Applicability of Constitutive Models to Describing the Compressibility of Mining Backfill: A Comparative Study
Abstract
:1. Introduction
2. Commonly Used Constitutive Models in Geotechnical Engineering
2.1. Mohr–Coulomb Elasto-Plastic Model
2.2. Double-Yield Model
2.3. Soft Soil Model
3. Comparisons between Numerical Models and Laboratory Tests
3.1. Comparison with One-Dimensional Consolidation Tests
3.2. Comparison with Consolidated Drained Triaxial Compression Tests
4. Simulations of Backfilled Stope Overlying a Sill Mat
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
a | radius of the hole |
B | width |
c | cohesion |
ci | interface cohesion |
cR | cohesion of rock mass |
cs | cohesion of sill mat |
D | mine depth |
E | Young’s modulus |
eini | initial value of void ratio |
ER | Young’s modulus of rock mass |
Es | Young’s modulus of sill mat |
G | shear modulus |
Gmax | upper limit of shear modulus |
H | height |
Hs | height of sill mat |
K | bulk modulus |
K0 | coefficient of earth pressure at-rest |
Kmax | upper limit of bulk modulus |
Kr | lateral earth pressure coefficient |
Ms | slope of critical state line |
n | porosity |
p | mean stress |
p0 | reference mean stress |
pc | cap pressure |
P0 | isotropic in-situ stress |
Pin | internal pressure |
q | deviatoric stress |
R | constant |
R0 | radius of yield zone around hole |
T | tensile strength |
εq | deviatoric strain |
εv | volumetric strain |
plastic volumetric strain | |
reference volumetric strain on normal consolidation line | |
reference volumetric swelling line | |
εx, εy, εz | components of normal strain |
γxy, γyz, γxz | components of shear strain |
σ | normal stress |
σ1 | major principal stress |
σ2 | intermediate principal stress |
σ3 | minor principal stress |
σr | radial stress |
σθ | tangential stress |
σz | normal stress along third direction |
σre | radial stress at the elastic-plastic interface |
σx, σy, σz | components of normal stress |
, , | normal stress components of in-situ stress field |
τ | shear strength |
τrθ, τθz, τzr | shear stresses around cylinder hole |
τxy, τyz, τxz | components of shear stress |
, , , | shear stress components of in-situ stress field |
r, θ | cylindrical coordinates |
U, V, W | components of displacement |
ν | Poisson’s ratio |
νR | Poisson’s ratio of rock mass |
νs | Poisson’s ratio of sill mat |
ϕ | friction angle |
ϕi | interface friction angle |
ϕR | friction angle of rock mass |
ϕs | friction angle of sill mat |
ρ | density |
ψ | dilation angle |
ψR | dilation angle of rock mass |
ψs | dilation angle of sill mat |
λ* | slope of normal consolidation line |
κ* | slope of swelling line |
θl | lode angle |
γ | unit weight |
γR | unit weight of rock mass |
γs | unit weight of sill mat |
Appendix A. Validation of FLAC3D against Analytical Solutions of Stresses and Displacements around a Cylinder Hole in the Linearly Elastic Material
Appendix B. Validation of FLAC3D against Analytical Solutions of Stresses and Displacements around a Cylinder Hole in the Mohr–Coulomb Material
Appendix C. Sensitivity Analyses of Domain and Mesh Sizes in the Numerical Simulations
References
- Hassani, F.; Archibald, J. Mine Backfill; Canadian Institute of Mine, Metallurgy and Petroleum: Montreal, QC, Canada, 1998. [Google Scholar]
- Benzaazoua, M.; Bussière, B.; Demers, I.; Aubertin, M.; Fried, É.; Blier, A. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada. Min. Eng. 2008, 21, 330–340. [Google Scholar] [CrossRef]
- Stephan, G. Cut-and-fill mining. In SME Mining Engineering Handbook, 3rd ed.; Society for Mining, Metallurgy and Exploration: Littleton, CO, USA, 2011; pp. 1365–1373. [Google Scholar]
- Kortnik, J. Green mining–use of hydraulic backfill in the Velenje Coal Mine. In Proceedings of the 13th International Symposium on Mining with Backfill, Katowice, Poland, 25–28 May 2021; pp. 422–432. [Google Scholar]
- Potvin, Y.; Thomas, E.; Fourie, A. Handbook on Mine Fill; Australian Centre for Geomechanics: Perth, Australia, 2005. [Google Scholar]
- Newman, C.R.; Agioutantis, Z.G. Stress redistribution around single and multiple stope-and-fill operations. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. [Google Scholar]
- Zhao, T.; Ma, S.; Zhang, Z. Ground control monitoring in backfilled strip mining under the metropolitan district: Case study. Int. J. Geomech. 2018, 18, 05018003. [Google Scholar] [CrossRef]
- Vasichev, S. Ground control with backfill and caving in deep-level mining of gently dipping ore bodies. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Subsurface Management, Exploration and Mining Technologies, Economics, Geoecology, Novosibirsk, Russia, 24–26 April 2019; p. 012022. [Google Scholar]
- Wang, R.; Zeng, F.; Li, L. Stability analyses of side-exposed backfill considering mine depth and extraction of adjacent stope. Int. J. Rock Mech. Min. Sci. 2021, 142, 104735. [Google Scholar] [CrossRef]
- Falaknaz, N.; Aubertin, M.; Li, L. Numerical investigation of the geomechanical response of adjacent backfilled stopes. Can. Geotech. J. 2015, 52, 1507–1525. [Google Scholar] [CrossRef]
- Sobhi, M.A.; Li, L. Numerical investigation of the stresses in backfilled stopes overlying a sill mat. J. Rock Mech. Geotech. Eng. 2017, 9, 490–501. [Google Scholar] [CrossRef]
- Raffaldi, M.J.; Seymour, J.B.; Richardson, J.; Zahl, E.; Board, M. Cemented paste backfill geomechanics at a narrow-vein underhand cut-and-fill mine. Rock Mech. Rock Eng. 2019, 52, 4925–4940. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Fourie, A. Numerical investigation of the stress distribution in backfilled stopes considering creep behaviour of rock mass. Rock Mech. Rock Eng. 2019, 52, 3353–3371. [Google Scholar] [CrossRef]
- Brinkgreve, R.B.J. Selection of soil models and parameters for geotechnical engineering application. In Proceedings of the Geo-Frontiers Congress, Austin, TX, USA, 24–26 January 2005; pp. 69–98. [Google Scholar]
- Helinski, M.; Fahey, M.; Fourie, A. Numerical modeling of cemented mine backfill deposition. J. Geotech. Geoenviron. Eng. 2007, 133, 1308–1319. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Aubertin, M.; Shirazi, A. Implementation and application of a new elastoplastic model based on a multiaxial criterion to assess the stress state near underground openings. Int. J. Geomech. 2010, 10, 13–21. [Google Scholar] [CrossRef]
- Cui, L.; Fall, M. A coupled thermo–hydro-mechanical–chemical model for underground cemented tailings backfill. Tunn. Undergr. Space Technol. 2015, 50, 396–414. [Google Scholar] [CrossRef]
- Aubertin, M.; Li, L.; Arnoldi, S.; Belem, T.; Bussière, B.; Benzaazoua, M.; Simon, R. Interaction between backfill and rock mass in narrow stopes. In Proceedings of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering and 39th U.S. Rock Mechanics Symposium, Cambridge, MA, USA, 22–26 June 2003; pp. 1157–1164. [Google Scholar]
- Li, L.; Aubertin, M.; Simon, R.; Bussière, B.; Belem, T. Modeling arching effects in narrow backfilled stopes with FLAC. In Proceedings of the 3rd International Symposium on FLAC and FLAC3D Numerical Modelling in Geomechanics, Sudbury, ON, Canada, 22–24 October 2003; pp. 211–219. [Google Scholar]
- Pirapakaran, K.; Sivakugan, N. Arching within hydraulic fill stopes. Geotech. Geol. Eng. 2007, 25, 25–35. [Google Scholar] [CrossRef]
- Emad, M.Z.; Mitri, H.S.; Henning, J.G. Effect of blast vibrations on the stability of cemented rockfill. Int. J. Min. Reclam. Environ. 2012, 26, 233–243. [Google Scholar] [CrossRef]
- Li, L.; Aubertin, M. An improved method to assess the required strength of cemented backfill in underground stopes with an open face. Int. J. Min. Sci. Technol. 2014, 24, 549–558. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Yang, X.; Guo, L. Numerical analysis of stress distribution in backfilled stopes considering interfaces between the backfill and rock walls. Int. J. Geomech. 2017, 17, 06016014. [Google Scholar] [CrossRef]
- Pagé, P.; Li, L.; Yang, P.; Simon, R. Numerical investigation of the stability of a base-exposed sill mat made of cemented backfill. Int. J. Rock Mech. Min. Sci. 2019, 114, 195–207. [Google Scholar] [CrossRef]
- Keita, A.M.T.; Jahanbakhshzadeh, A.; Li, L. Numerical analysis of the stability of arched sill mats made of cemented backfill. Int. J. Rock Mech Min. Sci. 2021, 140, 104667. [Google Scholar] [CrossRef]
- Pierce, M.E. Laboratory and Numerical Analysis of the Strength and Deformation Behaviour of Paste Backfill. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 1999. [Google Scholar]
- Belem, T.; Benzaazoua, M.; Bussière, B. Mechanical behaviour of cemented paste backfill. In Proceedings of the 53rd Canadian Geotechnical Conference, Montreal, QC, Canada, 15–18 October 2000; pp. 373–380. [Google Scholar]
- Rankine, R.M. The Geotechnical Characterisation and Stability Analysis of BHP Billiton’s Cannington Mine Paste fill. Ph.D. Thesis, James Cook University, Douglas, Australia, 2004. [Google Scholar]
- Fall, M.; Belem, T.; Samb, S.; Benzaazoua, M. Experimental characterization of the stress–strain behaviour of cemented paste backfill in compression. J. Mater. Sci. 2007, 42, 3914–3922. [Google Scholar] [CrossRef]
- Jafari, M.; Shahsavari, M.; Grabinsky, M. Drained triaxial compressive shear response of cemented paste backfill (CPB). Rock Mech. Rock Eng. 2021, 54, 3309–3325. [Google Scholar] [CrossRef]
- Oliver, P.H.; Landriault, D. The convergence resistance of mine backfills. In Proceedings of the 4th International Symposium on mining with backfill, Montreal, QC, Canada, 2–5 October 1989; pp. 433–436. [Google Scholar]
- Clark, I.H. The cap model for stress path analysis of mine backfill compaction processes. In Proceedings of the 7th International Conference on Computer Methods and Advances in Geomechanics, Cairns, Australia, 6–10 May 1991; pp. 1293–1298. [Google Scholar]
- Fourie, A.B.; Gürtunca, R.G.; De Swardt, G.; Wendland, E. An evaluation of four constitutive models for the simulation of backfill behaviour. In Proceedings of the 5th International Symposium on Mining with Backfill, Johannesburg, South Africa, 7–9 June 1993; pp. 33–38. [Google Scholar]
- Lagger, M.; Henzinger, M.R.; Schubert, W. Numerical investigations on pea gravel using a nonlinear constitutive model. In Proceedings of the ISRM International Symposium-EUROCK, Cappadocia, Turkey, 29–31 August 2016; pp. 521–526. [Google Scholar]
- Labuz, J.F.; Zang, A. Mohr–Coulomb failure criterion. Rock Mech. Rock Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Mohr, O. Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeit. des Ver. Deut. Ing. 1900, 44, 1524–1530. [Google Scholar]
- Coulomb, C.A. Sur une application des règles de mximis et mnimis à qelques poblèmes de satique relatits à l’architecture. Académie R. Des Sci. Mémoires De Mathématique Et De Phys. 1773, 7, 343–382. [Google Scholar]
- Pietruszczak, S. Fundamentals of Plasticity in Geomechanics; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Mitchell, R.J.; Wong, B.C. Behaviour of cemented tailings sands. Can. Geotech. J. 1982, 19, 289–295. [Google Scholar] [CrossRef]
- Itasca. FLAC3D—Fast Lagrangian Analysis of Continua in 3 Dimensions; User’s Guide; Version 7.0; Itasca Consulting Group: Minneapolis, MN, USA, 2019. [Google Scholar]
- Antonov, D. Optimization of the Use of Cement in Backfilling Operations. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2005. [Google Scholar]
- Brinkgreve, R.B.J. Geomaterial Models and Numerical Analysis of Softening. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1996. [Google Scholar]
- Roscoe, K.H.; Schofield, A.N.; Wroth, C.P. On the yielding of soils. Géotechnique 1958, 8, 22–53. [Google Scholar] [CrossRef]
- Burland, J.B. Correspondence on the yielding and dilation of clay. Géotechnique 1965, 15, 211–214. [Google Scholar] [CrossRef]
- Neher, H.; Wehnert, M.; Bonnier, P. An evaluation of soft soil models based on trial embankments. In Proceedings of the 10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, AZ, USA, 7–12 January 2001; pp. 373–379. [Google Scholar]
- Kahlström, M. Plaxis 2D Comparison of Mohr-Coulomb and Soft Soil Material Models. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2013. [Google Scholar]
- Canadian Geotechnical Society. Canadian Foundation Engineering Manual; BiTech Publishers Ltd.: Richmond, BC, Canada, 1978. [Google Scholar]
- Bowles, L. Foundation Analysis and Design, 5th ed.; McGraw-hill: New York, NY, USA, 1996. [Google Scholar]
- Duncan, J.M.; Bursey, A. Soil modulus correlations. In Foundation Engineering in the Face of Uncertainty; James, L.W., Kok-Kwang, P., Mohamad, H., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 321–336. [Google Scholar]
- Yang, P.; Li, L.; Aubertin, M. Theoretical and numerical analyses of earth pressure coefficient along the centerline of vertical openings with granular fills. Appl. Sci. 2018, 8, 1721. [Google Scholar] [CrossRef] [Green Version]
- Herget, G. Stresses in Rock; AA Balkema: Rotterdam, The Netherlands, 1988. [Google Scholar]
- Stewart, J.M.; Clark, I.H.; Morris, A.N. Assessment of fill quality as a basis for selecting and developing optimal backfill systems for South African gold mines. In Proceedings of the International Conference on Gold, Johannesburg, South Africa, 15–17 September 1986; pp. 255–270. [Google Scholar]
- Liu, M.D.; Carter, J.P. Virgin compression of structured soils. Géotechnique 1999, 49, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Shahsavari, M.; Grabinsky, M. Experimental study of the behavior of cemented paste backfill under high isotropic compression. J. Geotech. Geoenviron. Eng. 2020, 146, 06020019. [Google Scholar] [CrossRef]
- Duncan, J.M.; Williams, G.W.; Sehn, A.L.; Seed, R.B. Estimation earth pressures due to compaction. J. Geotech. Eng. 1991, 117, 1833–1847. [Google Scholar] [CrossRef]
- Yang, P. Investigation of the Geomechanical Behavior of Mine Backfill and Its Interaction with Rock Walls and Barricades. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2016. [Google Scholar]
- Pariseau, W.G. Coupled three-dimensional finite element modeling of mining in wet ground. In Proceedings of the 3rd Canadian Conference on Computer Applications in the Mineral Industry, Montreal, QC, Canada, 22–25 October 1995; pp. 283–292. [Google Scholar]
- Godbout, J.; Bussière, B.; Belem, T. Evolution of cemented paste backfill saturated hydraulic conductivity at early curing time. In Proceedings of the Diamond Jubilee Canadian Geotechnical Conference and the 8th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 21–25 October 2007. [Google Scholar]
- Fall, M.; Adrien, D.; Célestin, J.; Pokharel, M.; Touré, M. Saturated hydraulic conductivity of cemented paste backfill. Miner Eng. 2009, 22, 1307–1317. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Oka, Y. Analysis of stress around a circular shaft or drift excavated in ground in a three dimensional stress state. J. Min. Metall. Inst. Jpn. 1962, 78, 93–98. [Google Scholar]
- Hiramatsu, Y.; Oka, Y. Determination of the stress in rock unaffected by boreholes or drifts, from measured strains or deformations. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1968, 5, 337–353. [Google Scholar] [CrossRef]
- Li, L. Étude Expérimentale Du Comportement Hydromécanique D’une Fracture. Ph.D. Thesis, Institut de Physique du Globe de Paris, Université Paris 7, Paris, France, 1997. [Google Scholar]
- Salencon, J. Contraction Quasi-statique d’une cavité à symétrie sphérique ou cylindrique dans un milieu élastoplastique. Ann. Ponts Chaussés 1969, 4, 231–236. [Google Scholar]
Constitutive Models | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mohr- Coulomb | K (kPa) | G (kPa) | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | ||||
5388 | 3141 | 41 | 40 | 0 | 17.6 | |||||
Double- yield | Kmax (GPa) | Gmax (GPa) | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | R | |||
50 | 29.2 | 41 | 40 | 0 | 17.6 | 24.1 | ||||
Prescribed piecewise-linear function for cap (kPa) hardening in terms of ( , Pc) | ||||||||||
(0, 0); (0.008, 12); (0.0094, 14.2); (0.0103, 15.5); (0.0119, 30.5); (0.0178, 69.59); (0.0181, 72); (0.0246, 87.5); (0.0273, 92.46); (0.0301, 97.5); (0.0336, 120); (0.0393, 144.71); (0.0449, 169.2); (0.0479, 187); (0.0492, 193.73); (0.0573, 237); (0.0592, 246.89); (0.0611, 257); (0.0631, 285.97); (0.0689, 294.84); (0.0714, 310); (0.0741, 325); (0.0889, 455.85) | ||||||||||
Soft Soil | ν | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | κ* | λ* | K0 | pc (kPa) | eini |
0.26 | 41 | 40 | 0 | 17.6 | 0.0052 | 0.051 | 0.34 | 127 | 0.961 |
Constitutive Models | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mohr- Coulomb | K (kPa) | G (kPa) | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | ||||
2935 | 1203 | 32 | 14.73 | 0 | 21.8 | |||||
Double- yield | Kmax (GPa) | Gmax (GPa) | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | R | |||
50 | 20.5 | 32 | 14.73 | 0 | 21.8 | 2 | ||||
Prescribed piecewise-linear function for cap (kPa) hardening (, Pc) | ||||||||||
(0, 0); (0.052, 50); (0.103, 100); (0.155, 150); (0.196, 190); (0.2, 200); (0.218, 250); (0.237, 300); (0.256, 350); (0.274, 400); (0.312, 500); (0.376, 670); (0.383, 690); (0.387, 700) | ||||||||||
Soft Soil | ν | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | κ* | λ* | K0 | pc (kPa) | eini |
0.32 | 32 | 14.73 | 0 | 21.8 | 0.0078 | 0.135 | 0.47 | 50 | 1.05 |
Constitutive Models | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mohr- Coulomb | K (MPa) | G (MPa) | ϕ (°) | c (kPa) | ψ (°) | T (kPa) | ||||
250 | 115 | 35 | 0 | 0 | 0 | |||||
Soft Soil | ν | ϕ (°) | c (kPa) | ψ (°) | κ* ×10−3 | λ* ×10−3 | T (kPa) | K0 | pc (kPa) | eini |
0.3 | 35 | 0 | 0 | 0.2 | 1 | 0 | 0.43 | 1 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zeng, F.; Li, L. Applicability of Constitutive Models to Describing the Compressibility of Mining Backfill: A Comparative Study. Processes 2021, 9, 2139. https://doi.org/10.3390/pr9122139
Wang R, Zeng F, Li L. Applicability of Constitutive Models to Describing the Compressibility of Mining Backfill: A Comparative Study. Processes. 2021; 9(12):2139. https://doi.org/10.3390/pr9122139
Chicago/Turabian StyleWang, Ruofan, Feitao Zeng, and Li Li. 2021. "Applicability of Constitutive Models to Describing the Compressibility of Mining Backfill: A Comparative Study" Processes 9, no. 12: 2139. https://doi.org/10.3390/pr9122139
APA StyleWang, R., Zeng, F., & Li, L. (2021). Applicability of Constitutive Models to Describing the Compressibility of Mining Backfill: A Comparative Study. Processes, 9(12), 2139. https://doi.org/10.3390/pr9122139