Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Composts
2.2. Phytopathogenic Fungi Tested
2.3. In Vitro Antifungal Activity of Aqueous Compost Extracts Using a Broth Macrodilution Method
2.4. Greenhouse Experiment with Potted Lettuce
2.5. Statistical Analyses
3. Results and Discussion
3.1. In Vitro Antifungal Activity of Composts
3.2. Disease Suppressiveness of Composts
3.3. Lettuce Growth on Composts
3.4. Relationships among Lettuce Growth, Disease Incidence/Severity, and Physicochemical Characterisics of the Composts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoitink, H.A.J.; Boehm, M. Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annu. Rev. Phytopathol. 1999, 37, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.N. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu. Rev. Phytopathol. 2003, 41, 325–350. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.T.; Goufo, P.; Santos, C.; Botelho, D.; Fonseca, J.; Queirós, A.; Costa, M.S.S.M.; Trindade, H. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C. Food Chem. 2016, 209, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Spatafora, C. Valorization of vegetable waste: Identification of bioactive compounds and their chemo-enzymatic optimization. Open Agric. J. 2012, 6, 9–16. [Google Scholar] [CrossRef]
- Morales, A.B.; Ros, M.; Ayuso, L.M.; de los Angeles Bustamante, M.; Moral, R.; Pascual, J.A. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings. J. Sci. Food Agric. 2017, 97, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Bonanomi, G.; Antignani, V.; Capodilupo, M.; Scala, F. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 2017, 42, 136–144. [Google Scholar] [CrossRef]
- Borrero, C.; Castillo, S.; Casanova, E.; Segarra, G.; Trillas, M.I.; Castano, R.; Avilés, M. Capacity of composts made from agriculture industry residues to suppress different plant diseases. Acta Hortic. 2013, 1013, 459–464. [Google Scholar] [CrossRef]
- Santos, C.; Fonseca, J.; Aires, A.; Coutinho, J.; Trindade, H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017, 59, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Widmer, T.L.; Graham, J.H.; Mitchell, D.J. Composted municipal waste reduces infection of citrus seedlings by Phytophthora nicotianae. Plant Dis. 2007, 82, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Erhart, E.; Burian, K.; Hartl, W.; Stich, K. Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J. Phytopathol. 1999, 147, 299–305. [Google Scholar] [CrossRef]
- Szczech, M.; Smolinska, U. Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against phytophthora nicotianae breda de haan var. nicotianae. J. Phytopathol. 2021, 149, 77–82. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Schmitthenner, A.F.; Herr, L.J. Composted bark for control of root rot in ornamentals. Ohio Rep. Res. Dev. 1975, 60, 25–26. Available online: http://auf.isa-arbor.com/request.asp?JournalID=1&ArticleID=1357&Type=2 (accessed on 5 November 2021).
- Katan, J. Diseases caused by soilborne pathogens: Biology, management and challenges. J. Plant Pathol. 2017, 99, 305–315. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Supression of soilborne fungal diseases with organic amendments. J. Plant Pathol. 2017, 89, 311–324. [Google Scholar] [CrossRef]
- Vestberg, M.; Kukkonen, S.; Parikka, P.; Yu, D.; Romantschuk, M. Reproducibility of suppression of pythium wilt of cucumber by compost. Agric. Food Sci. 2014, 23, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Pane, C.; Spaccini, R.; Piccolo, A.; Scala, F.; Bonanomi, G. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biol. Control 2011, 56, 115–124. [Google Scholar] [CrossRef]
- Mengesha, W.K.; Gill, W.M.; Powell, S.M.; Evans, K.J.; Barry, K.M. A study of selected factors affecting efficacy of compost tea against several fungal pathogens of potato. J. Appl. Microbiol. 2007, 123, 732–747. [Google Scholar] [CrossRef] [PubMed]
- Pane, C.; Celano, G.; Villecco, D.; Zaccardelli, M. Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Prot. 2012, 38, 80–86. [Google Scholar] [CrossRef]
- Hadar, Y.; Papadopoulou, K.K. Suppressive Composts: Microbial ecology links between abiotic environments and healthy lants. Annu. Rev. Phytopathol. 2012, 50, 133–153. [Google Scholar] [CrossRef]
- Hoitink, H.A.J.; Stone, A.G.; Grebus, M.E. Suppression of Plant Diseases by Composts. In The Science of Composting; de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 373–381. [Google Scholar] [CrossRef]
- Smolińska, U. Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. J. Phytopathol. 2000, 148, 343–349. [Google Scholar] [CrossRef]
- Tenuta, M.; Lazarovits, G. Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology 2007, 92, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, D.; Kinkel, L.; Thomashow, L.; Weller, D.; Paulitz, D. Disease suppressive soils: New insights from the soil microbiome. Phytopathology 2017, 107, 1284–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockwood, J.L. Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In Biological Control of Soilborne Plant Pathogens; Hornby, D., Ed.; CAB International: Wallingford, UK, 1990; pp. 197–214. [Google Scholar]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Pharand, B.; Carisse, O.; Benhamou, N. Cytological aspects of compost-mediated induced resistance against Fusarium crown and Root rot in Tomato. Phytopathology 2016, 92, 424–438. [Google Scholar] [CrossRef]
- Zhang, W.; Han, D.Y.; Dick, W.A.; Davis, K.R.; Hoitink, H.A.J. Compost and compost water extract-induced Systemic Acquired Resistance in cucumber and Arabidopsis. Phytopathology 2016, 88, 450–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Corato, U.; Patruno, L.; Avella, N.; Lacolla, G.; Cucci, G. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome. Crop Prot. 2019, 124, 104870. [Google Scholar] [CrossRef]
- Blaya, J.; López-Mondéjar, R.; Lloret, E.; Pascual, J.A.; Ros, M. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic. Biochem. Physiol. 2013, 107, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Termorshuizen, A.J.; van Rijn, E.; van der Gaag, D.J.; Alabouvette, C.; Chen, Y.; Lagerlöf, J.; Malandrakis, A.A.; Paplomatas, E.J.; Rämert, B.; Ryckeboer, J.; et al. Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biol. Biochem. 2006, 38, 2461–2477. [Google Scholar] [CrossRef]
- Galitskaya, P.; Beru, F.; Kuryntseva, P.; Selivanovskaya, S. Suppressive properties of composts are determined by their raw materials. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Suárez-Estrella, F.; Arcos-Nievas, M.A.; López, M.J.; Vargas-García, M.C.; Moreno, J. Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol. Control 2013, 67, 509–515. [Google Scholar] [CrossRef]
- Santos, C.; Goufo, P.; Fonseca, J.; Pereira, J.L.S.; Ferreira, L.; Coutinho, J.; Trindade, H. Effect of lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting. J. Clean. Prod. 2018, 171, 548–556. [Google Scholar] [CrossRef]
- Srinivasan, K.; Gilardi, G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathol. Mediter. 2010, 49, 309–320. [Google Scholar]
- St. Martin, C.C.G.; Brathwaite, R.A.I. Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biol. Agric. Hortic. 2012, 28, 1–33. [Google Scholar] [CrossRef]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: CLSI Document M 38-A2, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, C.K.; Kim, M.J.; Kim, Y.K.; Jee, H.J. Evaluation of lettuce germplasm resistance to gray mold disease for organic cultivations. Plant Pathol. J. 2014, 30, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilés, M.; Borrero, C.; Trillas, M.I. Review on compost as an inducer disease suppression in plants grown in soilless culture. Dyn. Soil, Dyn. Plant 2011, 5, 1–11. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/2011/DSDP_5(SI2)/DSDP_5(SI2)1-11o.pdf (accessed on 5 November 2021).
- Ntougias, S.; Papadopoulou, K.K.; Zervakis, G.I.; Kavroulakis, N.; Ehaliotis, C. Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biol. Fertil. Soils 2008, 44, 1081–1090. [Google Scholar] [CrossRef]
- Scott, J.C.; McRoberts, D.N.; Gordon, T.R. Colonization of lettuce cultivars and rotation crops by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. Plant Pathol. 2014, 63, 548–553. [Google Scholar] [CrossRef]
- Gilardia, G.; Franco Ortega, S.; van Rijswick, P.C.J.; Ortua, G.; Gullinoa, M.L.; Garibaldi, A. A new race of Fusarium oxysporum f. sp. lactucae of lettuce. Plant Pathol. 2017, 66, 677–688. [Google Scholar] [CrossRef]
- Galitskaya, P.; Kuryntseva, P.; Biktasheva, L.; Selivanovskaya, S. Optimal doses and schemes of suppressive compost amendments. Res. J. Pharm. Biol. Chem. Sci. 2006, 7, 1758–1764. [Google Scholar]
- Tuitert, G.; Szczech, M.; Bollen, G.J. Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 1998, 88, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Parillo, R.; Ventorino, V.; Pepe, O.; Rivas, P.C.; Testa, A. Use of Compost from Chestnut Lignocellulosic Residues as Substrate for Tomato Growth. Waste Biomass. Valor. 2017, 8, 2711–2720. [Google Scholar] [CrossRef]
- Ventorino, V.; Parillo, R.; Testa, A.; Viscardi, S.; Espresso, F.; Pepe, O. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control. J. Environ. Manag. 2016, 166, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Diánez, F.; del Valle, M.G.; Tello, J.C. Grape marc compost: Microbial studies and suppression of soil-borne mycosis in vegetable seedlings. World J. Microbiol. Biotechnol. 2008, 24, 1493–1505. [Google Scholar] [CrossRef]
- Carmona, E.; Moreno, M.T.; Avilés, M.; Ordovás, J. Use of grape marc compost as substrate for vegetable seedlings. Sci. Hort. 2012, 137, 69–74. [Google Scholar] [CrossRef]
- Chilosi, G.; Aleandri, M.P.; Luccioli, E.; Stazi, S.R.; Marabottini, R.; Morales-Rodríguez, C.; Vettraino, A.M.; Vannini, A. Suppression of soil-borne plant pathogens in growing media amended with espresso spent coffee grounds as a carrier of Trichoderma spp. Sci. Hortic. 2020, 259, 108666. [Google Scholar] [CrossRef]
- Bailey, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res. 2003, 72, 169–180. [Google Scholar] [CrossRef]
- Hardgrove, S.J.; Livesley, S.J. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban For. Urban Green. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Lashermes, G.; Sinsabaugh, R.L.; Weintraub, M.N. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol. Biochem. 2013, 66, 17–19. [Google Scholar] [CrossRef]
- Santos, F.T.; Trindade, H.; Costa, M.S.S.M.; Costa, L.A.M.; Goufo, P. Effects of Composts Made from Broiler Chicken Residues and Blended with Biochar on the Minerals and Phenolic Compounds in Parsley (Petroselinum crispum Mill.). Agriculture 2021, 11, 1168. [Google Scholar] [CrossRef]
- Cotxarrera, L.; Trillas-Gay, M.I.; Steinberg, C.; Alabouvette, C. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 2020, 34, 467–476. [Google Scholar] [CrossRef]
- Borrero, C.; Trillas, M.I.; Ordovás, J.; Tello, J.C.; Avilés, M. Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology 2007, 94, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segarra, G.; Casanova, E.; Avilés, M.; Trillas, I. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb. Ecol. 2010, 59, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Raviv, M. The use of compost in growing media as suppressive agent against soil-borne diseases. Acta Hortic. 2008, 779, 39–50. [Google Scholar] [CrossRef]
- Huber, D.M.; Wilhelm, N.S. The Role of Manganese in Resistance to Plant Diseases. In Manganese in Soils and Plants. Developments in Plant and Soil Sciences; Graham, R.D., Hannam, R.J., Uren, N.C., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 33, pp. 155–173. [Google Scholar] [CrossRef]
- Dionne, A.; Tweddell, R.J.; Antoun, H.; Avis, T.J. Effect of non-aerated compost teas on damping-off pathogens of tomato. Can. J. Plant Pathol. 2012, 34, 51–57. [Google Scholar] [CrossRef]
- Avilés, M.; Borrero., C. Identifying Characteristics of Verticillium Wilt Suppressiveness in Olive Mill Composts. Plant Dis. 2017, 101, 1568–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelli, A.; Menditto, N.; Cini, E. Innovative Olive Tree Leaves Shredder Prototype for the Valorization of Wasted Leaves: An Application to High-Quality Compost Production. Sustainability 2021, 13, 9421. [Google Scholar] [CrossRef]
- Cruz, S.; Cordovil, C.S.C.M.S. Espresso coffee residues as a nitrogen amendment for small-scale vegetable production. J. Sci. Food Agric. 2015, 95, 3059–3066. [Google Scholar] [CrossRef]
Treatments | Proportion of Compost in Soil | Non-Inoculated Mixes | Botrytis cinerea-Inoculated Mixes | Fusarium oxysporum-Inoculated Mixes |
---|---|---|---|---|
Control (non-amended) | 0% | 0.00 ± 0.00 e | 82.36 ± 2.10 d | 0.00 ± 0.00 e |
Chestnut peels+sheels | 5% | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
10% | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e | |
Coffee grounds | 5% | 0.00 ± 0.00 e | 48.82 ± 7.13 c | 55.62 ± 9.79 c |
10% | 0.00 ± 0.00 e | 26.44 ± 8.11 d | 0.00 ± 0.000 e | |
Grape marc | 5% | 0.00 ± 0.00 e | 50.02 ± 6.92 c | 96.10 ± 5.31 a |
10% | 0.00 ± 0.00 e | 75.15 ± 6.21 b | 39.28 ± 1.57 cd | |
Olive leaves | 5% | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
10% | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
Yield Gray Mold 5% | Yield Gray Mold 10% | Yield Fusarium Wilt 5% | Yield Fusarium Wilt 10% | Incidence Gray Mold 5% | Incidence Gray Mold 10% | Incidence Fusarium Wilt 5% | Incidence Fusarium Wilt 10% | Severity Fusarium Wilt 5% | Severity Fusarium Wilt 10% | Severity Gray Mold 5% | Severity Gray Mold 10% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total phenolics | −0.52 | −0.58 | −0.60 | −0.55 | 0.60 | 0.59 | 0.23 | 0.21 | 0.22 | 0.20 | 0.58 | 0.59 |
Gallic acid | 0.46 | 0.46 | 0.40 | 0.66 | −0.47 | −0.30 | 0.57 | 0.52 | 0.54 | 0.56 | −0.06 | −0.13 |
Hemicellulose | 0.01 | 0.04 | 0.01 | 0.26 | −0.13 | −0.14 | 0.63 | 0.36 | 0.68 | 0.42 | 0.19 | 0.08 |
Cellulose | −0.06 | −0.13 | −0.18 | −0.27 | 0.34 | 0.51 | −0.18 | 0.18 | −0.30 | 0.12 | 0.21 | 0.33 |
Lignin | 0.75 | 0.68 | 0.62 | 0.68 | −0.51 | −0.16 | 0.05 | 0.45 | −0.10 | 0.43 | −0.29 | −0.22 |
Lignocellulose | 0.45 | 0.36 | 0.28 | 0.33 | −0.13 | 0.23 | 0.11 | 0.54 | −0.06 | 0.51 | 0.02 | 0.13 |
Lignin/holocellulose | 0.89 | 0.91 | 0.91 | 0.97 | −0.94 | −0.88 | −0.06 | 0.04 | −0.09 | 0.06 | −0.71 | −0.73 |
Soluble organic C | 0.25 | 0.19 | 0.05 | 0.25 | 0.08 | 0.44 | 0.58 | 0.87 | 0.42 | 0.85 | 0.37 | 0.44 |
Soluble organic N | 0.21 | 0.13 | 0.00 | 0.06 | 0.22 | 0.60 | 0.24 | 0.71 | 0.04 | 0.66 | 0.32 | 0.46 |
NH4+ | −0.04 | −0.08 | −0.07 | −0.27 | 0.19 | 0.23 | −0.50 | −0.23 | −0.55 | −0.28 | −0.07 | 0.03 |
NO3- | 0.05 | −0.03 | −0.15 | 0.16 | 0.20 | 0.51 | 0.86 | 1.00 | 0.84 | 1.00 | 0.60 | 0.62 |
Organic matter | 0.08 | 0.84 | 0.80 | 0.74 | −0.67 | −0.37 | −0.31 | 0.13 | −0.45 | 0.10 | −0.60 | −0.50 |
C | 0.98 | 0.97 | 0.94 | 0.97 | −0.89 | −0.61 | −0.11 | 0.19 | −0.21 | 0.19 | −0.67 | −0.63 |
N | −0.58 | −0.53 | −0.47 | −0.32 | 0.23 | −0.09 | 0.40 | −0.16 | 0.58 | −0.10 | 0.32 | 0.16 |
C/N | 0.69 | 0.65 | 0.60 | 0.45 | −0.39 | −0.09 | −0.48 | 0.07 | −0.64 | 0.01 | −0.48 | −0.32 |
pH | 0.92 | 0.89 | 0.83 | 0.87 | −0.67 | −0.33 | −0.28 | 0.21 | −0.43 | 0.17 | −0.58 | −0.47 |
EC | 0.05 | 0.00 | −0.04 | −0.25 | 0.26 | 0.42 | −0.49 | −0.03 | −0.61 | −0.11 | −0.01 | 0.15 |
P | −0.32 | −0.32 | −0.36 | −0.03 | 0.22 | 0.21 | 0.91 | 0.57 | 0.95 | 0.62 | 0.59 | 0.47 |
Ca | −0.02 | 0.01 | 0.01 | −0.25 | 0.14 | 0.13 | −0.58 | −0.36 | −0.62 | −0.41 | −0.20 | −0.09 |
Mg | −0.43 | −0.38 | −0.33 | −0.13 | 0.09 | −0.18 | 0.49 | −0.06 | 0.65 | 0.01 | 0.26 | 0.09 |
Fe | −0.09 | 0.00 | 0.08 | 0.11 | −0.27 | −0.55 | 0.03 | −0.41 | 0.18 | −0.35 | −0.24 | −0.38 |
Cu | 0.46 | 0.48 | 0.44 | 0.68 | −0.53 | −0.41 | 0.51 | 0.40 | 0.50 | 0.45 | −0.14 | −0.23 |
Zn | 0.54 | 0.52 | 0.44 | 0.67 | −0.44 | −0.18 | 0.52 | 0.61 | 0.44 | 0.63 | −0.05 | −0.07 |
Mn | −0.08 | −0.14 | −0.25 | 0.10 | 0.24 | 0.46 | 0.97 | 0.94 | 0.90 | 0.96 | 0.67 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Monte, J.; Vilaça, N.; Fonseca, J.; Trindade, H.; Cortez, I.; Goufo, P. Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce. Processes 2021, 9, 2231. https://doi.org/10.3390/pr9122231
Santos C, Monte J, Vilaça N, Fonseca J, Trindade H, Cortez I, Goufo P. Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce. Processes. 2021; 9(12):2231. https://doi.org/10.3390/pr9122231
Chicago/Turabian StyleSantos, Cátia, Joana Monte, Natália Vilaça, João Fonseca, Henrique Trindade, Isabel Cortez, and Piebiep Goufo. 2021. "Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce" Processes 9, no. 12: 2231. https://doi.org/10.3390/pr9122231
APA StyleSantos, C., Monte, J., Vilaça, N., Fonseca, J., Trindade, H., Cortez, I., & Goufo, P. (2021). Evaluation of the Potential of Agro-Industrial Waste-Based Composts to Control Botrytis Gray Mold and Soilborne Fungal Diseases in Lettuce. Processes, 9(12), 2231. https://doi.org/10.3390/pr9122231