
processes

Article

Optical Chemical Sensor Based on 2,2-Furildioxime in Sol-Gel
Matrix for Determination of Ni2+ in Water

Suherman Suherman * , Muh. Supwatul Hakim and Agus Kuncaka

����������
�������

Citation: Suherman, S.; Hakim, M..S.;

Kuncaka, A. Optical Chemical Sensor

Based on 2,2-Furildioxime in Sol-Gel

Matrix for Determination of Ni2+ in

Water. Processes 2021, 9, 280. https://

doi.org/10.3390/pr9020280

Academic Editors: Mohamed A.

Shenashen and Wei Chen

Received: 10 December 2020

Accepted: 29 January 2021

Published: 2 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,
Yogyakarta 55281, Indonesia; supwatul.hakim@mail.ugm.ac.id (M.S.H.); akuncaka@ugm.ac.id (A.K.)
* Correspondence: suherman.mipa@ugm.ac.id

Abstract: A new optical chemical sensor was fabricated based on incorporation of 2,2-furildioxime as
a sensitive reagent into the nanopore of a transparent glasslike material through the sol-gel method
which was suitable for determination of Ni2+ ions in aqueous solutions. The prepared sensors were
composed of tetraethoxysilane (TEOS), 2,2-furildioxime, methanol, hydrochloric acid and Triton
X-100. The sensors were constructed by dip coating onto glass substrates. The optimum response
of the sensor toward Ni2+ ions was reached at pH 8.5 and the contact time for the formation of the
complex at 10 min. The linear concentration of the calibration curve was in the range of 1–5 mg L−1

with a detection limit of 0.111 mg L−1, and quantification limit of 0.337 mg L−1. In addition, the
relative standard deviation (RSD) was less than 5% in determination of Ni2+ with ten slide sensor
membranes. The developed sensor was tested on Ni2+ determination in real water samples which
was confirmed by the atomic absorption spectrophotometer method.

Keywords: optical sensor; furildioxime; sol-gel; Ni2+

1. Introduction

Nowadays, optical sensors serve as analytical measurement devices in various anal-
yses, especially heavy metal ion detection [1,2]. They have advantages such as reducing
waste, low cost preparation, ease of use and in situ analysis. Some materials have been
used for the optical sensor’s matrix such as polyvinyl chloride (PVC) [3], agarose [4],
polyvinyl acetate (PVA) [5,6], chitosan, ethyl cellulose [7], and polysaccharide [8]. In addi-
tion, sol-gel matrix was used as polymer the matrix to immobilize the reagent for metal
ion determination [9]. Sol-gel matrices are more interesting for research due to their high
stability, transparency in the visible region of electromagnetic waves, and simple synthesis
at room temperature [10]. In this work, TEOS (tetraethylorthosilicate) is synthesized by a
hydrolyzing process in acid catalyst and condensation to form a silica network [11]. Rate
of hydrolysis and condensation affected the pore size, rigidity and surface of the sol-gel
film. The structure and properties of sol-gel depend on pH, temperature, ratio of H2O:Si,
and catalyst. In strong base conditions, the process of aggregation and gelation will be
longer due to deprotonation and increase of surface charge. In strong acidic conditions, the
polycondensation of organic polymers cause a low surface area of material and thus the
efficiency of the optical sensor is decreased [12]. The porosity of surface areas is high with
a high ratio of H2O:Si. In a low ratio of H2O:Si, the hydrolyzing process of alkyl groups
is slow [13,14].

Environmental pollution by heavy metal is of serious concern to many researchers.
Nickel is a nutrient in trace element concentration in the human body, animal species and
plants, but, in high concentration, nickel will be carcinogenic and toxic. The decomposition
of rocks and soils in mining areas are one the most significant sources of nickel ion pollution.
The maximum concentration of nickel in this area is 0.5 mg L−1 [15]. On the other hand,
nickel and nickel compounds are used for electroplating, alloys, mobile phones, medical
equipment, laboratory tools and household appliances [16]. Indonesia is estimated to have
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more than 800 million tons of nickel reserves located in vast areas of its Sulawesi, Maluku,
North Maluku, Kalimantan, and Papua islands [17].

Determination of nickel is conducted by several conventional methods such as electro-
chemical, flame atomic absorption spectrometry (AAS), and inductively coupled plasma-
mass spectrometry (ICP-MS) [18]. Analysis of nickel using these methods needs laborious
pretreatment of samples, experienced staff, toxic solvent, high cost treatment and far from
green chemistry. Simple, cheaper and easier methods in nickel determination are required
not only for environmental assessment, but also for small and medium-size nickel industries
in their preliminary tests before the production. This research proposes a simple method for
nickel detection without highly skilled staff. Nickel ion is detected by changing the sensor
color from transparent to yellow. In this work, 2,2 furildioxime (FDO) was used as a colori-
metric reagent for the determination of Ni2+ in metal alloys (see Figure 1 for its chemical
structure; chemical formula C10H8N2O4) with a molecular weight of 220.18 g mol−1. It is
insoluble in water, but dissolves in organic solvents. In addition, FDO is also used as a stain
test reagent and a complexing agent in gravimetric determination of Ni2+. 2,2 furildioxime
reagent with Ni2+ metal ions will form a yellow Ni2+-FDO complex and their absorbance
can be measured by spectrophotometry [19]. 2,2-furildioxime or α-furildioxime as a ligand
was immobilized into a sol-gel matrix for the detection of Ni2+ ions with good accuracy
and precision since Ni2+ made complex structures with 2,2-furildioxime [20]. Thin films
were synthesized by the sol-gel method and the optical sensor was prepared by dip coating
with the obtained gel on a glass substrate.
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Figure 1. Chemical structures of (a) 2,2 furildioxime (FDO), (b) Ni2+-FDO complex. 
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Figure 1. Chemical structures of (a) 2,2 furildioxime (FDO), (b) Ni2+-FDO complex.

2. Materials and Methods
2.1. Materials

All chemical used were of analytical grade, i.e., tetraethoxysilane (TEOS), absolute methanol
(MeOH), absolute ethanol (EtOH), Triton X-100, HCl, Ni(NO3)2, Zn(NO3)2, Fe(NO3)3, Cu(NO3)2,
Pb(NO3)2, Cd(NO3)2, Co(NO3)2 and were purchased from Merck (Darmstadt, Germany), a
reagent α-furildioxime (FDO) (Tokyo Chemical Industry, Tokyo, Japan), HEPES buffer (Dojindo,
Kumamoto, Japan). Glass slides were cut out into 3.75× 0.8 cm2. Water samples were obtained
from the North Konawe region, Southeast Sulawesi-Indonesia.

2.2. Preparation of Sol-Gel Matrix

The sol-gel matrix was prepared by mixing all chemical compounds, as described
by [12]. Briefly, 2 mL of TEOS and 2 mL of methanol, 645 µL of H2O, Triton X-100 (10 drops),
1 mL of FDO dissolved in ethanol (100 mg/L) and 0.5 mL drop by drop of HCl (0.3 M) were
mixed and sonicated for 35 min to obtain a homogeneous solution. The obtained solution
remained in a glass vial for 24 h in the absence of light at room temperature to achieve a
more viscous solution. The glass slides (3.75 × 0.8 cm2) were treated with concentrated
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HNO3 for 2 h. Then they were sonicated in ethanol solution for 30 min and then washed
with ethanol and distilled water, followed by drying at 100 ◦C for 10 min. The glass slides
were coated by dip coating and aged at room temperature to enable them to form a smooth
and even membrane.

For the study of precision, different sensors were immersed in 1 mg L−1 of Ni2+ ion
solution at optimum condition and the absorbance of each sensor was measured at 449 nm.

2.3. Analytical Procedure

Five milliliters of Ni2+ standard and 1 mL of buffer solution were added. Then,
the film sensors were immersed to this solution. After the immersion, film sensors
were taken out and inserted into the cuvette vertically and further distilled water was
added. The absorbances were measured by spectrophotometer in the wavelength range of
400–600 nm, then the optimum wavelength was determined (which is 449 nm) for further
sample analysis.

3. Results and Discussion
3.1. Characterization of Sensor

The functional group of TEOS precursor and sensors were recorded using a Fourier
transform infrared (FT-IR) spectrophotometer (Prestige-21 Shimadzu, Kyoto, Japan). The
immobilization of FDO in the sol-gel matrix can be determined by comparing IR spectra
of TEOS and film sol-gel before and after detection of nickel (Figure 2). Based on the
TEOS-FDO spectrum (Figure 2c), the additional peak at 1635 cm−1 could be attributed to
the C=N stretching from the FDO reagent. It showed the reagent of FDO was successfully
trapped in sol-gel. The precursor of TEOS was hydrolyzed to form the Si–OH group, as
shown at band 3425 cm−1 and shifted to 3464 cm−1 (Figure 2c,d). It is suggested that there
was vibration of N–O–H in the formation of the Ni-FDO complex.
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Figure 2. FTIR spectra of (a) 2,2 furildioxime (FDO), (b) tetraethoxysilane (TEOS), (c) TEOS-FDO and
(d) TEOS-FDO-Ni2+.

Characterization was also carried out using a scanning electron microscope/SEM
(JEOL Ltd., Tokyo, Japan). The sol-gel film sensor with TEOS precursor has a clear, hard
shape and, before grinding, it looks more like a glass layer. SEM images of the film before
and after being used for Ni2+ detection are shown in Figure 3. SEM images provide
information about the three-dimensional appearance of the film sensor. The shape of the
two films showed a heterogeneous and nonuniform size.
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Figure 3. SEM-EDS images of sensor film (a) before, (b) after Ni2+ detection and (c) sensor’s EDS
data of Ni2+ detection.

Table 1 shows that there are several main components of the sol-gel film. The most
constituent component is the element O followed by Si. This is consistent with the sol-gel
film-forming precursor, which is TEOS. While the Ni element is a representation of the
Ni2+ ions trapped in the silica gel matrix. It can be seen that 0.10% of the element Ni is
absorbed into the film. These data explain that the sensor is able to detect the presence of
Ni by absorbing Ni2+ ions into the pore of the silica gel matrix.

Table 1. Elemental composition data of sensor film.

Element
Percentage (%)

Before After Ni2+ Detection

C 17.85 16.82
O 62.37 60.68
Ni n.d. 0.10
Si 19.78 22.40

3.2. Effect of pH and Contact Time

The pH value is very important because it significantly affect to the performance
of optical sensor. The pH of Ni2+ solutions was tested in HEPES/4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid buffer 0.1 M in range of 3 to 11. The pH of the buffer solution
was adapted by either HCl or NaOH. As shown in Figure 4, the maximum response of
the sensor was observed at a pH of 8.5. In a pH less than 8.5, the absorbance was reduced
because of H+ entering from the aqueous solution into the thin film. In a pH greater than
8.5, Ni2+ ions are in a hydroxide complex and thus the absorbance decreases. Thus, a pH
of 8.5 was used for further studies.
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Figure 4. Effect of different pH levels on the sensor absorbance’s response for solution containing
2 mg L−1 Ni2+ in fixed time (10 min).

The important analytical parameter of the sensor is its response time. It is determined
by the thickness and composition of membrane. The absorbance responses of the sensor
against time in different concentrations of Ni (2 and 5 mg L−1) were recorded at 449 nm.
Figure 5 shows the response time of the sensor obtained was about 10 min because the
optimum results were obtained, then absorbance values for two concentrations were
decreased and constant after 10 min. The decreasing of absorbances (especially in case of
2 mg/L of Ni2+) possibly due to the instability of complex formation.
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Figure 5. Absorbance’s response of the sensor at 449 nm in the presence of Ni2+ (a) 2 mg L−1 and
(b) 5 mg L−1.

3.3. Calibration Curve of the Sensor

The dynamic range of absorbance Ni-FDO was studied at a concentration range
between 1–5 mg L−1 (Figure 6). The absorbance of the sensor was measured by using
spectrophotometer UV-Vis at 449 nm in pH optimum condition. The calibration curve was
obtained based on the absorbance of the sensor at 449 nm versus the concentration of Ni2+

ions. The linear range was found to be 1.0 to 5.0 mg L−1 with a correlation equation of
Y = 0.0477x + 0.0062 and R2 = 0.9963, as shown in Figure 2. The detection limit (LOD) was
found to be 0.111 mg L−1 and limit quantification 0.337 mg L−1 according to nine times the
standard deviation of the signal blank [21]. The detection limit was lower than the results
of previous studies, such as the immobilization of 2-aminocyclopent-1-ene-1-carbodithioic
acid (ACDA) as a colorimetric chemo sensor (chads) for determination of Ni2+, which
produced 1 mg L−1 of LOD [22].
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Figure 6. Calibration curve for nickel determination at pH 8.5.

3.4. Selectivity

The influence of some ions on the determination of Ni was studied. The interference ion
solution was added to Ni solution in a concentration ratio of 1:1 and the absorbance of sensor
was examined at λ 449 and pH 8.5. Selectivity is the ability of the sensor to respond to the
primary ion without any interference from other ions. To investigate the sensor selectivity, the
absorbance of the sensor was measured in 3 mg L−1 Ni2+ solution in the absence (∆Ao) and
presence (∆A) of some potentially interfering ions, such as Cu2+, Fe3+, Zn2+, Pb2+, Cd2+ and
Co2+ at concentration ratio 1:1 in the maximum condition (see Figure 7). The relative error
was considered as RE(%) = [(∆A − ∆Ao)/∆Ao] × 100% [22]. The effect of the interference
ions is summarized in Figure 6. The obtained data clearly shows that the relative errors are
less than 5% for interference from Pb2+, Fe, Cd2+ and Zn2+ ions. However, the presence
of Cu2+ and Co2+ increased the absorbance of the sensor at 10.6 and 20.5%, respectively.
Copper and cobalt are reacted with furildioxime and interfering the nickel analysis at
400–550 nm [23,24].
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Figure 7. Effect of interference ions on the sensor response with ratio concentration of Ni2+ and
interference ions of 1:1.

3.5. Precision and Accuracy

Precision was one important parameter indicating replication analysis method that
was represented by relative standard deviation (RSD). Precision was calculated based on
the formula:

RSD (%) =
SD
X
×100% (1)

SD =

√
∑
(
X − X

)
(n − 1)

(2)
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where X is the value of each measurement, X represents the mean of all measurements, n
symbolizes the number of measurements, and SD stands for standard deviation. In this
research, the precision of the sensor was found to be 2.65%. The accuracy of the sensor was
determined by measuring the sensor immersed in the sample solution with the spiking
method. The accuracy of this method was estimated by determining the percentage of
analyte recovery that stated as:

Recovery (%) =
Ca − Cb

Cstd
×100% (3)

where Ca indicates the concentration of analyte in a mixture of sample and standard, Cb
represents the concentration analyte in a sample, and Cstd is the concentration of standard
solution. The accuracy of sensor was 83–92%.

3.6. Application of Sensor in Seawater Sample

For practical application of the sensor, the obtained seawater (Table 2 samples A and
B) (North Konawe, Southeast Sulawesi) was acidified and kept at a temperature of around
5 ◦C. The sensing process was conducted by the addition of 5 mL of water samples into
1 mL of buffer HEPES 0.1 M solution. The sensors were immersed in the water sample for
determination of Ni2+ for 10 min. The absorbance was measured at 449 nm using a UV-Vis
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Table 2. Determination of Ni2+ in seawater sample.

Water Sample
Sensor Method

Recovery (%)
Ni2+ Added (mg L−1) Ni2+ Founded (mg L−1)

A
0 0.25 -
1 1.07 83.19
3 3.03 92.95

B
0 0.35 -
1 1.19 83.87
3 3.02 89.22

The results of applicability of the sensor are presented in Table 2 where Ni2+ standard
solution was spiked into water samples. t-test results showed the comparison measure-
ments by the present sensor are good results, when those investigations by AAS are the
reference methods (Table 3). With 95% confidence level, tcount at 0.218 was lower than ttable
at 2.776, so it means that there are no different results between optical sensors and AAS
methods on the detection of Ni2+ in water samples.

Table 3. Comparison of the detection methods.

Sample B
Optical Sensor AAS

tcount
Ni2+ (mg L−1) Ni2+ (mg L−1)

1 0.331 0.364

0.218
2 0.352 0.458
3 0.373 0.271

Average 0.352 ± 0.020 0.364 ± 0.093

4. Conclusions

An optical chemical sensor was designed for determination of Ni2+ ions. In this regard,
sol-gel film was used as a matrix for immobilization of the reagent 2,2-furildioxime. The
sensor detected Ni2+ ions by changing color from colorless to yellow; and was successfully
tested to determine Ni2+ ions’ concentration in water samples. In comparison with the
AAS method, the optical sensor based on 2,2-furildioxime produced comparably good
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results in detecting nickel with tcount < ttable. Thus, the optical chemical sensor for nickel
detection is promising for further industrial and environmental applications.
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