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Abstract: The optimization of lithium-ion (Li-ion) battery pack usage has become essential due to
the increasing demand for Li-ion batteries. Since degradation in Li-ion batteries is inevitable, there
has been some effort recently on research to maximize the utilization of Li-ion battery cells in the
pack. Some promising concepts include reconfigurable battery packs and cell replacement to limit the
negative impact of early-degraded cells on the entire pack. This paper used a simulation framework,
based on a cell voltage model and a degradation model, to study the feasibility and benefits of the
cell replacement concept. The simulation conducted in MATLAB involves generating and varying
Li-ion cells in the packs stochastically and simulating the life of the cells as well as the packs until
they reach their end-of-life stage. It was found that the cell replacement method can increase the
total number of cycles of the battery packs, effectively prolonging the lifespan of the packs. It is also
determined that this approach can be more economically beneficial than the current approach of
simple pack replacement. For the cell replacement concept to be practical, two main design criteria
should be satisfied including individual cell monitoring and easy accessibility to cells at failure stage.

Keywords: lithium-ion battery; battery cell replacement; battery modeling; battery degradation;
battery cost analysis; battery life optimization

1. Introduction

Renewable energy sources play an important role in providing sustainable and clean
energy and mitigating climate change globally [1]. The development of renewable energy
harvestings such as solar and wind has raised the demand for energy storage systems and
transportation methods with reduced CO2 emissions [2]. Energy storage systems are the
key to enabling the storage and dispatch of electricity from renewable sources [3]. Lithium-
ion (Li-ion) batteries, as an energy storage system, have gained in popularity in recent
years, especially in automotive applications and large-scale energy storage facilities due to
their high energy and power density, long cycle life, high fidelity with high temperature
tolerance, low self-discharge rate, and rapid charging capabilities [4–6].

Li-ion battery cells can degrade through cycles of discharge and charge as well as
over time even when they are inactive, with dependency on both temperature and state of
charge (SOC) [7,8]. The degradation that occurs through discharge and charge is called
cycling aging, while degradation that happens when it is not in use is called calendar
aging [9]. The degradation in Li-ion batteries reduces the amount of energy and power that
could be delivered in battery applications. After a certain number of cycles, Li-ion cells
will eventually reach their end-of-life (EOL) stage. In some applications such as electric
vehicles the EOL threshold of a battery is often when its remaining total capacity reaches
80% of its initial total capacity [10].
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As battery packs consist of multiple cells, the potential and performance of the pack
would be an overall average reflection to the state of each cell, but not specific to any certain
cell [11]. Often in reality, due to the variability in characteristics of the cells, not all cells
behave and degrade at the same rate [12]. Factors such as the pack’s thermal management,
SOC inhomogeneities, and manufacturing configurations are some of the reasons leading
to the variation of the capacity fade of individual cells in the same pack [13]. As the battery
pack reaches its EOL stage, it would likely contain some cells that are in a healthier state
than other cells [14]. This makes replacing the entire pack not completely efficient since
some of the cells would still be in usable conditions. The discarding of usable cells would
effectively lead to unnecessary costs in Li-ion battery energy storage systems [15,16]. An
alternative strategy would be making the battery pack reconfigurable for individual cell
replacement, so that only less healthy cells would be replaced with newer cells, instead
of replacing the entire battery pack [17]. This strategy involves monitoring the levels of
capacity fade of each individual cell and swapping out the most degraded cells based on a
pre-specified capacity fade threshold. As a result, the effect of imbalance and premature
aging in the pack could be minimized, and the degraded cells can be eliminated before
causing more damage to the pack.

Some studies have been previously conducted to investigate the cell replacement con-
cept. Kampker et al. [18] proposed a battery remanufacturing framework and suggested
that the optimal depth of disassembly was up to the cell level, based on the reliability
characteristic and the architecture of the cells within the battery applications. Mathew
et al. [19] provided further analysis to a Li-ion cell replacement framework with data
collected from the simulation to examine the optimal cell replacement interval. Nenadic
et al. [20] examined the most viable cell replacement strategies under two scenarios of the
pack’s early-life failure and reuse of Li-ion battery packs in less demanding applications.
Some other recent studies have also explored cell-to-cell variation, which could further
prove the effectiveness of the cell replacement concept. Lu et al. [21] proposed a method to
evaluate cell-to-cell variation in Li-ion batteries based on five cloud indicators during charg-
ing. Omariba et al. [22] showed various Li-ion cell balancing methodologies to mitigate
cell-to-cell variation and evaluate its relationship with the overall battery performance. As
individual cell aging has an undermining effect on the lifespan of a battery pack, Rehman
et al. [23] proposed a lifespan-extending algorithm that targets individual Li-ion cells
differently to reduce any increase in the capacity mismatch. Zheng et al. [24] extended
the investigation of the aging effect to a Li-ion battery pack by analyzing the evolution
of battery capacity loss using the electric quantity capacity scatter diagram (ECSD) cell
aging mechanism.

The concept of cell replacement in Li-ion battery packs is relatively new, and despite
some recent efforts to investigate this concept, the feasibility, in terms of economics and
design, of cell replacement has not been well-studied. In this paper, a battery voltage model
and a battery degradation model are presented to develop a cell replacement simulation
framework. The simulation framework was then used to investigate the economic feasibil-
ity and design requirements of the cell replacement idea. Specifically, a pack of 40 Li-ion
cells was simulated to its EOL stage, and another set of 40 Li-ion cells was used as the
replacement for the cells in the original pack. The simulation was conducted repeatedly
using MATLAB to determine whether replacing cells individually would be more beneficial
in terms of battery life and costs, compared to replacing the entire pack that could still
consist of healthy cells. The results of the simulation in this study were then analyzed to
decide whether the cell replacement concept would be practical, or under what conditions
it would be practical for use in real-world applications. The rest of this paper is organized
as follows. Section 2 describes the experimental design and setup used in this study, while
Section 3 presents the battery models and the details of the cell replacement simulation
framework used in this work. Section 4 provides the results of the simulation and some
discussions on the feasibility and benefits of the cell replacement concept. Finally, the
resulting conclusions are given in Section 5.
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2. Experimental

Lithium iron phosphate (LFP) pouch cells were used in this study. The specifications
of the cells are shown in Table 1. The nominal capacity of the cells was 20 Ah, and the rated
voltage range was 2.00–3.65 V. Experimental data were necessary to develop a realistic
and robust battery cell model for the simulation. The mean and variance of the parameter
values gathered in these experiments were used to generate randomized parameter values
in the simulation. Specifically, the data were obtained by performing tests on four different
LFP cells. The mean and variation in the parameters experimentally were then used to
develop a distribution that was applied to stochastically generate the parameters for the
10 sets of 80 cells in the simulation framework, which will be further explained in Section 3.

Table 1. Lithium-ion pouch cell specifications.

Specifications Value

Nominal Capacity 20.0 Ah
Nominal Voltage 3.3 V

Voltage Limits 2.0–3.65 V
Cell Weight 496 g
Dimensions 7.25 mm × 160 mm × 227 mm

Operating Temperature −30–55 ◦C

The experiments were all conducted using a MACCOR 4200 battery cycler. The
experimental setup is shown in Figure 1. The two types of experimental procedures
conducted to obtain the data were a hybrid pulse power characterization (HPPC) test
and the determination of the open-circuit voltage (OCV) to produce the SOC–OCV curve.
The HPPC test is often used to determine the dynamic power capability over a useable
voltage range of a given cell or battery [25]. In this study, the HPPC tests were used to
determine the ohmic resistance and the polarization resistance and capacitance of the cells
as a function of the SOC. The determination of the SOC–OCV curve is useful to estimate
the OCV as a function of the SOC, which can be used in further equations in the equivalent
circuit model (ECM).
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First, the HPPC test was used to determine the parameters for the ECM (R0, R1, C1)
at each SOC from 20% to 90%. To start, the cell was charged or discharged to the desired
starting SOC of either 20% or 90%. The HPPC test was then carried out for both charging
and discharging at 10% intervals between 20% and 90% SOC. The HPPC pulse consisted of
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a 1 C discharge for 10 s, a 40-s rest period, and a 0.75 C charge for 10 s. To move between the
10% SOC intervals, a constant-current discharge or charge of 1 C of 6 min and a subsequent
rest for 1 h was performed. Second, the OCV curves were determined for the four cells
across the SOC range of 0% to 100%, and the final curve was taken as the average of the
four curves. For this test, the cells, at full charge, were subjected to a C/25 discharge
current until they were completely drained, followed by an hour of rest, and then a C/25
charge until they were fully charged. The overall OCV curves were determined by taking
the average of the charge and the discharge curves.

3. Modeling and Simulation
3.1. Cell Voltage Model
3.1.1. Model Development

The battery cell voltage model used to represent the cells in this study was the
Thevenin ECM, as shown in Figure 2. This model provides a good balance between
computational efficiency and accuracy [26–29]. The Thevenin ECM consists of four main
parameters, which are Voc, R0, R1, and C1. Voc represents the OCV of the battery; R0
represents the internal resistance of the cell; and R1 and C1 represent the transient behavior
of the cell as an RC pair with one being a resistor and the other being a capacitor. R1 and
C1 are in parallel with each other, but in series with the voltage source and the R0 element.
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The equations for the Thevenin ECM are shown below:

d(V1)

dt
=

V1

R1C1
+

IL
C1

(1)

VL = Voc −V1 − ILR0 (2)

Using the OCV test and the HPPC test, the values of the four parameters (Voc, R0, R1,
and C1) can be obtained at different SOC levels. The current IL is an input variable to the
model. The terminal voltage VL can then be determined by solving Equations (1) and (2).

3.1.2. Model Validation and Results

The overall OCV curve was determined by averaging the four individual cell curves
obtained from the OCV tests. The resulting final curve is shown in Figure 3. Following the
HPPC procedure, the other three ECM parameters (R0, R1, and C1) were determined at the
SOC levels between 20% and 90%. The results are plotted in Figure 4. For the overall trends,
it can be seen that as SOC increased, the R0 value decreased, the R1 value stayed the same,
and the C1 value increased. However, since the values of the ECM parameters were close
enough along the SOC range to be used in the cycling simulation, they will be assumed as
lookup tables—and not a continuous function of the SOC—when they are generated.
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To validate that the cell voltage model is viable, the Urban Dynamometer Driving
Schedule (UDDS) was used. The UDDS cycle is commonly used to replicate the driving
conditions within a city. The current profile from the UDDS was tested experimentally
on the battery, and the corresponding experimental voltage values were measured. Then,
the voltage values predicted from the ECM with the current profile input and the newly
obtained parameters were compared to the measured values, as seen in Figure 5. It was
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seen that the model was well-fitted to the experimental data, with an average absolute
percent error of around 0.6%.
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For the equations used in the simulation framework, shown in later sections, the
mean and the standard deviation values were utilized to establish the distribution of the
parameters. These would be the Xmean and the Stdev in Equation (6). The mean of the
parameter values between the four cells was taken at 50% SOC. The standard deviation of
the capacity and the R0 parameter was around 2–5%, while the R1 and C1 parameters had
a standard deviation of 10–12% between the four cells. The results are displayed in Table 2,
and these values were subsequently used in the simulation in Section 3.4, specifically in
Equation (6).

Table 2. Capacity and ECM parameters distribution.

Parameter Mean Standard Deviation Units

Capacity 19.1750 0.4787 Ah
R0 0.0023 0.00012 Ω
R1 0.0019 0.00023 Ω
C1 10921 1188.1 F

3.2. Cell Degradation Model

There are several methods to quantify and simulate battery cell degradation [30–32].
The battery degradation model used in this analysis was based on the empirical model
proposed by Schmalsteig et al. [32]. This battery degradation model was used and validated
in our previous work [19]. This model was chosen because it is empirical, which would
require less computational time, and because it has fitting parameters that could vary
stochastically, which allows for more realistic cell variation. This degradation model takes
into consideration the effects of the depth of discharge (DoD) and the average voltage
(Vavg) of the cell throughout the current profile. This was simplified to depend only on
cycling aging and neglect calendar aging for the purpose of this study. The degradation
model was coupled with the voltage model to predict the degradation profile of the cells.

The degradation model used in the simulation framework involves Equations (3)–(5).
CAPcyc represents the ratio between the current total cell capacity and the initial total cell
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capacity, which indicates capacity fade. This value decreases as cycling progresses. Rescyc
represents the ratio between the current cell resistance to the initial cell resistance. This
value increases as cycling progresses. Qprocessed represents the charge throughput. The
βcap/res represents βcap or βres, which are the parameters for capacity fade and resistance
increase in Equations (3) and (4). Both were calculated using the same equation but with
different values of a, b, c, and d, which are shown in Section 3.4.

CAPcyc = 1− βcap

√
Qprocessed (3)

Rescyc = 1 + βresQprocessed (4)

βcap/res = a
(
Vavg − b

)2
+ c + d(DoD) (5)

3.3. Pack Voltage Model

The pack voltage model was used to combine the individual cell voltage models in
series to obtain the overall performance of the battery pack by simplifying n Thevenin
ECMs in series into a single Thevenin ECM with n RC circuits. This model was used
to produce the pack voltage, OCV, and SOC corresponding to the current profile and
determine the pack capacity. The information obtained can be used to evaluate the overall
performance of the pack as it degrades. The pack voltage model was also used to update
the cell-level ECM parameters to make sure that all cells were realistically subjected to the
same current profile as they were connected in series. However, the variation in individual
cell degradation rates can lead to variance in some cycling characteristics such as DoD
and SOC.

3.4. Cell Replacement Simulation Framework

The simulation in this study was performed using object-oriented programming in
MATLAB. It utilized the three different models described in previous sections: the cell
voltage model, the cell degradation model, and the pack voltage model. Figure 6 outlines
the overall simulation framework.

The simulation initially generated 10 sets of 80 individual LFP cells, which were
all stochastically vary in their capacity, ECM parameters, and degradation parameters.
The ECM parameters (R0, R1, C1) and the capacity were generated for each cell using
Equation (6),

Y = Xmean + Xmean(Rand)(Stdev) (6)

where Y represents the parameter values generated for an individual cell; Xmean is the
average of the given parameter across the four cells from the experiment; Rand is a normally
distributed random number between −1 and 1; and Stdev is the standard deviation of the
given parameter across the four cells from the experiment.

The degradation parameters for each cell in the simulation were generated using the
formula below:

Y = Z + Z(Var)(Rand) (7)

where Y represents the values of the generated parameter, while Z is the degradation
parameter values given in Table 3 that were taken from our previous work [19]. Var is the
variability of the model, which was 3% in this study. However, for parameter b, the Var
value was further divided by 2. Rand is a normally distributed random number between
−1 and 1.
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Table 3. Degradation parameters used in the simulation.

Parameter Capacity Fade Resistance Rise Units

a 0.00142 2.780 × 10−5 √
AhV

−1

b 3.274 3.199 V
c 0.00119 −2.237 × 10−5 √

Ah
−1

d −9.219 × 10−4 7.361 × 10−5 √
Ah
−1

The stochastic variation techniques described above provided a reasonable estimation
of how a real-world pack would degrade over time. For each of the 10 sets of cells, the
80 cells were indexed, and the first 40 cells were used, in series, in the initial battery
pack. The 40-cell packs (2.64 kWh) represent standard battery packs used in various real-
world applications. The other 40 cells would be used when the cells in the initial pack
needed replacement.

The battery packs simulated were subjected to discharge and charge cycles of 1 C
between 20% and 80% average SOC. The simulation started at 80% for each cell. One cycle
refers to one complete discharge and charge of a cell. The determination of the current
amount needed to achieve 1 C was based on the total capacity of the pack. The SOC of
each cell was determined using Equation (8), which is based on the coulomb counting
method [33], where I is the battery current, SOC0 is the initial SOC, and Cn is the maximum
battery capacity.

SOC = SOC0 +
1

Cn

∫ I
3600

dt (8)
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The voltage was determined using the ECM model for each cycle. The voltage and the
SOC values were then used in the degradation model to calculate the capacity fade. The
capacity of each cell was checked each cycle to ensure that the cells were below the cell
failure limit.

A maintenance event is defined as the time at which at least one cell replacement
occurs. The replacement rate is defined by the number of cells that have gone below the
cell failure limit and would be replaced during a maintenance event. The cell failure limit
for the main case study was 82% state of health (SOH) or CAPcyc. For example, if the
replacement rate is 4, then four individual cells would have to fall below 82% SOH before
a replacement (maintenance event) would occur. The replacement would immediately
swap the four old cells with four fresh cells from the remaining 40 fresh cells that were not
initially put into the pack. This would result in 10 maintenance events in the simulation
as there are 40 other cells. The replacement would also rely on the indices of the cells,
occurring in order from cell 41 to cell 80. The four fresh cells for the first maintenance event
in this example would be the cells indexed from 41 to 44. The replacement rates tested
in this study were for every 1, 2, 4, 5, 8, 10, and 20 cells. The values of replacement rates
were selected as there were 40 additional cells, and in order to utilize all the additional
cells, the rates need to be divisors of 40. In addition there was a simulation for simply
an ordinary pack replacement (no cell replacement), which acted as a reference point for
comparison between cell replacement and no cell replacement. In the pack replacement
case, the initial pack would be replaced with a new pack consisting of the remaining 40 cells,
with completely new packaging as there would be no cell replacement when the pack’s
SOH has fallen below 80%.

The cell failure limit was chosen to be higher than the pack failure limit of 80% as it
was necessary for the cell failure limit to be above the pack failure limit to ensure that most
cells did not degrade past 80%. However, if the cell failure limit was set too high, then
there would be cells that are replaced while still being relatively healthy. Therefore, in the
main case study, it was determined to be 82%. An additional test was performed with a
cell failure limit of 72% and a pack failure limit of 70%.

The capacity of each cell was recorded for each cycle. The pack capacity was calculated
based on the capacity of the weakest cell. The SOH of the pack is the ratio between the
weakest cell capacity and the nominal cell capacity, given by the equation

SOHpack =
min(Capcell1, Capcell2, . . . , CapcellN)

Nominal Cell Capacity
× 100 (9)

4. Results and Discussion
4.1. Cell Replacement Concept Simulation and Results

The simulation across the 10 datasets of 80 cells showed that the total number of cycles
in the lifespan of a battery pack generally increases when the replacement rate increases.
It should be noted that when the replacement rate increases, the number of maintenance
events decreases because the greater number of cells replaced at each maintenance event
would result in fewer maintenance events. Figure 7 shows the results of the cell replacement
simulation with different replacement rates, for the battery pack’s SOH thresholds of 80%
(cell’s SOH threshold of 82%) and 70% (cell’s SOH threshold of 72%). The total number
of cycles was calculated as the average of the 10 sets of 80 cells that were simulated, with
each set yielding a battery pack of 40 cells as well as 40 additional replacement cells.
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From Figure 7, for the pack SOH threshold of 80%, it was observed that a replacement
rate of 10 (replacing 10 cells at every maintenance event) allowed for the greatest number
of cycles, which was 6458 cycles. An ordinary pack replacement, which is the common
practice currently, gave a total number of 6395 cycles, which was 63 cycles lower than
the case with the replacement rate of 10. However, the replacement rate of 10 would
require four maintenance events, meaning an additional three visits to the vehicle shop or
dealership compared to the pack replacement method. The pack replacement approach
was also shown to have better results than most other cell replacement cases, except for
cases with replacement rates of eight and 10. The lowest number of cycles was given by
the replacement at every 20 failed cells, which was 6272 cycles. This is likely because the
SOH of the pack fell below 80% before its 20 individual cells broke down below 82%.

Figure 7 also indicates that lowering the threshold from 80% SOH to 70% SOH with
a cell failure limit of 72% led to an increase, by over double in all cases, of the total
number of cycles. The average total number of cycles for the optimal replacement rate
was 14,809 cycles for the replacement rate of five. This was 8351 cycles more than the
case of the 80% SOH threshold. The pack replacement approach, in this case, resulted in
an average of 14,390 cycles, which was 419 fewer cycles than the best cell replacement
case, or around 3% lower instead of only 1% such as in the 80% SOH threshold case. The
pack replacement method also then gave worse results than most other cell replacement
cases except for the case with the replacement rates of 20. This indicated that lowering
the pack SOH threshold could provide a significantly greater battery life if lower battery
capacity was acceptable to the application, which is the case for many stationary battery
applications. It was noted that if continuous cell replacement is performed, then there will
be cases where a lot of replacements occur at times close to each other, especially for low
replacement rates such as 1, 2, or 4. This might prove inconvenient in the real-world setting
when several replacements might occur on the same day or week.

4.2. Battery Pack Design Requirements for Cell Replacement Concept

For the cell replacement concept to be feasible in the real-world setting, there are
two main design criteria to be considered. The two criteria include good individual cell
monitoring and identification and easy accessibility to the cells that need replacement. The
first criterium is achieved when a battery management system (BMS) is installed so that
one can monitor each cell’s SOH. This design consideration is indispensable in the future
for the BMS, not only because of cell replacement, but also due to cell aging, balancing,
and safety [34]. It also allows for the second criteria to be met since, without individual
cell identification, cell replacement cannot be conducted effectively. The second design
criterium is achieved if cells can easily be removed and installed physically in the pack.
This can be difficult at the moment as many battery packs nowadays use fusion to connect
cells together [35,36]. Fusion is the act of using molten metals similar in composition to
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the current-carrying parts to create an electrical pathway for the cells to be placed in series
or parallel. This is seen as the most advanced and reliable approach because it creates
less interfacial resistance problems, which can often occur in other methods of connecting
cells such as through simple physical contact of the current-carrying parts. This design
consideration is required for the cell replacement concept to be practical, as it would not be
economical to spend a significant amount of time and labor to replace individual cells in
the battery pack. This criterion can be achieved if one can find a way to make compression—
physical contact—a viable option for internal cell connections or a way to easily replace
cells that are fused within a battery pack.

4.3. Economic Feasibility of Cell Replacement Concept

The economic benefit and feasibility of the cell replacement concept were assessed
by estimating the price of the cases using cell replacement versus pack replacement. The
costs were then related to the cycling performance of the packs in both the 70% and 80%
SOH threshold cases. This was used to make conclusions on when cell replacement would
become beneficial.

First, the cost of each cell was set to $28, which was the original price of the LFP cells.
This was then multiplied by the number of cells and the cells-to-pack cost proportion to
obtain the total cost of the original pack as well as the proportion of the cost between
the material and the pack. The cells-to-pack cost proportion was set to 48% as Wentker
et al. [37] suggested. However, a 50% price increase was added to the manufacturing costs
of the packs for the cell replacement cases because it would require a different and robust
design and result in greater costs. To obtain the total cost of the pack replacement case,
the original pack cost was doubled as one would simply replace the original battery pack
with another similar pack with the same price. For the cell replacement cases, only the
costs of the cells were considered because a brand-new pack is not necessary with the
pack systems that are already in place being reused. Finally, the labor costs were set to
$100 per maintenance event. The number of maintenance events was selected according to
the optimal number of cycles for both the 70% and 80% SOH threshold cases, which were
eight and four, respectively. A summary of the cost analysis and comparison between cases
of pack replacement and cell replacement is shown in Table 4.

Table 4. Cost analysis and comparison between cases of pack replacement and cell replacement.

Pack Replacement Cell Replacement

Cell cost (USD/cell) $28.00 $28.00
Total number of cells in one pack 40 40

Cells-to-pack cost proportion 48% NA
Cell cost for original pack (40 cells) $1120.00 $1120.00

Initial pack manufacturing cost $1213.33 $1820.00
Total cost of original pack $2333.33 $2940.00
Total cost of replacement $2333.33 $1120.00

Total labor cost of replacement (for 80%
SOH threshold) $100.00 $400.00

Total labor cost of replacement (for 70%
SOH threshold) $100.00 $800.00

Total cost (for 80% SOH threshold) $4766.67 $4460.00
Total cost (for 70% SOH threshold) $4766.67 $4860.00

The results show that the total pack replacement costs were estimated to be around
$4766.67 while the total cell replacement costs were $4860.00 and $4460.00 for the 70%
and 80% SOH threshold cases, respectively. This indicates that the cell replacement costs
were cheaper for the 80% SOH threshold case, but not for the 70% SOH threshold due to
the increased number of maintenance events that led to higher total costs. For the 80%
SOH threshold case, the total cost of cell replacement was about 6% (or $306.67) lower
than that of pack replacement, while being able to improve the total number of battery
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pack cycles by 1% (or 63 cycles). For the 70% SOH threshold case, even though the cell
replacement’s total cost was about 2% (or $93.33) higher than the pack replacement’s total
cost, the cell replacement method was able to increase the total number of pack cycles by
3% (or 419 cycles). In both cases, the cell replacement approach can be seen as a better
option than the pack replacement approach. Overall, it can be concluded that if the design
requirements for the cell replacement concept are fulfilled as discussed in Section 4.2, this
concept will be feasible and beneficial economically.

5. Conclusions

This study investigated the concept of cell replacement for Li-ion battery packs using
MATLAB simulation based on experimental data from 20-Ah LFP pouch cells. A battery
voltage model and a battery degradation model were used to set up the simulation frame-
work. The simulation stochastically generated 10 sets of runs, with each set consisting of
80 LFP cells where 40 cells were put in a battery pack and the other 40 cells were utilized as
additional cells for replacement. The investigated pack failure SOH thresholds were 70%
and 80%, while the cell failure SOH thresholds were 72% and 82%, respectively. The main
conclusions from this work are as follows:

1. The cell voltage model was validated and can be used to generate cells stochastically.
2. The cell replacement approach can increase the total number of battery cycles by

63 cycles (or a 1% increase), on average, in the 80% SOH threshold case. This approach
can also increase the total number of cycles by 419 cycles (or a 3% increase), on average,
in the 70% SOH threshold case.

3. Lowering the pack SOH threshold from 80% to 70% would significantly increase the
total number of cycles if the battery application could accept the lower battery capacity.

4. The cell replacement concept is only feasible if two main design criteria can be satisfied
including individual cell monitoring and identification and accessibility to cells that
require replacement. However, these design requirements can be difficult to achieve
without significant costs.

5. If the design requirements can be met, the cell replacement method will be more
economically beneficial than the current pack replacement approach as it allows the
reuse of many different components of the battery pack.

The findings in this study show that the cell replacement concept can be viable
and more economically beneficial than the current approach of replacing the entire pack,
given that the design requirements are fulfilled. Future research work will focus on other
evaluation criteria to highlight the advantages of the cell replacement concept such as
supply chain benefits, maintenance ease, waste reduction, etc. as well as other chemistries
of Li-ion batteries, the use of better battery models, and the approach to satisfy the design
requirements discussed in this paper.
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