Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Activation Experiments
2.3. Characterization of Resulting Activated Carbon
2.4. Experiments of Adsorption Performance
3. Results and Discussion
3.1. Pore Properties of Resulting Activated Carbon
3.2. SEM-EDS Observations of Resulting Activated Carbon
3.3. Adsorption Performances of Resulting Activated Carbon
4. Conclusions
- The resulting AC possessed a mesoporous feature with the BET specific surface area of 810.5 m2/g and mesopore volume of 0.13 cm3/g, which are superior to commercial AC products.
- Due to its fast adsorption rate and maximal adsorption capacity fitted by the model (126.6 mg/g), the mesoporous carbon material could be used as an excellent adsorbent for liquid-phase removal of MB.
- The pseudo-second-order model is well suited for describing the adsorption system, which includes the cationic adsorbate and the resulting AC with hydrophilicity of oxygen surface groups.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Jeirani, Z.; Niu, C.H.; Soltan, J. Adsorption of emerging pollutants on activated carbon. Rev. Chem. Eng. 2017, 33, 491–522. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfag, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chang, C.Y.; Ho, C.Y.; Chen, L.Y. Adsorption properties and breakthrough model of 1,1-dichloro-1-fluoroethane on activated carbons. J. Hazard. Mater. 1999, 69, 53–66. [Google Scholar] [CrossRef]
- Loannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sust. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Paraskeva, P.; Kalderis, D.; Diamadopoulos, E. Production of activated carbon from agricultural by-products. J. Chem. Technol. Biotechnol. 2008, 83, 581–592. [Google Scholar] [CrossRef]
- Alslaibi, T.M.; Abustan, I.; Ahmad, M.A.; Foul, A.A. A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating. J. Chem. Technol. Biotechnol. 2013, 88, 1183–1190. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Hameed, B.H.; Ahmed, M.J. Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: A review. J. Water Process Eng. 2020, 38, 101380. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Marsh, H.; Rodriguez-Reinoso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Hsieh, C.T.; Teng, H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000, 38, 863–869. [Google Scholar] [CrossRef]
- Piai, L.; Dykstra, J.E.; Adishakti, M.G.; Blockland, M.; Langenhoff, A.A.M.; van der Wal, A. Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res. 2019, 162, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Srinivasan, M.P.; Ni, Y. Preparation of mesoporous high-surface-area activated carbon. Adv. Mater. 2000, 12, 62–65. [Google Scholar] [CrossRef]
- Macedo, J.S.; Junior, N.B.C.; Almeida, L.E.; Vieira, E.F.S.; Cestari, A.R.; Gimenez, I.F.; Carreno, N.L.V.; Barreto, L.S. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared coir dust. J. Colloid Interface Sci. 2006, 298, 515–522. [Google Scholar] [CrossRef]
- Gao, J.; Kong, D.; Wang, Y.; Wu, J.; Sun, S.; Xu, P. Production of mesoporous activated carbon from tea fruit peel residues and its evaluation of methylene blue removal from aqueous solutions. BioResources 2013, 8, 2145–2160. [Google Scholar] [CrossRef]
- Salman, J.M. Preparation of mesoporous-activated carbon from branches of pomegranate trees: Optimization on removal of methylene blue using response surface methodology. J. Chem. 2013, 489670. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Luo, Y.M. The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J. Environ. Chem. Eng. 2014, 2, 220–229. [Google Scholar] [CrossRef]
- Islam, A.A.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol. Environ. Saf. 2017, 138, 279–285. [Google Scholar] [CrossRef]
- Jawad, A.H.; Rashid, R.A.; Ismail, K.; Sabar, S. High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalin. Water Treat. 2017, 74, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int. J. Biol. Macromol. 2017, 98, 233–239. [Google Scholar] [CrossRef]
- Wongcharee, S.; Aravinthan, V.; Erdei, L.; Sanongraj, W. Mesoporous activated carbon prepared from macadamia nut shell waste by carbon dioxide activation: Comparative characterization and study of methylene blue removal from aqueous solution. Asian-Pac. J. Chem. Eng. 2018, 13, e2179. [Google Scholar] [CrossRef]
- Khasri, A.; Bello, O.S.; Ahmad, M.A. Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation: Optimization and methylene blue adsorption. Res. Chem. Intermed. 2018, 44, 5737–5757. [Google Scholar] [CrossRef]
- Boudia, R.; Mimanne, G.; Benhabib, K.; Pirault-Roy, L. Preparation of mesoporous activated carbon from date stones for the adsorption of Bemacid Red. Water Sci Technol. 2019, 79, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Nazir, M.; Khan, E.A. Adsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: Adsorption dynamics and kinetic studies. Toxicol. Environ. Chem. 2013, 95, 919–931. [Google Scholar] [CrossRef]
- Rehman, R.; Salariya, B.; Mitu, L. Batch scale adsorptive removal of brilliant green dye using Trapa natans peels in cost effective manner. Rev. Chim. 2016, 67, 1333–1337. [Google Scholar]
- Kumar, S.; Naryanasamy, S.; Venkatesh, R.P. Removal of Cr (VI) from synthetic solutions using water caltrop shell as a low-cost biosorbent. Sep. Sci. Technol. 2019, 54, 2783–2799. [Google Scholar] [CrossRef]
- Rao, L.L.; Liu, S.F.; Wang, L.L.; Ma, C.D.; Wu, J.Y.; An, L.Y.; Hu, X. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance. Chem. Eng. J. 2019, 359, 428–435. [Google Scholar] [CrossRef]
- Wang, P.; Fan, L.; Yan, L.; Shi, Z. Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. J. Alloys Compd. 2019, 775, 1028–1035. [Google Scholar] [CrossRef]
- Hsu, C.H.; Pan, Z.B.; Chen, C.R.; Wei, M.X.; Chen, C.A.; Lin, H.P.; Hsu, C.H. Synthesis of multiporous carbons from the water caltrop shell for high-performance supercapacitors. ACS Omega 2020, 5, 10626–10632. [Google Scholar] [CrossRef]
- Kumar, S.; Patra, C.; Naryanasamy, S.; Rajaraman, P.V. Performance of acid-activated water caltrop (Trapa natans) shell in fixed bed column for hexavalent chromium removal from simulated wastewater. Environ. Sci. Pollut. Res. 2020, 27, 28042–28052. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.J.; Zhang, Z.H.; Liu, T.C.; Xu, J.; Xiao, S.Z.; Xu, Y. N-doped animal keratin waste porous biochar derived from Trapa natans husks. Materials 2020, 13, 987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaewprasit, C.; Hequet, E.; Abidi, N.; Gourlot, J.P. Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. methodology. J. Cotton Sci. 1998, 2, 164–173. [Google Scholar]
- Chen, G.; Pan, J.; Han, B.; Yan, H. Adsorption of methylene blue on montmorillonite. J. Dispers. Sci. Technol. 1999, 20, 1179–1187. [Google Scholar] [CrossRef]
- Hegyesi, N.; Vad, R.T.; Pukanszky, B. Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Appl. Clay Sci. 2017, 146, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Tan, H.; Liu, K.; Gao, W. Removal of methylene blue from aqueous solution by bone char. Appl. Sci. 2018, 8, 1903. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Nagbanshi, M.; Goldau, N.; Mendes Jorge, M.; Meissner, P.; Jahn, A.; Mockenhaupt, F.P.; Muller, O. Efficacy and safety of methylene blue in the treatment of malaria-a systematic review. BMC Med. 2018, 16, 59. [Google Scholar] [CrossRef]
- Tsai, W.T.; Jiang, T.J. Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Conver. Biorefin. 2018, 8, 711–718. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lin, Y.Q.; Tsai, C.H.; Chung, M.H.; Chu, M.H.; Huang, H.J.; Jao, Y.H.; Yeh, S.I. Conversion of water caltrop husk into biochar by torrefaction. Energy 2020, 195, 116967. [Google Scholar] [CrossRef]
- Tsai, W.T.; Huang, P.C.; Lin, Y.Q. Reusing cow manure for the production of activated carbon using potassium hydroxide (KOH) activation process and its liquid-phase adsorption performance. Processes 2019, 7, 737. [Google Scholar] [CrossRef] [Green Version]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area, and Porosity; Academic Press: London, UK, 1982. [Google Scholar]
- Smith, J.M. Chemical Engineering Kinetics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Ho, Y.S.; Chiang, C.C.; Hsu, Y.C. Sorption kinetics for dye removal from aqueous solution using activated clay. Sep. Sci. Technol. 2001, 36, 2473–2488. [Google Scholar] [CrossRef]
- Hamadi, N.K.; Swaminathan, S.; Chen, X.D. Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. J. Hazard. Mater. 2004, B112, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Paska, O.M.; Pacurariu, C.; Muntean, S.G. Kinetic and thermodynamic studies on methylene blue biosorption using corn-husk. RSC Adv. 2014, 4, 62621–62630. [Google Scholar] [CrossRef]
- Zaini, M.A.A.; Okayama, R.; Machida, M. Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J. Hazard. Mater. 2009, 170, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
Property | Value a |
---|---|
Single point surface area (m2/g) b | 790.8 ± 42.5 |
BET surface area (m2/g) c | 810.5 ± 2 5.7 |
Langmuir surface area (m2/g) | 1198.5 ± 38.6 |
Micropore surface area (m2/g) d | 618.9 ± 16.6 |
External surface area (m2/g) e | 191.6 ± 19.6 |
Total pore volume (cm3/g) f | 0.441 ± 0.024 |
Micropore volume (cm3/g) d | 0.311 ± 0.013 |
Pore diameter (Å) g | 21.7 ± 0.8 |
True density (g/cm3) h | 1.787 |
Particle density (g/cm3) i | 0.999 |
Porosity (-) j | 0.441 |
Adsorbent Dosage (g/2 L) | k (g/(mg.min)) | qe (mg/g) | Correlation Coefficient | t1/2 (min) | h (mg/(g.min)) |
---|---|---|---|---|---|
0.1 | 0.0012 | 126.58 | 0.986 | 6.58 | 19.23 |
0.3 | 0.0147 | 68.03 | 1.000 | 1.00 | 68.03 |
0.5 | 0.1442 | 40.16 | 1.000 | 0.17 | 232.57 |
Initial MB Concentration (mg/L or ppm) | k (g/(mg.min)) | qe (mg/g) | Correlation Coefficient | t1/2 (min) | h (mg/(g.min)) |
---|---|---|---|---|---|
5 | 0.1625 | 33.44 | 1.000 | 0.18 | 181.71 |
10 | 0.0147 | 68.03 | 1.000 | 1.00 | 68.03 |
15 | 0.0024 | 104.17 | 0.998 | 4.00 | 26.04 |
20 | 0.0016 | 125.00 | 0.994 | 5.00 | 25.00 |
Initial pH | k (g/(mg.min)) | qe (mg/g) | Correlation Coefficient | t1/2 (min) | h (mg/(g.min)) |
---|---|---|---|---|---|
3 | 0.0101 | 68.97 | 1.000 | 1.44 | 48.04 |
7 | 0.0147 | 68.03 | 1.000 | 1.00 | 68.03 |
11 | 0.0207 | 69.93 | 1.000 | 0.69 | 101.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-Q.; Tsai, W.-T. Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation. Processes 2021, 9, 238. https://doi.org/10.3390/pr9020238
Lin Y-Q, Tsai W-T. Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation. Processes. 2021; 9(2):238. https://doi.org/10.3390/pr9020238
Chicago/Turabian StyleLin, Yu-Quan, and Wen-Tien Tsai. 2021. "Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation" Processes 9, no. 2: 238. https://doi.org/10.3390/pr9020238
APA StyleLin, Y. -Q., & Tsai, W. -T. (2021). Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation. Processes, 9(2), 238. https://doi.org/10.3390/pr9020238