model validation. For a broader
application in daily project work, the approach has to be faster and require less effort for non-
chromatography experts. Through the extensive advances in the field of artificial intelligence, new
methods have emerged to address this need. This paper proposes an artificial neural network-based
approach which enables the identification of competitive Langmuir-isotherm parameters of arbitrary
three-component mixtures on a previously specified column. This is realized by training an ANN
with simulated chromatograms varying in isotherm parameters. In contrast to traditional parameter
estimation techniques, the estimation time is reduced to milliseconds, and the need for expert or
prior knowledge to obtain feasible estimates is reduced.

Keywords: parameter estimation; machine learning; ion-exchange chromatography; chromatography
modeling; artificial neural networks

1. Introduction

One of the core concepts in high-quality separation and purification is preparative
chromatography as a well-established method in biopharmaceutical manufacturing [1].
Traditionally, preparative chromatography was developed through laboratory experiments
that were both time and material consuming [2,3]. However, these no longer meet today’s
requirements for streamlined and personalized pharmaceutical production in ever-shorter
development cycles [4,5]. Therefore, the need for faster methods for process development
arises. This is further encouraged by authorities such as the American Food and Drug
Administration (FDA), or the European Medicines Agency (EMA), with concepts such as
Quality by Design (QbD), and Process Analytical Technology (PAT), which promote deeper
process understanding in the pharmaceutical industry [6–8]. A promising approach to
tackle this objective is the utilization of process modeling for process development. Models
are based on the mathematical description of the physical and biochemical phenomena
of the process. This significantly increases the level of process understanding. Other
opportunities are the reduction in process development time, and enabling model-based
process control strategies, and optimization. If pursued further, this leads to the complete
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digitalization of the plant, the so-called digital twin [9–11]. As a consequence, the necessity
for a fast and accurate low-effort model parameter determination emerges [12,13].

The most common model for determining model parameters were purely experimental
such as pulse tests for axial dispersion and bed porosity [2,14], or static and dynamic
experiments for (competitive) adsorption isotherms [1,15,16]. However, these methods
often suffer from high experimental effort terms of time and material consumption [2,13].
Faster methods are given by the model-based integration of correlations from typically more
accessible parameters [2]. Examples are the correlations for the pore diffusion coefficient
Dp,i by Carta [17] and k f ,i by Wilson and Geankoplis [18]. Other approaches shift the effort
from the experimental to the computational side. This is accomplished by formulating
the parameter estimation tasks as inverse problems. In these model-based parameter
estimation techniques, the parameters are determined by fitting the model onto the real
data [13,19,20]. However, expert knowledge is required to fasten this process and make it
feasible, which is a drawback.

Recent approaches utilize artificial neural networks (ANN). These range from grey
box modeling to the modeling of retention times in chromatography [21–23]. In grey
box modelling, ANNs are integrated into mechanistic models to avoid the necessity of
determining specific parameters by using data to describe certain phenomena [13,24].
Other chromatography research focused on predicting certain parameters from available
measurements, such as isotherm parameters [12,25,26]. One of the earliest studies regarding
isotherms was conducted by Gao and Engell [13], who used an ANN as the isotherm
function itself to avoid a mismatch between the assumed functional form and the actual
isotherm. However, the design of experiments with enough information was stated as a
key issue by the authors [13]. Additionally, the development procedure has to be repeated
for new systems. In a newer approach by Wang et al. [12], an ANN for mass transfer and
isotherm parameter estimation was developed based on the Steric Mass Action model. The
resulting ANN only needed bind–elute chromatograms with linear gradient elution for
parameter estimation within milliseconds.

In this article, an artificial neural network (ANN) was utilized for isotherm parameter
estimation in chromatography process modeling by analyzing the peak shapes, and their
retention times, in chromatograms. This study is based on the general rate model with
a competitive Langmuir isotherm to model the thermodynamic binding term. For data
generation, a validated chromatography model with gradient elution was used [27]. The
isotherm parameters were varied within a predefined range at three different gradients. In
the training process, the ANN learned to map the resulting chromatograms to the associ-
ated parameters. This approach enabled the ANN to predict the competitive Langmuir
parameters for all three-component mixtures in the specified chromatography column.
However, if column parameters were inserted into the training set, this limitation could be
lifted. Even for fixed column parameters, the ANN needs only to be trained once. Thus,
repeated traditional parameter estimation techniques for new feed mixtures are rendered
obsolete on the specified column. This leads to the benefit that the competitive Langmuir-
isotherm parameters of arbitrary components can be identified with three chromatograms
within milliseconds. This eliminates the need for prior knowledge of the components to
obtain feasible parameter estimates and reduces the time required for the process/model
development. To reduce the level of abstraction, a mixture of IgG, and two groups of Host
Cell Proteins (HCPs), was used as a working example.

2. Material and Methods
2.1. Modeling

The necessary data for the ANN were generated through simulations. The simulation
model depicts a three-component separation on an Ion Exchange Column (IEX) with a salt
gradient. The most common chromatography models were based on a general rate model
Equation (1) or a lumped pore diffusion model Equation (2) [15,27,28]. These equations



Processes 2021, 9, 2121 3 of 14

describe the mass balance of the stationary phase [15]. This work utilized the lumped pore
diffusion model.
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In this, εp,i expresses the porosity of the component, cp,i the concentration of the
component in the pores of the resin, t the time, qi the loading, dP the mean diameter of
the resin particle, εS the voidage, ke f f ,i the effective mass transport coefficient, and ci the
concentration in the continuous phase [15].

The adsorption of the components on the chromatography resin can be described
by various approaches [15,16,28–32]. In this work, the competitive Langmuir-isotherm
Equation (3), which has already demonstrated its performance in (bio-) chromatography,
was used [16,27,28,31,33].

qi =
qmax,iKeq,ici

1 + ∑j Keq,jcj
(3)

With qmax,i as the maximum loading capacity of component i and Keq,i as the Langmuir-
coefficient of component i. To include the salt dependence into Equation (3) the Langmuir-
coefficient can be written as shown in Equation (4) [15].

qmax,iKeq,i = Hi (4)

The salt dependence of the maximum loading qmax,i and the Henry-coefficient Hi can
then be expressed by Equations (5) and (6) and the empiric coefficients a1,i, a2,i, b1,i and b2,i
for each component i [28,34].

qmax,i = b1,icp,i + b2,i (5)

Hi = a1,icp,i
a2,i (6)

The mass transfer coefficient ke f f ,i is given by Equation (7). Here, k f ,i is the film mass
transfer coefficient, rp the particle radius, and Dp,i the pore diffusion coefficient [35].

ke f f ,i =
1

1
k f ,i

+
rp

Dp,i

(7)

The pore diffusion coefficient Dp,i was calculated according to the correlation of
Carta [17] and k f ,i according to Wilson and Geankoplis [18].

The spatial discretization of the partial differential equation system was performed by
a finite differences scheme. The resulting system was solved by a mixed Newton algorithm.

2.2. Dataset Generation

As previously mentioned, the dataset could be generated for an arbitrary combination
of components. The working example was based on the work of Zobel-Roos et al. [27] and
Kornecki et al. [36]. The working example consisted of a separation of a three-component
mixture containing Immunoglobulin G (IgG), and two groups of Host Cell proteins called
HCP1 and HCP2 on an IEX chromatography with three different salt gradients (3 CV, 5 CV,
and 10 CV). The parameter estimation and model validation followed the model validation
scheme of Sixt [37], and is described in Zobel-Roos et al. [27].

The dataset for ANN training and validation was generated by 800 simulation ex-
periments. Based on the results of Wang et al. [38] an explicit addition of noise to each
experiment was omitted. Each experiment consisted of three simulative separations at
salt gradients at a steepness of 3, 5, and 10, column volumes (CV). For each experiment,
the isotherm describing coefficients a1, a2, b1 and b2 of Equations (5) and (6) and the con-
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centration of the components in the feed mixture were randomly altered after a uniform
distribution. Alteration of the concentration was necessary to generate examples within
and outside of the linear part of the isotherm, which was dominated by the Henry coef-
ficient. The injection volume was constant. The variation boundaries were chosen based
on an expected trade-off between the training set size, and the proof of concept in this
approach. Especially high concentration variations were chosen to increase the number of
nearly overloaded peaks in the training set. The variation boundaries of the IgG absorption
behavior influencing values are given in Table 1. The effect on the isotherm is illustrated
in Figure 1, which depicts the enveloping curves of all the possible isotherms within the
given boundaries at two different salt concentrations.

Table 1. IgG parameter boundaries for the dataset generation.

IgG a1 a2 b1 b2 Concentration

Upper boundary 0.96 (+20%) −2.7 (+10%) −0.192 (+20%) 0.225 (+13%) 3 g/L (+50%)
Base Value 0.8 −3 −0.24 0.2 2 g/L

Lower Boundary 0.64 (−20%) −3.3 (−10%) −0.288 (−10%) 0.175 (−8.75%) 1.5 g/L (−25%)
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Figure 1. Enveloping isotherm curves of IgG with the parameters from Table 1: (a) at 0.05 mol/L salt concentration and
(b) 0.6 mol/L salt concentration.

Figure 1 shows two plots, one at low salt concentration (a) and one at high salt concen-
tration (b), to give an impression of the isotherm behavior with rising salt concentration.
The same applies to Figure 2, which depicts the enveloping curves of the two component
groups HCP1 and HCP2. The corresponding data are shown in Tables 2 and 3.

Table 2. HCP1 parameter boundaries for the dataset generation.

HCP1 a1 a2 b1 b2 Concentration

Upper boundary 1.92 (+20%) −2.7 (+10%) −0.006 (+20%) 0.0113 (+13%) 0.35 g/L (+180%)
Base Value 1.6 −3 −0.0075 0.01 0.125 g/L

Lower Boundary 1.28 (−20%) −3.3 (−10%) −0.009 (−20%) 0.00875 (−8.75%) 0.1 g/L (−20%)

Table 3. HCP2 parameter boundaries for the dataset generation.

HCP2 a1 a2 b1 b2 Concentration

Upper boundary 0.36 (+20%) −2.7 (+10%) −0.004 (+20%) 0.0225 (+13%) 0.7 g/L (+86.6%)
Base Value 0.3 −3 −0.005 0.02 0.375 g/L

Lower Boundary 0.24 (−20%) −3.3 (−10%) −0.006 (−20%) 0.0175 (−8.75%) 0.35 g/L (−6.6%)
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Figure 2. Enveloping isotherm curves of HCP1 (yellow curves) and HCP2 (green curves) with the parameters from
Tables 2 and 3: (a) at 0.05 mol/L salt concentration and (b) 0.6 mol/L salt concentration.

For faster operations on the resulting data, each concentration curve of the 1655, a long
simulated chromatogram, was reduced to 400 equidistant data points with a distance of
4.14 s. For ANN input data reduction, each of the already reduced curves was additionally
reduced to 39 data points by the following scheme: the first data point is the time point
at which the peak reaches its maximum. The following points are the time points at
predefined fractions of the maximum concentration at both sides of the peak. In this study,
we chose 5% steps. An example of the data point selection scheme is illustrated in Figure 3.
Because the exact points do not exist in reality or in simulations, the time points were
calculated via linear interpolation between the nearest lower and higher points. This leads
to a perceptible noise, which is implicitly induced by a combination of peak maximum
clipping, linear interpolation, and static sample points.
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Figure 3. Scheme of the data point selection. The blue curve is the original concentration curve.
The orange dots are the points, at which the time is taken as data point for the dataset. The first
point starts at the maximum. The following points are left and right of the maximum at 95%, 90%,
descending in 5% steps until 5% of the maximum concentration is reached.

This approach was chosen to reduce the effect of prior assumptions about the peak
shape, such as the (exponential) Gauß-shape, on the dataset and thus on the following
results. Additionally, the maximum concentration of each component in the chromatogram
and the injected component masses of the feed mixture are added. Accordingly, a single
dataset entry consists of 40 data points per component per gradient-steepness and the
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three-feed mixture masses, resulting in 363 data points per sample row in the dataset.
Another approach to reducing chromatogram information into fewer points can be found
in Wang et al. [12].

2.3. Artificial Neural Network

Artificial neural networks (ANN) enabled the computer-aided solution of problems
that were nearly impossible or difficult to solve (within the acceptable time limits) with
conventional algorithms. This includes, for example, image recognition [39]. More relevant
modeling contributions were the reduction in computational effort and/or the description
of not yet (sufficiently) described physico-chemical relationships [13,24,40].

Artificial Neural Networks consist of interconnected neurons, which send information
in the form of activations signals over weighted connections to other neurons [39]. In order
to characterize ANN, a distinction between properties, architecture, activation functions,
and training can be made [39,41,42]. ANN are arranged on layers of neurons: the input
layer, the last layer, the output layer, and the layers in between the so-called hidden
layers [39]. Common architectures are feed forward networks, in which all the information
is fed forward from the input to the output nodes, and recurrent neural networks, in which
the information can be cycled back to nodes of the same or previous layers [39,41,42]. An
example of the fully connected feed forward network is given in Figure 4. The activation
function maps the weighted inputs of a neuron to its output. Example functions are the
linear functions, or nonlinear functions, such as the sigmoid function, or the hyperbolic
tangent function [39,42,43]. The process of finding the parameters of the activation function
of each neuron is called training [39]. Further information on ANN can be found in
Fausett [39] and Goodfellow [41].
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Figure 4. An example of a fully connected feed forward network with two input neurons, two neurons
in the hidden layer, and one output neuron.

For this study, the ANN consisted of 363 input neurons, one hidden layer with
300 neurons and a 30% dropout for generalization, and 12 output neurons. The layers were
structured as a fully connected feed forward network. The activation function of all neurons
was the SELU function, which showed self-normalizing properties [44]. The stochastic
gradient descent, with a learning rate of 0.01, an initial moment of 0, and a batch size of
25 was used [45]. The amount of training epochs was set to 50,000, with early stopping
after 20 epochs without improvement. For implementation, the Tensorflow 2 backend of
Keras v. 2.4.0 with Python 3.8 was used [46,47]. All the Python programming was performed
in the Spyder IDE. Calculations were performed on a Dell Precision 3630 workstation.

The input and output data for the training were rescaled to a mean of zero and
standard deviation of one. After that the data were additionally scaled from −0.9 to 0.9.
The dataset was randomly split into an 80% training and 20% validation data. Under these
conditions, the training duration was 44 min and 17 s, without GPU support.
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3. Results and Discussion
3.1. ANN Prediction Results

After the training process of the ANN was completed, the training and validation data
were predicted. The prediction of a single data entry cost 200 milliseconds of computation
time, including the loading of the input data and of the ANN model itself. The comparison
of prediction results and original values of the coefficients from Equations (5) and (6) for
all components are illustrated in Figure 5.
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lies directly on the bisecting line, is a perfect prediction. The coefficient of determination (R2) of training (R2 train.), and
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The best prediction performance can be seen for the parameters a1 and a2 for all the
components, with a coefficient of determination (R2) at over 0.97. The prediction perfor-
mance of the maximum loading describing parameters b1 and b2 seems to be insufficient.
This especially applies to b1 of HCP2 validation set (Figure 5k) with a R2 of 0.6 and to b1
and b2 of the HCP1 validation set with R2 of 0.83 and 0.84. Similar values can be observed
in the training data. This excludes overfitting as the reason for this performance. The
remaining causes could be attributed to an insufficient amount of the right data, a low
significance of these values on the chromatograms, or a faulty network design.
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3.2. Comparison of Chromatogramms with Original and Predicted Values

To better evaluate the results, all chromatograms were re-simulated with the newly
predicted values. No other parameters besides the isotherm parameters were changed.
Every newly generated chromatogram was compared with its original via the R2 value.
In order to reduce the information of all the 2400 chromatogram comparisons into a
comprehensible representation, these data are presented as box plots in Figure 6. The
maximum length of the whiskers is 1.5 interquartile range (IQR). The higher zoom subplots
are supplied to make the characteristic box plot values visible. The characteristic box plot
values are listed in Table 4.
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Figure 6. Box plots of the R2 of chromatograms with the predicted parameters over the chromatograms with the original
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training set data R2 in a high zoom state; (c) shows the validation data R2 in full range, while (d) shows the validation data
R2 in high zoom.
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Table 4. Values of the characteristic box plot properties from Figure 6.

Set Q1 (25%) Median (50%) Q3 (75%) Lower Whisker Upper Whisker

Training 10 CV R2 0.991 0.997 0.999 0.979 1
Training 5 CV R2 0.992 0.998 0.999 0.981 1
Training 3 CV R2 0.992 0.998 1 0.981 1

Validation 10 CV R2 0.989 0.997 0.999 0.975 1
Validation 5 CV R2 0.99 0.997 0.999 0.980 1
Validation 3 CV R2 0.992 0.998 0.999 0.981 1

From Figure 6c,d and Table 4, it can be concluded that the ANN prediction model is
not overfitting, and generalizes well within its previously chosen boundaries. Only a few
outliers can be identified, while it should be noted that an R2 lowers as the lower whisker
from Table 4 already counts as such from a statistical point of view. In total, around 3% of
all validation and 2.7% of all training data have an R2 lower than 0.95. This leads to the
conclusion that, contrary to the first impression of Figure 5, the prediction accuracy of the
parameters b1 and b2 is already sufficient. A possible explanation for this is the fact that
the significance of b1 and b2 rises the nearer the column loading comes to the maximum
capacity. Otherwise, the separation is mostly dominated by the Henry coefficient. This
claim is also supported by Figure 7, which shows a rising significance of b1 at a higher
concentration of HCP2.
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Figure 7. Sensitivity analysis of the parameter b1 of HCP2 at HCP2 concentrations of (a) 0.375 g/L and (b) 0.7 g/L (upper
limit) at a 10 CV salt gradient. Each plot consists of 40 chromatograms with b1 ranging from the lower to the upper limit in
equidistant steps. The maximum retention time difference is 0 s in (a) and 5 s in (b).

An additional obstacle to the prediction capability may be due to the circumstance
that nearly overloaded peaks and combinations of multiple overloaded peaks are underrep-
resented in the dataset because of the uniform distribution of the values from Tables 1–3.

A comparison between the original isotherm parameters and the predicted isotherm
parameters from the validation set is shown for selected chromatograms in Figure 8.
Subplots (c) and (d) are shown to give an impression of the worst performing predictions,
while (a) and (b) depict nearly perfect matches of the chromatograms. It can be seen
that the ANN prediction can handle shifts in peak order, non-ideal Gaussian shapes, and
overlapping peaks.
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Figure 8. Comparison of four chromatograms with original and ANN predicted isotherm parameters from the validation
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isotherm parameters: (a) depicts a chromatogram comparison at 10 CV, (b) is another comparison at 5 CV, (c) depicts one of
the outliers at 10 CV, and (d) is the worst outlier at 3 CV.

3.3. Discussion

The presented approach offers, with a mean R2 of [0.987, 0.993] on a 95% confidence
interval of the validation set, sufficient parameter estimation capabilities, which lie within
the standard error of chromatography plants. After the training step, these results are
accessible within milliseconds with no change in experimental effort. Changes in the peak
order and non-Gaussian peaks can be handled by the proposed approach.

The initial guess of unacceptable performance for the model parameters b1 and b2
concluded from Figure 5g,h,k,l, could be ignored by re-simulating the chromatograms
within the estimated parameters, as illustrated in Figure 6. As mentioned earlier, the low
significance of the parameters b1 and b2 in the investigated variable boundaries at low
concentrations, and the underlying uniform distribution of these variables, should prove
to be the root causes of this phenomenon. Additionally, breakthroughs were systematically
excluded, so that only limited data at maximum loading capacity are available. The
reasoning for these exclusions is in the simplification of the input data for the ANN. The
performance of the presented approach could therefore be improved by increasing the data
at the upper boundary of the column load without over-weighting them in the dataset.
Moreover, the dataset boundaries should consider the field of application. For example, as
an initial model parameter estimator for unknown components, the dataset should cover
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a wider range of parameter variation, while for the real-time parameter estimation tool
around a predefined point of operation, a much smaller range should be necessary to either
increase precision or reduce the amount of training data. In general, a trade-off between
the dataset size, accuracy, and covered parameter range has to be made.

The drawbacks of this specific ANN are its limitation to exactly three components
on the IEX within the learned variable bounds owing to the assumption of a competi-
tive isotherm. However, the competitive isotherm in the physico-chemical model more
realistically describes adsorption and desorption for a component mixture [1,15,16].

4. Conclusions

In this study, an artificial neural network (ANN) for predicting isotherm parameters in
gradient elution chromatography modeling has been presented. The ANN’s capabilities are
shown for a three-component protein mixture on IEX chromatography. After the training
of the ANN model, three chromatograms with 3 CV, 5 CV, and 10 CV linear gradients
were used to estimate 12 isotherm parameters, at four per component, within milliseconds.
This was achieved with an excellent precision of the coefficient of determination greater
than 0.95 for 97% of the examined chromatograms. Through the chosen peak description
approach, a priori assumptions about the peak shape are rendered obsolete, and allow a
wide application range. The generalization capability of the ANN was shown on a separate
validation set with sufficient accuracy by re-simulating the chromatograms within the
estimated isotherm parameters.

After the ANN is trained, the model can be used to estimate the isotherm parameters
of unknown components as long as they lie within its training boundaries. This offers
the possibility of drastically reducing the experimental and computational effort and
enables non-experts to perform model parameter estimations with sufficient accuracy.
Furthermore, this method offers the opportunity for real-time parameter estimates for
the chromatographic process control due to its rapid calculation times and exceptional
accuracy. Further studies will investigate the extension of the ANN’s abilities to estimate
additional model parameters and isotherms towards a model-based autonomous process
operation in combination with the PAT-methods [5,35,48].
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