MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer
Abstract
:1. Introduction
2. miRNAs in Kidney Cancer
3. miRNAs in Upper Tract Urothelial Carcinoma
4. miRNAs in Urinary Bladder Cancer
5. Drug Targets and miRNA-Based Therapeutic Strategies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, P.; Znaor, A.; Holcatova, I.; Fabianova, E.; Mates, D.; Wozniak, M.B.; Ferlay, J.; Scelo, G. Regional Geographic Variations in Kidney Cancer Incidence Rates in European Countries. Eur. Urol. 2015, 67, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Campbell, S.C.; Choi, H.Y.; Cho, H.Y.; Jacqmin, D.; Lee, J.E.; Weikert, S.; Kiemeney, L.A. The Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2011, 60, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Turajlic, S.; Swanton, C.; Boshoff, C. Kidney Cancer: The next Decade. J. Exp. Med. 2018, 215, 2477–2479. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.; Miller, J.D.; Li, J.Z.; Russell, M.W.; Charbonneau, C. Epidemiologic and Socioeconomic Burden of Metastatic Renal Cell Carcinoma (MRCC): A Literature Review. Cancer Treat. Rev. 2008, 34, 193–205. [Google Scholar] [CrossRef]
- Hall, M.C.; Chang, S.S.; Dalbagni, G.; Pruthi, R.S.; Seigne, J.D.; Skinner, E.C.; Wolf, J.S.; Schellhammer, P.F. Guideline for the Management of Nonmuscle Invasive Bladder Cancer (Stages Ta, T1, and Tis): 2007 Update. J. Urol. 2007, 178, 2314–2330. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by Lin-4 Mediates Temporal Pattern Formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Soliman, A.M.; Das, S.; Abd Ghafar, N.; Teoh, S.L. Role of MicroRNA in Proliferation Phase of Wound Healing. Front. Genet. 2018, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer 2018, 18, 5. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, A.M.; Lin, T.S.; Mahakkanukrauh, P.; Das, S. Role of MicroRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 7539. [Google Scholar] [CrossRef]
- Soliman, A.M.; Das, S.; Teoh, S.L. Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int. J. Mol. Sci. 2021, 22, 7470. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.-B.; He, Y.-F.; Li, X.-Q.; Wang, K.; Wang, R.-L. The Role of MiRNA and LncRNA in Gastric Cancer. Oncotarget 2017, 8, 81572. [Google Scholar] [CrossRef] [Green Version]
- de Abreu, F.B.; Liu, X.; Tsongalis, G.J. MiRNA Analysis in Pancreatic Cancer: The Dartmouth Experience. Clin. Chem. Lab. Med. 2017, 55, 755–762. [Google Scholar] [CrossRef]
- Balacescu, O.; Sur, D.; Cainap, C.; Visan, S.; Cruceriu, D.; Manzat-Saplacan, R.; Muresan, M.-S.; Balacescu, L.; Lisencu, C.; Irimie, A. The Impact of MiRNA in Colorectal Cancer Progression and Its Liver Metastases. Int. J. Mol. Sci. 2018, 19, 3711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, B.; Kirave, P.; Gondaliya, P.; Jash, K.; Jain, A.; Tekade, R.K.; Kalia, K. Exosomal MiRNA in Chemoresistance, Immune Evasion, Metastasis and Progression of Cancer. Drug Discov. Today 2019, 24, 2058–2067. [Google Scholar] [CrossRef]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yang, B.-F.; Ai, J. MicroRNA Transport: A New Way in Cell Communication. J. Cell Physiol. 2013, 228, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of MicroRNAs and MicroRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Jaiswal, R.; Mathys, J.M.; Combes, V.; Grau, G.E.R.; Bebawy, M. Microparticles and Their Emerging Role in Cancer Multidrug Resistance. Cancer Treat. Rev. 2012, 38, 226–234. [Google Scholar] [CrossRef]
- Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front. Genet. 2019, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in Cancer: Biomarkers, Functions and Therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Nakada, C.; Matsuura, K.; Tsukamoto, Y.; Tanigawa, M.; Yoshimoto, T.; Narimatsu, T.; Nguyen, L.T.; Hijiya, N.; Uchida, T.; Sato, F.; et al. Genome-Wide MicroRNA Expression Profiling in Renal Cell Carcinoma: Significant down-Regulation of MiR-141 and MiR-200c. J. Pathol. 2008, 216, 418–427. [Google Scholar] [CrossRef]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The MiR-200 Family Determines the Epithelial Phenotype of Cancer Cells by Targeting the E-Cadherin Repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.J.; Kim, W.-J. Role of the Epithelial-Mesenchymal Transition in Bladder Cancer: From Prognosis to Therapeutic Target. Korean J. Urol. 2013, 54, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Dutta, K.K.; Zhong, Y.; Liu, Y.-T.; Yamada, T.; Akatsuka, S.; Hu, Q.; Yoshihara, M.; Ohara, H.; Takehashi, M.; Shinohara, T.; et al. Association of MicroRNA-34a Overexpression with Proliferation Is Cell Type-Dependent. Cancer Sci. 2007, 98, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Juan, D.; Alexe, G.; Antes, T.; Liu, H.; Madabhushi, A.; Delisi, C.; Ganesan, S.; Bhanot, G.; Liou, L.S. Identification of a MicroRNA Panel for Clear-Cell Kidney Cancer. Urology 2010, 75, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, Y.; Yang, J.; Chen, T.; Yin, Y.; Tang, M.; Hu, C.; Zhang, L. Microarray Analysis of MicroRNA Expression in Renal Clear Cell Carcinoma. Eur. J. Surg. Oncol. 2009, 35, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Petillo, D.; Kort, E.J.; Anema, J.; Furge, K.A.; Yang, X.J.; Teh, B.T. MicroRNA Profiling of Human Kidney Cancer Subtypes. Int. J. Oncol. 2009, 35, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, T.; Hu, X.-Y.; Li, Y.-H.; Tian, B.-Q.; Li, Z.-W.; Fu, Q. MicroRNA-21 Regulates the Proliferation, Differentiation, and Apoptosis of Human Renal Cell Carcinoma Cells by the MTOR-STAT3 Signaling Pathway. Oncol. Res. 2016, 24, 371–380. [Google Scholar] [CrossRef]
- Toraih, E.A.; Ibrahiem, A.T.; Fawzy, M.S.; Hussein, M.H.; Al-Qahtani, S.A.M.; Shaalan, A.A.M. MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. Oxidative Med. Cell Longev. 2017, 2017, 3269379. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Niu, X.; Pan, H.; Zhou, Y.; Zhang, Z.; Qu, P.; Zhou, J. Tumor-suppressing Effects of MicroRNA-429 in Human Renal Cell Carcinoma via the Downregulation of Sp1. Oncol. Lett. 2016, 12, 2906–2911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ye, Y.; Chang, D.W.; Lin, S.-H.; Huang, M.; Tannir, N.M.; Matin, S.; Karam, J.A.; Wood, C.G.; Chen, Z.-N.; et al. Global and Targeted MiRNA Expression Profiling in Clear Cell Renal Cell Carcinoma Tissues Potentially Links MiR-155-5p and MiR-210-3p to Both Tumorigenesis and Recurrence. Am. J. Pathol. 2018, 188, 2487–2496. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, D.; Su, Z.; Li, Y.; Liu, J.; Jin, L.; Shi, M.; Jiang, Z.; Qi, Z.; Gui, Y.; et al. MicroRNA-106b Functions as an Oncogene in Renal Cell Carcinoma by Affecting Cell Proliferation, Migration and Apoptosis. Mol. Med. Rep. 2016, 13, 1420–1426. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Xiao, W.; Cao, J.; Li, H.; Guan, W.; Guo, X.; Chen, K.; Zheng, T.; Ye, Z.; Wang, J.; et al. MiR-206 Functions as a Novel Cell Cycle Regulator and Tumor Suppressor in Clear-Cell Renal Cell Carcinoma. Cancer Lett. 2016, 374, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Huang, J.; Xiao, H.; Liang, Z. MicroRNA-22 Is Downregulated in Clear Cell Renal Cell Carcinoma, and Inhibits Cell Growth, Migration and Invasion by Targeting PTEN. Mol. Med. Rep. 2016, 13, 4800–4806. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Zhang, Z.; Feng, Z.; Wei, J.; Lu, J.; Fang, Y.; Liang, Y.; Cen, J.; Pan, Y.; et al. The Putative Tumor Suppressor MicroRNA-30a-5p Modulates Clear Cell Renal Cell Carcinoma Aggressiveness through Repression of ZEB2. Cell Death Dis. 2017, 8, e2859. [Google Scholar] [CrossRef]
- Szabó, Z.; Szegedi, K.; Gombos, K.; Mahua, C.; Flaskó, T.; Harda, K.; Halmos, G. Expression of MiRNA-21 and MiRNA-221 in Clear Cell Renal Cell Carcinoma (CcRCC) and Their Possible Role in the Development of CcRCC. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 533.e21–533.e27. [Google Scholar] [CrossRef]
- Wang, W.; Hu, W.; Wang, Y.; Yang, J.; Yue, Z. MicroRNA-508 Is Downregulated in Clear Cell Renal Cell Carcinoma and Targets ZEB1 to Suppress Cell Proliferation and Invasion. Exp. Ther. Med. 2019, 17, 3814–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Wu, K.; Du, F.; Yin, X.; Guan, H. MiR-384 Suppressed Renal Cell Carcinoma Cell Proliferation and Migration through Targeting RAB23. J. Cell Bioch. 2019, 120, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qi, L.; Zhang, K.; Wang, F. MicroRNA-10a Suppresses Cell Metastasis by Targeting BDNF and Predicted Patients Survival in Renal Cell Carcinoma. J. BUON 2021, 26, 250–258. [Google Scholar] [PubMed]
- Arai, T.; Okato, A.; Kojima, S.; Idichi, T.; Koshizuka, K.; Kurozumi, A.; Kato, M.; Yamazaki, K.; Ishida, Y.; Naya, Y.; et al. Regulation of Spindle and Kinetochore-Associated Protein 1 by Antitumor MiR-10a-5p in Renal Cell Carcinoma. Cancer Sci. 2017, 108, 2088–2101. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Arai, T.; Kato, M.; Kojima, S.; Sakamoto, S.; Komiya, A.; Naya, Y.; Ichikawa, T.; Seki, N. Role of Pre-MiR-532 (MiR-532-5p and MiR-532-3p) in Regulation of Gene Expression and Molecular Pathogenesis in Renal Cell Carcinoma. Am. J. Clin. Exp. Urol. 2019, 7, 11–30. [Google Scholar]
- Yamada, Y.; Nohata, N.; Uchida, A.; Kato, M.; Arai, T.; Moriya, S.; Mizuno, K.; Kojima, S.; Yamazaki, K.; Naya, Y.; et al. Replisome Genes Regulation by Antitumor MiR-101-5p in Clear Cell Renal Cell Carcinoma. Cancer Sci. 2020, 111, 1392–1406. [Google Scholar] [CrossRef] [Green Version]
- Okato, A.; Arai, T.; Yamada, Y.; Sugawara, S.; Koshizuka, K.; Fujimura, L.; Kurozumi, A.; Kato, M.; Kojima, S.; Naya, Y.; et al. Dual Strands of Pre-MiR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma. Int. J. Mol. Sci. 2017, 18, 1969. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Ma, X.; Zhang, Y.; Liu, Y.-N.; Chen, X.; Gong, H.; Yao, Y.; Liu, K.; Zhang, X. MicroRNA-19a and MicroRNA-19b Promote the Malignancy of Clear Cell Renal Cell Carcinoma through Targeting the Tumor Suppressor RhoB. PLoS ONE 2018, 13, e0192790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Arai, T.; Sugawara, S.; Okato, A.; Kato, M.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Impact of Novel Oncogenic Pathways Regulated by Antitumor MiR-451a in Renal Cell Carcinoma. Cancer Sci. 2018, 109, 1239–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, J.; Sun, X.; Chen, J.; Sun, X.; Zheng, J.; Chen, R. MicroRNA-27a Functions as a Tumor Suppressor in Renal Cell Carcinoma by Targeting Epidermal Growth Factor Receptor. Oncol. Lett. 2016, 11, 4217–4223. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, D.; Jin, L.; Liu, J.; Su, Z.; Li, Y.; Gui, Y.; Lai, Y. MicroRNA-20b-5p Functions as a Tumor Suppressor in Renal Cell Carcinoma by Regulating Cellular Proliferation, Migration and Apoptosis. Mol. Med. Rep. 2016, 13, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, Z.-Y.; Xu, Z.-H.; Chen, Y.-L.; Lu, Z.-Y.; Shen, D.-Y.; Lu, J.-Y.; Zheng, Q.-M.; Wang, L.-Y.; Xu, L.-W.; et al. The Prognostic Value of MiRNA-18a-5p in Clear Cell Renal Cell Carcinoma and Its Function via the MiRNA-18a-5p/HIF1A/PVT1 Pathway. J. Cancer 2020, 11, 2737–2748. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Wei, L.-L.; Wu, X.-J.; Huo, F.-C.; Mou, J.; Pei, D.-S. MiR-106a-5p Inhibits the Cell Migration and Invasion of Renal Cell Carcinoma through Targeting PAK5. Cell Death Dis. 2017, 8, e3155. [Google Scholar] [CrossRef]
- Yang, F.; Ma, J.; Tang, Q.; Zhang, W.; Fu, Q.; Sun, J.; Wang, H.; Song, B. MicroRNA-543 Promotes the Proliferation and Invasion of Clear Cell Renal Cell Carcinoma Cells by Targeting Krüppel-like Factor 6. Biomed. Pharm. 2018, 97, 616–623. [Google Scholar] [CrossRef]
- Gilyazova, I.R.; Klimentova, E.A.; Bulygin, K.V.; Izmailov, A.A.; Bermisheva, M.A.; Galimova, E.F.; Safiullin, R.I.; Galimov, S.N.; Pavlov, V.N.; Khusnutdinova, E.K. MicroRNA-200 Family Expression Analysis in Metastatic Clear Cell Renal Cell Carcinoma Patients. Cancer Gene Ther. 2020, 27, 768–772. [Google Scholar] [CrossRef]
- Fu, H.; Song, W.; Chen, X.; Guo, T.; Duan, B.; Wang, X.; Tang, Y.; Huang, L.; Zhang, C. MiRNA-200a Induce Cell Apoptosis in Renal Cell Carcinoma by Directly Targeting SIRT1. Mol. Cell Biochem. 2018, 437, 143–152. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, F.; Song, H.; Li, X.; Xian, J.; Gu, X. MicroRNA-200a-3p Suppresses Tumor Proliferation and Induces Apoptosis by Targeting SPAG9 in Renal Cell Carcinoma. Biochem. Biophys. Res. Commun. 2016, 470, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, C.; Zhang, Y.; Zheng, Y.; Ma, F.; Su, L.; Shao, G. MicroRNA-30e-3p Inhibits Cell Invasion and Migration in Clear Cell Renal Cell Carcinoma by Targeting Snail1. Oncol. Lett. 2017, 13, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Kurozumi, A.; Nohata, N.; Kojima, S.; Matsushita, R.; Yoshino, H.; Yamazaki, K.; Ishida, Y.; Ichikawa, T.; Naya, Y.; et al. The MicroRNA Signature of Patients with Sunitinib Failure: Regulation of UHRF1 Pathways by MicroRNA-101 in Renal Cell Carcinoma. Oncotarget 2016, 7, 59070–59086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würdinger, T.; Tannous, B.A.; Saydam, O.; Skog, J.; Grau, S.; Soutschek, J.; Weissleder, R.; Breakefield, X.O.; Krichevsky, A.M. MiR-296 Regulates Growth Factor Receptor Overexpression in Angiogenic Endothelial Cells. Cancer Cell 2008, 14, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Dutta, S.; Datta, K.; Ghosh, A.K.; Mukhopadhyay, D. Von Hippel-Lindau Gene Product Modulates TIS11B Expression in Renal Cell Carcinoma: Impact on Vascular Endothelial Growth Factor Expression in Hypoxia. J. Biol. Chem. 2009, 284, 32610–32618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, C.S.; Michael, M.Z.; Rawlings, L.H.; Van der Hoek, M.B.; Gleadle, J.M. The VHL-Dependent Regulation of MicroRNAs in Renal Cancer. BMC Med. 2010, 8, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.Y.; Zhang, Y.-Y.; Hemann, C.; Mahoney, C.E.; Zweier, J.L.; Loscalzo, J. MicroRNA-210 Controls Mitochondrial Metabolism during Hypoxia by Repressing the Iron-Sulfur Cluster Assembly Proteins ISCU1/2. Cell Metab. 2009, 10, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Zabirnyk, O.; Wang, H.; Shiao, Y.-H.; Nickerson, M.L.; Khalil, S.; Anderson, L.M.; Perantoni, A.O.; Phang, J.M. MiR-23b Targets Proline Oxidase, a Novel Tumor Suppressor Protein in Renal Cancer. Oncogene 2010, 29, 4914–4924. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Chu, P.G.; Woda, B.A.; Liu, Q.; Balaji, K.C.; Rock, K.L.; Wu, C.-L. Combination of Quantitative IMP3 and Tumor Stage: A New System to Predict Metastasis for Patients with Localized Renal Cell Carcinomas. Clin. Cancer Res. 2008, 14, 5579–5584. [Google Scholar] [CrossRef] [Green Version]
- Kassouf, W.; Monteiro, L.L.; Drachenberg, D.E.; Fairey, A.S.; Finelli, A.; Kapoor, A.; Lattouf, J.-B.; Leveridge, M.J.; Power, N.E.; Pouliot, F.; et al. Canadian Urological Association Guideline for Followup of Patients after Treatment of Non-Metastatic Renal Cell Carcinoma. Can. Urol. Assoc. J. 2018, 12, 231–238. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Oldenhuis, C.N.A.M.; Oosting, S.F.; Gietema, J.A.; de Vries, E.G.E. Prognostic versus Predictive Value of Biomarkers in Oncology. Eur. J. Cancer 2008, 44, 946–953. [Google Scholar] [CrossRef]
- Cannistra, S.A. When Is a “Prognostic Factor” Really Prognostic? J. Clin. Oncol. 2000, 18, 3745–3747. [Google Scholar] [CrossRef]
- Li, H.; Samawi, H.; Heng, D.Y.C. The Use of Prognostic Factors in Metastatic Renal Cell Carcinoma. Urol. Oncol. 2015, 33, 509–516. [Google Scholar] [CrossRef]
- Motzer, R.J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. Survival and Prognostic Stratification of 670 Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 1999, 17, 2530–2540. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal Cell Carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef]
- Zisman, A.; Pantuck, A.J.; Figlin, R.A.; Belldegrun, A.S. Validation of the Ucla Integrated Staging System for Patients with Renal Cell Carcinoma. J. Clin. Oncol. 2001, 19, 3792–3793. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Dias, F.; Ferreira, M.; Gomes, M.; Santos, J.I.; Lobo, F.; Maurício, J.; Machado, J.C.; Medeiros, R. Combined Influence of EGF+61G>A and TGFB+869T>C Functional Polymorphisms in Renal Cell Carcinoma Progression and Overall Survival: The Link to Plasma Circulating MiR-7 and MiR-221/222 Expression. PLoS ONE 2015, 10, e0103258. [Google Scholar] [CrossRef]
- Malouf, G.G.; Su, X.; Yao, H.; Gao, J.; Xiong, L.; He, Q.; Compérat, E.; Couturier, J.; Molinié, V.; Escudier, B.; et al. Next-Generation Sequencing of Translocation Renal Cell Carcinoma Reveals Novel RNA Splicing Partners and Frequent Mutations of Chromatin-Remodeling Genes. Clin. Cancer Res. 2014, 20, 4129–4140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrieva, S.; Schlapbach, R.; Rehrauer, H. Prognostic Value of Cross-Omics Screening for Kidney Clear Cell Renal Cancer Survival. Biol. Direct 2016, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating MicroRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating MicroRNA in Body Fluid: A New Potential Biomarker for Cancer Diagnosis and Prognosis. Cancer Sci. 2010, 101, 2087–2092. [Google Scholar] [CrossRef]
- Du, M.; Giridhar, K.V.; Tian, Y.; Tschannen, M.R.; Zhu, J.; Huang, C.-C.; Kilari, D.; Kohli, M.; Wang, L. Plasma Exosomal MiRNAs-Based Prognosis in Metastatic Kidney Cancer. Oncotarget 2017, 8, 63703–63714. [Google Scholar] [CrossRef] [Green Version]
- Lou, N.; Ruan, A.-M.; Qiu, B.; Bao, L.; Xu, Y.-C.; Zhao, Y.; Sun, R.-L.; Zhang, S.-T.; Xu, G.-H.; Ruan, H.-L.; et al. MiR-144-3p as a Novel Plasma Diagnostic Biomarker for Clear Cell Renal Cell Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 36.e7–36.e14. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Chen, C.; Wu, Z.; Bai, P.; Li, S.; Chen, B.; Liu, R.; Zhang, K.; Li, W.; et al. Serum Exosomal MiR-210 as a Potential Biomarker for Clear Cell Renal Cell Carcinoma. J. Cell BioChem 2019, 120, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Ferreira, M.; Silva, J.; Gomes, M.; Dias, F.; Santos, J.I.; Maurício, J.; Lobo, F.; Medeiros, R. Higher Circulating Expression Levels of MiR-221 Associated with Poor Overall Survival in Renal Cell Carcinoma Patients. Tumour Biol. 2014, 35, 4057–4066. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, F.G.; Tolkach, Y.; Deng, M.; Schmidt, D.; Perner, S.; Kristiansen, G.; Müller, S.C.; Ellinger, J. Serum MiR-122-5p and MiR-206 Expression: Non-Invasive Prognostic Biomarkers for Renal Cell Carcinoma. Clin. Epigenetics 2018, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Ni, M.; Su, Y.; Wang, H.; Zhu, S.; Zhao, A.; Li, G. MicroRNAs in Serum Exosomes as Potential Biomarkers in Clear-Cell Renal Cell Carcinoma. Eur. Urol. Focus 2018, 4, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Long, M.; Yu, G.; Cheng, Y.; Yang, Q.; Liu, J.; Wang, Y.; Sheng, J.; Wang, L.; Wang, Z.; et al. Urinary Exosome MiR-30c-5p as a Biomarker of Clear Cell Renal Cell Carcinoma That Inhibits Progression by Targeting HSPA5. J. Cell Mol. Med. 2019, 23, 6755–6765. [Google Scholar] [CrossRef]
- Fedorko, M.; Juracek, J.; Stanik, M.; Svoboda, M.; Poprach, A.; Buchler, T.; Pacik, D.; Dolezel, J.; Slaby, O. Detection of Let-7 MiRNAs in Urine Supernatant as Potential Diagnostic Approach in Non-Metastatic Clear-Cell Renal Cell Carcinoma. Biochem. Med. 2017, 27, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Exosomal MicroRNAs Are Diagnostic Biomarkers and Can Mediate Cell–Cell Communication in Renal Cell Carcinoma. Eur. Urol. Focus 2016, 2, 210–218. [CrossRef]
- Li, G.; Zhao, A.; Péoch, M.; Cottier, M.; Mottet, N. Detection of Urinary Cell-Free MiR-210 as a Potential Tool of Liquid Biopsy for Clear Cell Renal Cell Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 294–299. [Google Scholar] [CrossRef]
- Rouprêt, M.; Babjuk, M.; Compérat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Gontero, P.; Van Rhijn, B.W.G.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur. Urol. 2018, 73, 111–122. [Google Scholar] [CrossRef]
- Seisen, T.; Peyronnet, B.; Dominguez-Escrig, J.L.; Bruins, H.M.; Yuan, C.Y.; Babjuk, M.; Böhle, A.; Burger, M.; Compérat, E.M.; Cowan, N.C.; et al. Oncologic Outcomes of Kidney-Sparing Surgery Versus Radical Nephroureterectomy for Upper Tract Urothelial Carcinoma: A Systematic Review by the EAU Non-Muscle Invasive Bladder Cancer Guidelines Panel. Eur. Urol. 2016, 70, 1052–1068. [Google Scholar] [CrossRef] [PubMed]
- Browne, B.M.; Stensland, K.D.; Moynihan, M.J.; Canes, D. An Analysis of Staging and Treatment Trends for Upper Tract Urothelial Carcinoma in the National Cancer Database. Clin. Genitourin Cancer 2018, 16, e743–e750. [Google Scholar] [CrossRef] [PubMed]
- Browne, B.M.; Stensland, K.D.; Patel, C.K.; Sullivan, T.; Burks, E.J.; Canes, D.; Raman, J.D.; Warrick, J.; Reiger-Christ, K.M. MicroRNA Expression Profiles in Upper Tract Urothelial Carcinoma Differentiate Tumor Grade, Stage, and Survival: Implications for Clinical Decision-Making. Urology 2019, 123, 93–100. [Google Scholar] [CrossRef]
- Tao, J.; Yang, X.; Li, P.; Wei, J.; Deng, X.; Cheng, Y.; Qin, C.; Ju, X.; Meng, X.; Li, J.; et al. Identification of Circulating MicroRNA Signatures for Upper Tract Urothelial Carcinoma Detection. Mol. Med. Rep. 2015, 12, 6752–6760. [Google Scholar] [CrossRef] [Green Version]
- Zaravinos, A.; Lambrou, G.I.; Mourmouras, N.; Katafygiotis, P.; Papagregoriou, G.; Giannikou, K.; Delakas, D.; Deltas, C. New MiRNA Profiles Accurately Distinguish Renal Cell Carcinomas and Upper Tract Urothelial Carcinomas from the Normal Kidney. PLoS ONE 2014, 9, e91646. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-H.; Li, S.-C.; Kao, Y.-H.; Luo, H.-L.; Cheng, Y.-T.; Lin, P.-R.; Tai, M.-H.; Chiang, P.-H. MiR-30a-5p Inhibits Epithelial-to-Mesenchymal Transition and Upregulates Expression of Tight Junction Protein Claudin-5 in Human Upper Tract Urothelial Carcinoma Cells. Int. J. Mol. Sci. 2017, 18, 1826. [Google Scholar] [CrossRef] [Green Version]
- Popovska-Jankovic, K.; Noveski, P.; Jankovic-Velickovic, L.; Stojnev, S.; Cukuranovic, R.; Stefanovic, V.; Toncheva, D.; Staneva, R.; Polenakovic, M.; Plaseska-Karanfilska, D. MicroRNA Profiling in Patients with Upper Tract Urothelial Carcinoma Associated with Balkan Endemic Nephropathy. BioMed Res. Int. 2016, 2016, 7450461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Zeng, Y.; Wang, J.; Liu, Z.; Shen, B.; Ge, J.; Liu, Y.; Guo, Y.; Qiu, J. Differential MicroRNA Expression in Aristolochic Acid-Induced Upper Urothelial Tract Cancers Ex Vivo. Mol. Med. Rep. 2015, 12, 6533–6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, L.; Ingelmo-Torres, M.; Mallofré, C.; Lozano, J.J.; Verhasselt-Crinquette, M.; Leroy, X.; Colin, P.; Comperat, E.; Roupret, M.; Alcaraz, A.; et al. Prognostic Value of MicroRNA Expression Pattern in Upper Tract Urothelial Carcinoma. BJU Int. 2014, 113, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Ke, H.-L.; Li, W.-M.; Lin, H.-H.; Hsu, W.-C.; Hsu, Y.-L.; Chang, L.-L.; Huang, C.-N.; Li, C.-C.; Chang, H.-P.; Yeh, H.-C.; et al. Hypoxia-Regulated MicroRNA-210 Overexpression Is Associated with Tumor Development and Progression in Upper Tract Urothelial Carcinoma. Int. J. Med. Sci. 2017, 14, 578. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.-C.; Li, W.-M.; Lee, Y.-C.; Huang, A.-M.; Chang, L.-L.; Lin, H.-H.; Wu, W.-J.; Li, C.-C.; Liang, P.-I.; Ke, H.-L. MicroRNA-145 Suppresses Cell Migration and Invasion in Upper Tract Urothelial Carcinoma by Targeting ARF6. FASEB J. 2020, 34, 5975–5992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browne, B.; Patel, C.; Sullivan, T.; Burks, E.; Raman, J.; Warrick, J.; Canes, D. Rieger, -Christ Kimberly Pd13-02 Micro-Rna Expression Profiles in Upper Tract Urothelial Carcinoma Differentiate Grade and Stage: Implications for Clinical Decision Making. J. Urol. 2016, 195, e298. [Google Scholar] [CrossRef]
- Gottardo, F.; Liu, C.G.; Ferracin, M.; Calin, G.A.; Fassan, M.; Bassi, P.; Sevignani, C.; Byrne, D.; Negrini, M.; Pagano, F.; et al. Micro-RNA Profiling in Kidney and Bladder Cancers. Urol. Oncol. 2007, 25, 387–392. [Google Scholar] [CrossRef]
- Dyrskjøt, L.; Ostenfeld, M.S.; Bramsen, J.B.; Silahtaroglu, A.N.; Lamy, P.; Ramanathan, R.; Fristrup, N.; Jensen, J.L.; Andersen, C.L.; Zieger, K.; et al. Genomic Profiling of MicroRNAs in Bladder Cancer: MiR-129 Is Associated with Poor Outcome and Promotes Cell Death in Vitro. Cancer Res. 2009, 69, 4851–4860. [Google Scholar] [CrossRef] [Green Version]
- Neely, L.A.; Rieger-Christ, K.M.; Neto, B.S.; Eroshkin, A.; Garver, J.; Patel, S.; Phung, N.A.; McLaughlin, S.; Libertino, J.A.; Whitney, D.; et al. A MicroRNA Expression Ratio Defining the Invasive Phenotype in Bladder Tumors. Urol. Oncol. 2010, 28, 39–48. [Google Scholar] [CrossRef]
- Catto, J.W.F.; Abbod, M.F.; Wild, P.J.; Linkens, D.A.; Pilarsky, C.; Rehman, I.; Rosario, D.J.; Denzinger, S.; Burger, M.; Stoehr, R.; et al. The Application of Artificial Intelligence to Microarray Data: Identification of a Novel Gene Signature to Identify Bladder Cancer Progression. Eur. Urol. 2010, 57, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Catto, J.W.F.; Miah, S.; Owen, H.C.; Bryant, H.; Myers, K.; Dudziec, E.; Larré, S.; Milo, M.; Rehman, I.; Rosario, D.J.; et al. Distinct MicroRNA Alterations Characterize High- and Low-Grade Bladder Cancer. Cancer Res. 2009, 69, 8472–8481. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.R.; Rehman, I.; Abbod, M.F.; Meuth, M.; Cross, S.S.; Linkens, D.A.; Hamdy, F.C.; Catto, J.W.F. Promoter Hypermethylation Identifies Progression Risk in Bladder Cancer. Clin. Cancer Res. 2007, 13, 2046–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Jiang, M.; Liu, Q.; Han, Z.; Zhao, Y.; Ji, S. MiR-145-5p Inhibits the Proliferation and Migration of Bladder Cancer Cells by Targeting TAGLN2. Oncol. Lett. 2018, 16, 6355–6360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganji, S.M.; Saidijam, M.; Amini, R.; Mousavi-Bahar, S.H.; Shabab, N.; Seyedabadi, S.; Mahdavinezhad, A. Evaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer. Int. J. Mol. Cell Med. 2017, 6, 87–95. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, X.; Liu, J.; Zhu, W.; Zhan, X.; Sun, S. MicroRNA-497 Upregulation Inhibits Cell Invasion and Metastasis in T24 and BIU-87 Bladder Cancer Cells. Mol. Med. Rep. 2017, 16, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Sun, T.; Ye, F.; Kong, W.; Jin, H. MicroRNA-124-3p Affects Proliferation, Migration and Apoptosis of Bladder Cancer Cells through Targeting AURKA. Cancer Biomark. 2017, 19, 93–101. [Google Scholar] [CrossRef]
- Wang, J.-R.; Liu, B.; Zhou, L.; Huang, Y.-X. MicroRNA-124-3p Suppresses Cell Migration and Invasion by Targeting ITGA3 Signaling in Bladder Cancer. Cancer Biomark. 2019, 24, 159–172. [Google Scholar] [CrossRef]
- Liu, X.; Kong, C.; Zhang, Z. MiR-130b Promotes Bladder Cancer Cell Proliferation, Migration and Invasion by Targeting VGLL4. Oncol. Rep. 2018, 39, 2324–2332. [Google Scholar] [CrossRef]
- He, X.; Ping, J.; Wen, D. MicroRNA-186 Regulates the Invasion and Metastasis of Bladder Cancer via Vascular Endothelial Growth Factor C. Exp. Ther. Med. 2017, 14, 3253–3258. [Google Scholar] [CrossRef]
- Mao, X.-W.; Xiao, J.-Q.; Li, Z.-Y.; Zheng, Y.-C.; Zhang, N. Effects of MicroRNA-135a on the Epithelial-Mesenchymal Transition, Migration and Invasion of Bladder Cancer Cells by Targeting GSK3β through the Wnt/β-Catenin Signaling Pathway. Exp. Mol. Med. 2018, 50, e429. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shen, F.; Wang, C.; Lu, W.; Wei, J.; Shang, A.; Wang, C. MiR-1-3p Inhibits the Proliferation and Invasion of Bladder Cancer Cells by Suppressing CCL2 Expression. Tumour Biol. 2017, 39, 1010428317698383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xu, Z.; Wang, X. MiRNA-373 Promotes Urinary Bladder Cancer Cell Proliferation, Migration and Invasion through Upregulating Epidermal Growth Factor Receptor. Exper Ther. Med. 2019, 17, 1190–1195. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Q.; Wang, Y. MiR-125b-5p Suppresses the Bladder Cancer Progression via Targeting HK2 and Suppressing PI3K/AKT Pathway. Hum. Cell 2020, 33, 185–194. [Google Scholar] [CrossRef]
- Yan, T.; Ye, X.-X. MicroRNA-328-3p Inhibits the Tumorigenesis of Bladder Cancer through Targeting ITGA5 and Inactivating PI3K/AKT Pathway. Eur. Rev. Med. Pharm. Sci. 2019, 23, 5139–5148. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, S.; Wang, L.; Zhang, W.; Zhang, Z.; Guo, Y.; Wu, Y.; Yi, F.; Yao, X. MicroRNA-154 Functions as a Tumor Suppressor in Bladder Cancer by Directly Targeting ATG7. Oncol. Rep. 2019, 41, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Ying, Y.; Xie, H.; Li, J.; Ma, X.; He, L.; Xu, M.; Chen, S.; Shen, H.; Zheng, X.; et al. MiR-665 Inhibits Epithelial-to-Mesenchymal Transition in Bladder Cancer via the SMAD3/SNAIL Axis. Cell Cycle 2021, 20, 1242–1252. [Google Scholar] [CrossRef]
- Xie, X.; Pan, J.; Han, X.; Chen, W. Downregulation of MicroRNA-532-5p Promotes the Proliferation and Invasion of Bladder Cancer Cells through Promotion of HMGB3/Wnt/β-Catenin Signaling. Chem.-Biol. Interact. 2019, 300, 73–81. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, S.; Shi, D.; Zhang, J.; Zhang, Z.; Guo, Y.; Wu, Y.; Wang, R.; Wang, L.; Huang, Y.; et al. MicroRNA-153 Decreases Tryptophan Catabolism and Inhibits Angiogenesis in Bladder Cancer by Targeting Indoleamine 2,3-Dioxygenase 1. Front. Oncol. 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, J.; Ying, Y.; Xie, H.; Chen, H.; Xu, X.; Zheng, X. MIR-300 in the Imprinted DLK1-DIO3 Domain Suppresses the Migration of Bladder Cancer by Regulating the SP1/MMP9 Pathway. Cell Cycle 2018, 17, 2790–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, L.; Zhong, M.; Choi, W.; Qi, W.; Nicoloso, M.; Arora, A.; Calin, G.; Wang, H.; Siefker-Radtke, A.; McConkey, D.; et al. MiR-200 Expression Regulates Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Reverses Resistance to Epidermal Growth Factor Receptor Therapy. Clin. Cancer Res. 2009, 15, 5060–5072. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, E.D.; Bramsen, J.B.; Hulf, T.; Dyrskjøt, L.; Ramanathan, R.; Hansen, T.B.; Villadsen, S.B.; Gao, S.; Ostenfeld, M.S.; Borre, M.; et al. Coordinated Epigenetic Repression of the MiR-200 Family and MiR-205 in Invasive Bladder Cancer. Int. J. Cancer 2011, 128, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Kenney, P.A.; Wszolek, M.F.; Rieger-Christ, K.M.; Neto, B.S.; Gould, J.J.; Harty, N.J.; Mosquera, J.M.; Zeheb, R.; Loda, M.; Darling, D.S.; et al. Novel ZEB1 Expression in Bladder Tumorigenesis. BJU Int. 2011, 107, 656–663. [Google Scholar] [CrossRef]
- Burk, U.; Schubert, J.; Wellner, U.; Schmalhofer, O.; Vincan, E.; Spaderna, S.; Brabletz, T. A Reciprocal Repression between ZEB1 and Members of the MiR-200 Family Promotes EMT and Invasion in Cancer Cells. EMBO Rep. 2008, 9, 582–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshino, H.; Enokida, H.; Chiyomaru, T.; Tatarano, S.; Hidaka, H.; Yamasaki, T.; Gotannda, T.; Tachiwada, T.; Nohata, N.; Yamane, T. Tumor Suppressive MicroRNA-1 Mediated Novel Apoptosis Pathways through Direct Inhibition of Splicing Factor Serine/Arginine-Rich 9 (SRSF9/SRp30c) in Bladder Cancer. BioChem Biophys. Res. Commun. 2012, 417, 588–593. [Google Scholar] [CrossRef]
- Matsushita, R.; Seki, N.; Chiyomaru, T.; Inoguchi, S.; Ishihara, T.; Goto, Y.; Nishikawa, R.; Mataki, H.; Tatarano, S.; Itesako, T.; et al. Tumour-Suppressive MicroRNA-144-5p Directly Targets CCNE1/2 as Potential Prognostic Markers in Bladder Cancer. Br. J. Cancer 2015, 113, 282–289. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Enokida, H.; Tatarano, S.; Kawahara, K.; Uchida, Y.; Nishiyama, K.; Fujimura, L.; Kikkawa, N.; Seki, N.; Nakagawa, M. MiR-145 and MiR-133a Function as Tumour Suppressors and Directly Regulate FSCN1 Expression in Bladder Cancer. Br. J. Cancer 2010, 102, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Chiyomaru, T.; Enokida, H.; Kawakami, K.; Tatarano, S.; Uchida, Y.; Kawahara, K.; Nishiyama, K.; Seki, N.; Nakagawa, M. Functional Role of LASP1 in Cell Viability and Its Regulation by MicroRNAs in Bladder Cancer. Urol. Oncol. 2012, 30, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.F.; Zeng, F.; Qi, L.; Zu, X.B.; Wang, J.; Liu, L.F.; Li, Y. Transforming Growth Factor-β1 Induces Epithelial-mesenchymal Transition and Increased Expression of Matrix Metalloproteinase-16 via MiR-200b Downregulation in Bladder Cancer Cells. Mol. Med. Rep. 2014, 10, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Du, L.; Duan, W.; Wang, R.; Yan, K.; Wang, L.; Li, J.; Zheng, G.; Zhang, X.; Yang, Y.; et al. Serum MicroRNA Expression Signatures as Novel Noninvasive Biomarkers for Prediction and Prognosis of Muscle-Invasive Bladder Cancer. Oncotarget 2016, 7, 36733–36742. [Google Scholar] [CrossRef]
- Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating MiRNA Panels for Specific and Early Detection in Bladder Cancer. Cancer Sci. 2019, 110, 408–419. [Google Scholar] [CrossRef]
- Hanke, M.; Hoefig, K.; Merz, H.; Feller, A.C.; Kausch, I.; Jocham, D.; Warnecke, J.M.; Sczakiel, G. A Robust Methodology to Study Urine MicroRNA as Tumor Marker: MicroRNA-126 and MicroRNA-182 Are Related to Urinary Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2010, 28, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Fujita, K.; Jingushi, K.; Kawashima, A.; Ujike, T.; Nagahara, A.; Ueda, Y.; Tanigawa, G.; Yoshioka, I.; Ueda, K.; et al. MiR-21-5p in Urinary Extracellular Vesicles Is a Novel Biomarker of Urothelial Carcinoma. Oncotarget 2017, 8, 24668–24678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.D.; Sullivan, T.B.; Humphrey, J.; Logvinenko, T.; Summerhayes, K.A.; Kozinn, S.; Harty, N.; Summerhayes, I.C.; Libertino, J.A.; Holway, A.H.; et al. A Non-Invasive MiRNA Based Assay to Detect Bladder Cancer in Cell-Free Urine. Am. J. Transl Res. 2015, 7, 2500–2509. [Google Scholar] [PubMed]
- Urquidi, V.; Netherton, M.; Gomes-Giacoia, E.; Serie, D.J.; Eckel-Passow, J.; Rosser, C.J.; Goodison, S. A MicroRNA Biomarker Panel for the Non-Invasive Detection of Bladder Cancer. Oncotarget 2016, 7, 86290–86299. [Google Scholar] [CrossRef] [Green Version]
- Piao, X.-M.; Jeong, P.; Kim, Y.-H.; Byun, Y.J.; Xu, Y.; Kang, H.W.; Ha, Y.-S.; Kim, W.T.; Lee, J.-Y.; Woo, S.H.; et al. Urinary Cell-Free MicroRNA Biomarker Could Discriminate Bladder Cancer from Benign Hematuria. Int. J. Cancer 2019, 144, 380–388. [Google Scholar] [CrossRef]
- Zhang, D.-Z.; Lau, K.-M.; Chan, E.S.Y.; Wang, G.; Szeto, C.-C.; Wong, K.; Choy, R.K.W.; Ng, C.-F. Cell-Free Urinary MicroRNA-99a and MicroRNA-125b Are Diagnostic Markers for the Non-Invasive Screening of Bladder Cancer. PLoS ONE 2014, 9, e100793. [Google Scholar] [CrossRef] [PubMed]
- Sapre, N.; Macintyre, G.; Clarkson, M.; Naeem, H.; Cmero, M.; Kowalczyk, A.; Anderson, P.D.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. A Urinary MicroRNA Signature Can Predict the Presence of Bladder Urothelial Carcinoma in Patients Undergoing Surveillance. Br. J. Cancer 2016, 114, 454–462. [Google Scholar] [CrossRef]
- Chakraborty, C.; Wen, Z.-H.; Agoramoorthy, G.; Lin, C.-S. Therapeutic MicroRNA Delivery Strategies with Special Emphasis on Cancer Therapy and Tumorigenesis: Current Trends and Future Challenges. Curr. Drug Metab. 2016, 17, 469–477. [Google Scholar] [CrossRef]
- Segal, M.; Slack, F.J. Challenges Identifying Efficacious MiRNA Therapeutics for Cancer. Expert Opin. Drug Discov. 2020, 15, 987–992. [Google Scholar] [CrossRef]
- Van Rooij, E.; Marshall, W.S.; Olson, E.N. Toward MicroRNA-Based Therapeutics for Heart Disease—The Sense in Antisense. Circ. Res. 2008, 103, 919–928. [Google Scholar] [CrossRef]
- Kauppinen, S.; Vester, B.; Wengel, J. Locked Nucleic Acid: High-Affinity Targeting of Complementary RNA for RNomics. Handb. Exp. Pharm. 2006, 173, 405–422. [Google Scholar] [CrossRef]
- Gallo Cantafio, M.E.; Nielsen, B.S.; Mignogna, C.; Arbitrio, M.; Botta, C.; Frandsen, N.M.; Rolfo, C.; Tagliaferri, P.; Tassone, P.; Di Martino, M.T. Pharmacokinetics and Pharmacodynamics of a 13-Mer LNA-Inhibitor-MiR-221 in Mice and Non-Human Primates. Mol. Ther. Nucleic Acids 2016, 5, e326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA Sponges: Competitive Inhibitors of Small RNAs in Mammalian Cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef]
- Choi, W.Y.; Giraldez, A.J.; Schier, A.F. Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by MiR-430. Science 2007, 318, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Berkhout, B. MiRNA Cassettes in Viral Vectors: Problems and Solutions. Biochim. Biophys. Acta 2011, 1809, 732–745. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Y.; Peng, H.; Chen, Y.; Zhu, P.; Huang, Y. Recent Progress in MicroRNA Delivery for Cancer Therapy by Non-Viral Synthetic Vectors. Adv. Drug Deliv. Rev. 2015, 81, 142–160. [Google Scholar] [CrossRef] [PubMed]
miRNA | Samples | Target Genes/Function | Type | Level | Year | Ref. | |
---|---|---|---|---|---|---|---|
1. | miR-21 | RCC cell line (ACHN) | Promoted cell proliferation and differentiation and decreased apoptosis via regulating MTOR-STAT3 signaling pathway | oncomiR | ↑ | 2016 | [36] |
2. | miR-34a | FFPE kidney tissue samples from patients with primary RCC | TP53INP2, Tp53, DFFA | oncomiR | ↑ | 2017 | [37] |
3. | miR-429 | Cell lines (786-O, A498) | Inhibited cell proliferation, migration and invasion via down-regulating Sp1 | TS | ↓ | 2016 | [38] |
4. | miR-155-5p and miR-210-3p | Tumor tissue from patients with newly diagnosed and histologically confirmed ccRCC | Associated with a high risk of ccRCC recurrence by regulating inflammation-related pathways and IL-2 signaling events mediated by PI3Ks as well as BCR signaling | oncomiR | ↑ | 2018 | [39] |
5. | miR-106b | RCC tissues and Cell lines (786-O and ACHN) | Enhanced cell migration and proliferation and suppressed apoptosis via targeting p21/WAF1/Cip1 pathway and TWIST1 | oncomiR | ↑ | 2016 | [40] |
6. | miR-206 | ccRCC and corresponding non-cancerous tissues | Inhibited cell proliferation by inducing cell cycle arrest via targeting cell cycle-related gene CDK4, CDK9 and CCND1 | TS | ↓ | 2016 | [41] |
7. | miR-22 | Cell lines (786-O and A498) | Suppressed cell proliferation, migration and invasion by regulating PTEN | TS | ↓ | 2016 | [42] |
8. | miR-30a-5p | ccRCC and adjacent normal tissue samples and 769-P cells | Prevented cellular proliferation and invasion in vitro and in vivo via targeting ZEB2 and suppressing EMT | TS | ↓ | 2017 | [43] |
9. | miR-21 and miR-221 | Paired samples of primary ccRCC and adjacent non-tumorous tissue | Promoted cell cycle progression and facilitated cell proliferation via targeting p53 and p57 | oncomiR | ↑ | 2016 | [44] |
10. | miR-508 | ccRCC tissues and paired adjacent normal tissues Papillary RCC cell lines (Caki-2, ACHN) and ccRCC cell lines (786-O, A498) | Decreased cell proliferation and invasion via targeting ZEB1 | TS | ↓ | 2019 | [45] |
11. | miR-384 | RCC and normal tissues. RCC cell lines (769-P, 786-O, A498, SN12-PM6) | Suppressed cell proliferation, migration and cell cycle via targeting RAB23 | TS | ↓ | 2018 | [46] |
12. | miR-10a | RCC tissues in addition to cell lines (A498 and 786-O) | Inhibited cell invasion and EMT via targeting BDNF | TS | ↓ | 2021 | [47] |
13. | miR-10a-5p | Cell lines (786-O, A498) | Inhibited cell migration and invasion via targeting SKA1 | TS | ↓ | 2017 | [48] |
14. | miR-532-5p and miR-532-3p | RCC tissues and cell lines (786-O and A498) | Attenuated proliferation, migration and invasion by targeting AQP9 | TS | ↓ | 2019 | [49] |
15. | miR-101-5p and miR-101-3p | cRCC tissues and cell lines (786-0 and A498) | Induced cell cycle arrest and apoptosis via targeting DONSON | TS | ↓ | 2020 | [50] |
16. | miR-149-5p and miR-149-3p | Tumor tissues from patients with ccRCC | Inhibited cell migration and invasion via targeting FOXM1 | TS | ↓ | 2017 | [51] |
17. | miR-19a and miR-19b | Paired tumor and adjacent normal kidney tissues and cell lines (786-O, Caki-1, Caki-2, A498, SN12pm6, ACHN) | Promoted cell migration, proliferation and invasion via targeting RHOB | oncomiR | ↑ | 2018 | [52] |
18. | miR-451a | Tumor and normal tissues from RCC patients and cell lines (786-O, A498) | Inhibited cell migration and invasion via targeting PMM2 | TS | ↓ | 2018 | [53] |
19. | miR-27 | Xenograft animal model and RCC cell line (786-O) | Suppressed cell proliferation, migration and invasion via targeting EGFR and induced cell apoptosis | TS | ↓ | 2016 | [54] |
20. | miR-20b-5p | RCC tissues and cell lines (293T) | - Inhibited cell proliferation and migration - promoted cellular apoptosis via regulating PTEN, BRCA1 and p21 | TS | ↓ | 2016 | [55] |
21. | miR-18a | Cell lines (ACHN, OSRC-2, HK-2, Caki-1, 786-O and A498) | Enhanced migration and invasion via regulating HIF1A/PVT1 pathway | oncomiR | ↑ | 2020 | [56] |
22. | miR-106a-5p | RCC tissues and cell lines (OSRC-2, 786-O, ACHN, Ketr-3) | Decreased cell metastasis, migration, invasion via targeting PAK5 | TS | ↓ | 2017 | [57] |
23. | miR-543 | ccRCC tissues and adjacent non-cancerous tissues | Promoted cell proliferation and invasion via targeting KLF6 and p21 | oncomiR | ↑ | 2018 | [58] |
24. | miR-200c | Metastatic ccRCC tissues | Suppressed cell growth and promoted apoptosis. Inhibited EMT by targeting ZEB1 and ZEB2 | TS | ↓ | 2019 | [59] |
25. | miR-200a | RCC cell lines (786-O) | Suppressed cell growth, arrested cell cycle, and enhanced cell apoptosis by targeting SIRT1 | TS | ↓ | 2017 | [60] |
26. | miR-200a-3p | Cell lines (786-O, ACHN) | Inhibited cell proliferation by inducing apoptosis via down-regulating SPAG9 | TS | ↓ | 2016 | [61] |
27. | miR-30e-3p | Cell lines (A498 and 786O) | Inhibited cell invasion and migration via targeting SNAI1 | TS | ↓ | 2017 | [62] |
28. | miR-101 | RCC tissues from patients before and following sunitinib treatment | Down-regulation of miR-101 was associated with resistance to sunitinib. Inhibited cell migration and invasion via targeting UHRF1 | TS | ↓ | 2016 | [63] |
miRNA | Samples | Level | Sensitivity | Specificity | Ref. |
---|---|---|---|---|---|
miR-144-3p | Plasma | ↑ | 87.10% | 83.00% | [85] |
miR-210 | Plasma | ↑ | 82.50% | 80.00% | [86] |
miR-221and miR-222 | Plasma | ↑ | 72.50% | 33.30% | [87] |
miR-122-5p and miR-206 | Serum | ↑ | 57.10% | 83.80% | [88] |
miR-210 | Serum | ↑ | 70.00% | 62.20% | [89] |
miR-1233 | Serum | ↑ | 81.00% | 76.00% | [89] |
miR-30c-5p | Urine | ↓ | 68.57% | 100.0% | [90] |
let-7 | Urine | ↑ | 71.00% | 81.00% | [91] |
miR-34b-5p and miR-1183 | Urine | ↑ | 69.00% | 65.00% | [92] |
miR-126-3p and miR-34b-5p | Urine | ↑ | 82.80% | 65.00% | [92] |
miR-126-3p and miR-126-5p | Urine | ↑ | 72.40% | 70.00% | [92] |
miR-150-5p and miR-126-3p | Urine | ↑ | 72.40% | 80.00% | [92] |
miR-150 and 5p and miR-1183 | Urine | ↑ | 86.20% | 55.00% | [92] |
miR-210 | Urine | ↑ | 57.80% | 80.00% | [93] |
miR-486-5p and miR-126-3p | Urine | ↑ | 72.40% | 60.00% | [92] |
miRNA | Samples | Level | Diagnostic/Prognostic Value | Ref. |
---|---|---|---|---|
miR-31 and miR-149 | FFPE UTUC tissues | ↑ | - Independently associated with high tumor progression, recurrence, stage and cancer-specific survival - Differentiated two groups with a significantly different probability of tumor progression (HR: 4.78) and death (HR: 2.76) | [103] |
miR-29b-2-5p, miR-18a-5p, miR-223-3p and miR-199a-5p | Radical nephroureterectomy specimens from patients with UTUC | ↑ | Identified high-grade UTUC with a sensitivity of 83% and specificity of 85% | [97] |
miR-10b-5p, miR-26a-5p-5p, miR-31-5p and miR-146b-5p | Predicted ≥ pT2 disease with a sensitivity of 64% and specificity of 96% | |||
miR-30a-5p | UTUC tissues and adjacent normal tissues and cell line (BFTC-909) | ↓ | Suppressed cell proliferation, migration and EMT | [100] |
miR-3144-5p, miR-193b-3p, miR-587, miR-3117-3p, miR-769-5p and miR-617 | UTUC, ccRCC, papRCC and chRCC tissues | ↑ | Differentiate between UTUC and other tumors (ccRCC, papRCC and chRCC) | [99] |
miR-210 | UTUC and adjacent normal tissues | ↑ | - Up-regulated in high-stage and high-grade tumors - Overexpression of HIF-1α correlated positively with miR-210 expression | [104] |
miR-145-5p | UTUC tissues and paired adjacent normal tissues | ↓ | Inhibited cell migration and invasion by targeting MMP2, N-cadherin, FAK and MMP7 | [105] |
miR-17-92 | FFPE UTUC tissues | ↑ | Associated with high-stage tumor | [106] |
miRNA | Samples | Target Genes/Function | Type | Level | Year | Ref. | |
---|---|---|---|---|---|---|---|
1. | miR-145-5p | UBC tissues and cell lines (T24 and 5637) | Inhibited cell proliferation and migration via targeting TAGLN2 | TS | ↓ | 2018 | [113] |
2. | miR-99a | UBC and paired adjacent non-cancerous tissues | Inhibited invasion via targeting ST5, MTOR, FGFR3 and IGF-1 | TS | ↓ | 2017 | [114] |
3. | miR-497 | - UBC and adjacent normal tissues - Cell lines (T24 and BIU-87) | Inhibited cell migration, invasiveness and metastasis via reducing vimentin and α-smooth muscle actin | TS | ↓ | 2017 | [115] |
4. | miR-124-3p | UBC tissues and cell lines | Suppressed cell proliferation and migration, and promoted cell apoptosis via targeting AURKA | TS | ↓ | 2017 | [116] |
Clinical specimens from UBC patients and bladder cancer cell lines | Suppressed cell migration and invasion via targeting ITGA3 and its downstream FAK/PI3K/AKT and FAK/Src pathways | TS | ↓ | 2019 | [117] | ||
5. | miR-130b | UBC tissues and cell lines | Promoted cell proliferation and invasion via targeting VGLL4 | oncomiR | ↑ | 2018 | [118] |
6. | miR-186 | UBC tissues and blood/urine samples | - Inhibited invasion and metastasis via targeting VEGF-C - miR-186 was reduced in tumor tissues, blood and urine | TS | ↓ | 2017 | [119] |
7. | miR-135a | UBC and adjacent normal tissues | Enhanced cell proliferation, migration, invasion and tumor growth via targeting GSK3β and E-cadherin in addition to activating Wnt/β-catenin signaling pathway | oncomiR | ↑ | 2018 | [120] |
8. | miR-1-3p | UBC tissues with adjacent normal tissues | Suppressed cell proliferation and invasion and promoted apoptosis via targeting CCL2 | TS | ↓ | 2017 | [121] |
9. | miR-373 | UBC and adjacent healthy tissues and blood samples | - Promoted cell proliferation, migration and invasion via up-regulation of EGFR - Serum miR-373 can accurately predict UBC | oncomiR | ↑ | 2018 | [122] |
10. | miR-125b-5p | Cell lines (T24, RT4, J82, 5637, SV-HUC-1) and UBC tissues | - Low miR-125b-5p expression correlated with shorter 5-year survival time - Inhibited cell viability and migration and induced cell apoptosis by targeting HK2 through suppressing PI3K/AKT pathway | TS | ↓ | 2020 | [123] |
11. | miR-328-3p | Tumor tissues from patients with UBC | - Suppressed cell proliferation, migration and invasion by targeting ITGA5 - Inhibited EMT and PI3K/AKT pathway | TS | ↓ | 2019 | [124] |
12. | miR-154 | - Cell lines (J82, T24 UM-UC-3, SV-HUC-1) - UBC and paired adjacent non-cancerous bladder tissues | - Low expression of miR-154 was associated with poor survival outcomes - Inhibited cell proliferation, migration, and invasion in cultured cancer cells as well as cell growth in xenograft model via targeting ATG7 | TS | ↓ | 2018 | [125] |
13. | miR-665 | UBC cell lines | Reversed EMT progression and inhibited cell migration via targeting SMAD3 and SNAI1 | TS | ↓ | 2021 | [126] |
14. | miR-532-5p | UBC tissues and cell lines | Inhibited cell proliferation and invasion by targeting HMGB3 and regulation of nuclear expression of β-catenin as well as activation of Wnt/β-catenin signaling pathway | TS | ↓ | 2019 | [127] |
15. | miR-153 | UBC tissues and cell lines | - Low miR-153 expression was associated with advanced tumor stage and poor OS - miR-153 inhibited cancer growth via promoting cell apoptosis and suppressing migration, invasion, and EMT via targeting IDO1 and IL6/STAT3/VEGF signaling | TS | ↓ | 2019 | [128] |
16. | miR-300 | Paired UBC and adjacent non-tumorous bladder mucosal tissues as well as cell lines (T24, UM-UC3, SV-HUC-1) | Inhibited cell migration via targeting SP1 and regulating the SP1/MMP9 pathway | TS | ↓ | 2018 | [129] |
miRNA | Samples | Level | Sensitivity | Specificity | Ref. |
---|---|---|---|---|---|
miR-422a-3p, miR-486-3p, miR-103a-3p and miR-27a-3p | Serum | ↑ | 90.0% | 70.0% | [139] |
miR-6724-5p, miR-1185-1-3p and miR-6831-5p | Serum | ↑ | 95.0% | 87.0% | [140] |
miR-6087, miR-3960 and miR-1343-5p | Serum | ↓ | |||
RNA ratio: miR-126/miR-152 | Urine | -- | 72.0% | 82.0% | [141] |
miR-21-5p | Urine | ↑ | 75.0% | 95.8% | [142] |
mir-21, miR-93, miR-200c and miR-940 | Urine | ↑ | 88.0% | 78.0% | [143] |
miR-652, miR-199a-3p, miR-140-5p, miR-93 and miR-142-5p | Urine | ↑ | 87% | 100% | [144] |
RNA ratio: miR-6124/miR-4511 | Urine | -- | >90.0% | -- | [145] |
miR-99a and miR-125b | Urine | ↓ | 81.4% | 87.0% | [146] |
miR16, miR200c, miR205, miR21, miR221 and miR34a | Urine | ↑ | 88.0% | 48.0% | [147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, A.M.; Soliman, M.; Das, S.; Teoh, S.L. MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes 2021, 9, 2136. https://doi.org/10.3390/pr9122136
Soliman AM, Soliman M, Das S, Teoh SL. MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes. 2021; 9(12):2136. https://doi.org/10.3390/pr9122136
Chicago/Turabian StyleSoliman, Amro M., Mohamed Soliman, Srijit Das, and Seong Lin Teoh. 2021. "MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer" Processes 9, no. 12: 2136. https://doi.org/10.3390/pr9122136
APA StyleSoliman, A. M., Soliman, M., Das, S., & Teoh, S. L. (2021). MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes, 9(12), 2136. https://doi.org/10.3390/pr9122136