Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor
Abstract
:1. Introduction
2. Methods
2.1. Mathematical Model
2.2. Performance Parameters
2.3. Numerical Solution
3. Results and Discussion
3.1. Fixed Bed Adsorptive Reactor Model Validation
3.2. Sensitivity Analysis to the SMBR Operating Parameters
3.3. Optimization of DEB Synthesis by SMBR: Separation Volumes
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
List of symbols | |
a | Activity |
A | Cross-sectional area (dm2) |
C | Concentration (mol L−1) |
CO2 | Carbon dioxide |
CFDM | Centered finite difference method |
Di,m | Diffusion coefficient of compound i in a mixture |
Dax | Axial dispersion coefficient |
DC | Desorbent consumption (Ldes. Kg−1DEB) |
DEB | 1,1-diethoxybutane |
kB | Boltzmann constant (1.38064852 × 10−23 m2 kg s−2 K−1) |
K | Adsorption equilibrium constant (L mol−1) |
kC | Reaction kinetic constant (mol g−1s−1) |
KE | External mass transfer (dm s−1) |
Keq | Equilibrium constant |
Ki | Internal mass transfer (dm s−1) |
KL | Overall mass transfer coefficient (dm s−1) |
KS,D | Water adsorption constant |
L | Length of the column (dm) |
NOx | Nitrogen oxides |
PR | Productivity (KgDEB Lads.−1 day−1) |
PUR | Raffinate purity (%) |
PUX | Extract purity (%) |
Q | Flow rate (L s−1) |
q | Particle solid concentration (mol L−1) |
Qi | Molar Adsorption capacity of compound i (mol L−1) |
r | Reaction rate (mol g−1 s−1) |
Re | Reynolds number |
Sc | Schmidt number |
Sh | Sherwood number |
SMBR | Simulated moving bed reactor |
T | Temperature (K) |
t | Time (s) |
TMBR | True moving bed reactor |
u | Interstitial Velocity (dm s−1) |
Vmol | Molar volume (dm3 mol−1) |
X | Conversion (%) |
x | Molar fraction |
z | Dimensionless axial coordinate (dm s−1) |
Greek letters | |
β | Safety factor |
γ | Ratio between liquid and solid interstitial velocities |
ε | Porosity (volume void volume bed−1) |
η | Viscosity (cP) |
ρ | Density (g L−1) |
τ | Tortuosity |
Subscripts | |
B | Butanal |
D | Desorbent |
EtOH | Ethanol |
F | Feed |
i | Component i |
m | Mixture |
p | Particle |
R | Raffinate |
Rec | Recycle |
W | Water |
X | Extract |
References
- EIA. Emissions of Greenhouse Gases in the United States; EIA: Washington, DC, USA, 2001–2002. [Google Scholar]
- Claesson, K. Effects of Nutrients Supplementation on Fermentability of Lignocellulosic Hydrolysates under High Gravity Conditions; Chalmers University of Technology: Gothenburg, Sweden, 2012. [Google Scholar]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- McCormick, R.L.; Graboski, M.S.; Alleman, T.L.; Herring, A.M.; Tyson, K.S. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 2001, 35, 1742–1747. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.R.; Erhan, S.Z. Branched chain derivatives of alkyl oleates: Tribological, rheological, oxidation, and low temperature properties. Fuel 2008, 87, 2253–2257. [Google Scholar] [CrossRef]
- Frusteri, F.; Spadaroa, L.; Beatriceb, C.; Guido, C. Oxygenated additives production for diesel engine emission improvement. Chem. Eng. J. 2007, 134, 239–245. [Google Scholar] [CrossRef]
- Kolah, A.K.; Asthana, N.S.; Vu, D.T.; Lira, C.T.; Miller, D.J. Reaction kinetics of the catalytic esterification of citric acid with ethanol. Ind. Eng. Chem. Res. 2007, 46, 3180–3187. [Google Scholar] [CrossRef]
- Andrade, J.; Arntz, D.; Kraft, M.; Prescher, G. Method for Preparation of Acetals. U.S. Patent 45,799,79A, 1 April 1986. [Google Scholar]
- Silva, V.M.; Rodrigues, A.E. Kinetic studies in a batch reactor using ion exchange resin catalysts for oxygenates production: Role of mass transfer mechanisms. Chem. Eng. Sci. 2006, 61, 316–331. [Google Scholar] [CrossRef]
- Rahaman, M.; Graça, N.; Pereira, C.; Rodrigues, A.E. Thermodynamic and kinetic studies for synthesis of the acetal (1, 1-diethoxybutane) catalyzed by Amberlyst 47 ion-exchange resin. Chem. Eng. J. 2015, 264, 258–267. [Google Scholar] [CrossRef]
- Agirre, I.; Barrio, V.L.; Güemez, B.; Cambra, J.F.; Arias, P.L. Bioenergy II: The development of a reactive distillation process for the production of 1, 1 diethoxy butane from bioalcohol: Kinetic study and simulation model. Int. J. Chem. React. Eng. 2010, 8. [Google Scholar] [CrossRef]
- Agirre, I.; Barrio, V.L.; Güemez, B.; Cambra, J.F.; Arias, P.L. Catalytic reactive distillation process development for 1,1 diethoxy butane production from renewable sources. Bioresour. Technol. 2011, 102, 1289–1297. [Google Scholar] [CrossRef]
- Agirre, I.; Güemez, M.B.; Motelica, A.; van Veen, H.M.; Vente, J.F.; Arias, P.L. The conceptual design of a continuous pervaporation membrane reactor for the production of 1,1-diethoxy butane. AIChE J. 2012, 58, 1862–1868. [Google Scholar] [CrossRef] [Green Version]
- Agirre, I.; Uemez, M.B.E.; Motelica, A.; van Veen, H. A techno-economic comparison of various process options for the production of 1,1-diethoxy butane. J. Chem. Technol. Biotechnol. 2012, 87, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Agirre, I.; Güemez, M.B.; van Veen, H.M.; Motelica, A.; Vente, J.F.; Arias, P.L. Acetalization reaction of ethanol with butyraldehyde coupled with pervaporation. Semi-batch pervaporation studies and resistance of HybSi® membranes to catalyst impacts. J. Membr. Sci. 2011, 371, 179–188. [Google Scholar] [CrossRef]
- Regufe, M.J.; Faria, R.; Ribeiro, A.M.; Loureiro, J.M. Synthesis of the Biofuel Additive 1,1-Diethoxybutane in a Fixed-Bed Column with Amberlyst-15 Wet. Chem. Eng. Technol. 2016, 39, 1509–1518. [Google Scholar] [CrossRef]
- Zhang, Z.; Hidajat, K.; Ray, A.K. Application of Simulated Countercurrent Moving-Bed Chromatographic Reactor for MTBE Synthesis. Ind. Eng. Chem. Res. 2001, 40, 5305–5316. [Google Scholar] [CrossRef]
- Graça, N.S.; Pais, L.S.; Silva, V.M.T.M.; Rodrigues, A.E. Analysis of the synthesis of 1,1-dibutoxyethane in a simulated moving-bed adsorptive reactor. Chem. Eng. Process. Process Intensif. 2011, 50, 1214–1225. [Google Scholar] [CrossRef]
- Silva, V.M.T.M.; Rodrigues, A.E. Novel process for diethylacetal synthesis. AIChE J. 2005, 51, 2752–2768. [Google Scholar] [CrossRef]
- Pereira, C.S.M.; Gomes, P.S.; Gandi, G.K.; Silva, V.M.T.M.; Rodrigues, A.E. Multifunctional reactor for the synthesis of dimethylacetal. Ind. Eng. Chem. Res. 2008, 47, 3515–3524. [Google Scholar] [CrossRef]
- Graça, N.S.; Delgado, A.E.; Constantino, D.S.; Pereira, C.S.; Rodrigues, A.E. Synthesis of a renewable oxygenated diesel additive in an adsorptive reactor. Energy Technol. 2014, 2, 839–850. [Google Scholar] [CrossRef]
- Minceva, M.; Rodrigues, A.E. Two-level optimization of an existing SMB for p-xylene separation. Comput. Chem. Eng. 2005, 29, 2215–2228. [Google Scholar] [CrossRef]
- Azevedo, D.C.S.; Rodrigues, A.E. Design of a simulated moving bed in the presence of mass-transfer resistances. AIChE J. 1999, 45, 956–966. [Google Scholar] [CrossRef]
- Rodrigues, A.E.; Pereira, C.; Minceva, M.; Pais, L.S.; Ribeiro, A.M.; Ribeiro, A.; Silva, M.; Graça, N.; Santos, J.C. Simulated Moving Bed Technology: Principles, Design and Process Applications; Elsevier Science: Oxford, UK, 2015. [Google Scholar]
- Shi, Q.; Gonçalves, J.C.; Ferreira, A.F.P.; Plaza, M.G.; Rodrigues, A.E. Xylene isomerization over Beta zeolites in liquid phase. Ind. Eng. Chem. Res. 2018, 57, 5568–5579. [Google Scholar] [CrossRef]
- Guevara-Carrion, G.; Vrabec, J.; Hasse, H. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J. Chem. Phys. 2011, 134, 074508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, L.C.D.; Filho, N.M.L.; Faria, R.P.V.; Ferreira, A.F.P.; Ribeiro, A.M.; Rodrigues, A.E. Separation of tartronic and glyceric acids by simulated moving bed chromatography. J. Chromatogr. A 2018, 1563, 62–70. [Google Scholar] [CrossRef]
- Gravelle, S.; Yoshida, H.; Joly, L.; Ybert, C.; Bocquet, L. Carbon membranes for efficient water-ethanol separation. J. Chem. Phys. 2016, 145, 124708. [Google Scholar] [CrossRef]
Component | Q (mol LSolid−1) | K (L mol−1) |
---|---|---|
Ethanol | 10.58 | 7.24 |
Butanal | 3.08 | 0.12 |
Water | 34.47 | 8.18 |
DEB | 3.59 | 0.06 |
Experiment | 1 | 2 | 3 |
Bed length (cm) | 10.95 | 11.18 | 11.1 |
Column diameter (cm) | 2.6 | 2.6 | 2.6 |
Temperature (K) | 303 | 303 | 303 |
Bed porosity | 0.42 | 0.42 | 0.42 |
Particle porosity | 0.5 | 0.5 | 0.5 |
Péclet number | 64.4 | 64.4 | 64.4 |
Flowrate (mL min−1) | 5.1 | 7.59 | 7 |
C0,ethanol (mol/L) | 0.579 | 0 | 16.958 |
C0,water (mol/L) | 0 | 55.26 | 0 |
C0,DEB (mol/L) | 5.535 | 0 | 0 |
CF,ethanol (mol/L) | 16.958 | 16.897 | 11.4 |
CF,water (mol/L) | 0 | 0.212 | 3.61 |
CF,DEB (mol/L) | 0.001 | 0 | 0 |
This Work | Previous Work [22] | |
---|---|---|
Ethanol and Water | 0.991 | 0.989 |
Ethanol and Deb | 0.998 | 0.999 |
Reaction | 0.954 | 0.949 |
Parameter | Value |
---|---|
Temperature (K) | 303 |
Configuration | 3-3-3-3 |
Column Length (cm) | 23.0 |
Column diameter (cm) | 2.6 |
Bed porosity | 0.42 |
Particle porosity | 0.5 |
Péclet number | 64.4 |
Ethanol feed concentration (mol/L) | 12.266 |
Butanal feed concentration (mol/L) | 3.064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spitters, J.; Gonçalves, J.C.; Faria, R.P.V.; Rodrigues, A.E. Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor. Processes 2021, 9, 189. https://doi.org/10.3390/pr9020189
Spitters J, Gonçalves JC, Faria RPV, Rodrigues AE. Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor. Processes. 2021; 9(2):189. https://doi.org/10.3390/pr9020189
Chicago/Turabian StyleSpitters, Jasper, Jonathan C. Gonçalves, Rui P. V. Faria, and Alírio E. Rodrigues. 2021. "Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor" Processes 9, no. 2: 189. https://doi.org/10.3390/pr9020189
APA StyleSpitters, J., Gonçalves, J. C., Faria, R. P. V., & Rodrigues, A. E. (2021). Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor. Processes, 9(2), 189. https://doi.org/10.3390/pr9020189