Validation of the Molar Flow Rates of Oil and Gas in Three-Phase Separators Using Aspen Hysys
Abstract
:1. Introduction
2. Methodology
2.1. Peng–Robinson Equation of State Applied to Calculate Feed Parameter
2.2. Computation and Procedure
- Equilibrium ratios of the component were assumed from modified Wilson’s equation:
- was solved for by solving the Rachford–Rice Equation using Brent’s method [24].
- The mole fractions of component liquid and vapor were calculated respectively.
- Equation (10) was solved for the liquid and vapor phases compressibility, and .
- The fugacity and fugacity coefficients for both liquid and vapor phases for all components were calculated.
- values were updated using Equation (19):
- Steps ii to vi were repeated until Equation (20) was satisfied:
2.3. Data and Convergence Criteria Used for Separating Reservoir Fluid
2.4. Separation Sensitivity Study
3. Results and Discussion
3.1. Effect of Vessel Pressure on Molar Flow Rate of Gas, Molar Flow Rate of Oil, and Methane Concentration in Gas Stream
3.2. Effect of Inlet Temperature on Molar Flow Rate of Gas, Molar Flow Rate of Oil, and Methane Concentration in Gas Stream
3.3. Effect of Inlet Feed Mass Flow Rate on Molar Flow Rate of Gas, Molar Flow Rate of Oil, and Methane Concentration in Gas Stream
3.4. Phase Envelopes for Feed Stream, Gas Outlet, and Oil Outlet
3.5. Validation of the Molar Flow Rates of Oil and Gas
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
attraction parameter | |
repulsion parameter | |
parameter that provides a pressure correction for the intermolecular forces of attraction, J.m3.mol−2 | |
temperature dependence parameter | |
effective molar volume parameter for the correction of volume, m3.mol−1 | |
convergence tolerance for fugacity of fluid | |
convergence tolerance for fugacity of vapor | |
fugacity, kPa | |
partial fugacity of component | |
equilibrium constant of component | |
liquid phase | |
number of moles | |
system total pressure, kPa | |
reduced pressure | |
critical pressure | |
gas constant, kPa m3.mol−1 °C−1 | |
temperature of the system, °C | |
critical temperature | |
reduced temperature | |
molar volume, m3 kgmol−1 | |
vapor phase | |
acentric factor of the component | |
liquid mole fraction of component, | |
vapor mole fraction of component, | |
fugacity coefficient | |
Compressibility | |
compressibility of the heaviest liquid phase | |
vapor phase compressibility | |
overall hydrocarbon composition of component | |
GOR | gas–oil ratio |
Bo | oil formation volume factor |
API | American Petroleum Institute |
Legend for Figure 1 | |
S1 | Combined Plant Feed |
S2 | Condensate from H2S Recycle Unit |
S3 | Condensate from MP Separator Scrubber |
S4 | From MP Compressor Suction Scrubber |
S5 | HP Separator Gas |
S6 | HP Separator Oil |
S7 | HP Separator Sour Water |
S8 | Oil to Preheat |
S9 | Preheated Oil |
S10 | MP Separator Feed |
S11 | Gas to MP Compressor Suction Scrubber |
S12 | MP Separator Oil |
S13 | MP Separator Oil-1 |
S14 | Sour Water to Sour Water Stripper |
S15 | Stabilizer Feed |
S16 | Gas to LP Compressor |
S17 | Crude from Stabilizer |
S18 | Stabilized Crude (from E-101) |
S19 | Stabilized Crude (from E-102) |
S20 | Stabilized Crude to Product Oil Tank |
V-100 | HP Separator |
VLV-100 | Valve 1 |
E-100 | MP Separator Preheater |
MX-100 | Mixer 1 |
V-100 | MP Separator |
VLV-101 | Valve 2 |
MX-101 | Mixer 2 |
CO-100 | Crude Stabilizer Column |
E-101 | Air Cooler |
E-102 | Stabilized Run Down Cooler |
VLV-102 | Valve 1 |
References
- Engineering, P. Crude Oil Processing on Offshore Facilities. 2018. Available online: http://www.piping-engineering.com/crude-oil-processing-offshore-facilities.html (accessed on 30 May 2020).
- Jadoon, S.; Malik, A. Separation of Sediment Contents and Water from Crude Oil of Khurmala and Guwayer Oil Fields in Kurdistan Region by using Centrifuge Method. Int. J. Adv. Eng. Res. Sci. 2017, 4, 192–194. [Google Scholar] [CrossRef]
- Mahmoud, M.; Tariq, Z.; Kamal, M.S.; Al-Naser, M. Intelligent prediction of optimum separation parameters in the multistage crude oil production facilities. J. Pet. Explor. Prod. Technol. 2019, 9, 2979–2995. [Google Scholar] [CrossRef] [Green Version]
- Al-Mhanna, N.M. Simulation of High Pressure Separator Used in Crude Oil Processing. Processes 2018, 6, 219. [Google Scholar] [CrossRef] [Green Version]
- Casavant, T.E.; Côté, R.P. Using chemical process simulation to design industrial ecosystems. J. Clean. Prod. 2004, 12, 901–908. [Google Scholar] [CrossRef]
- Kylling, Ø.W. Optimizing Separator Pressure in a Multistage Crude Oil Production Plant (Issue Jul7); Norwegian University of Science and Technology: Trondheim, Norway, 2009. [Google Scholar]
- Wang, Y.; Shang, D.; Yuan, X.; Xue, Y.; Sun, J. Modeling and Simulation of Reaction and Fractionation Systems for the Industrial Residue Hydrotreating Process. Processes 2019, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Lim, Y.-I.; Park, C.-K.; Lee, B.-D.; Kim, B.-G.; Lim, D.-H. Effect of ship motion on separation efficiency in crude oil separator with coalescer. In Computer Aided Chemical Engineering; Elsevier: Eindhoven, The Netherlands, 2018; Volume 44. [Google Scholar] [CrossRef]
- Stewart, M.; Arnold, K. Gas-Liquid and Liquid-Liquid Sparators; Gulf Professional Publishing: Houston, TX, USA, 2008. [Google Scholar]
- Abdulkadir, M.; Hossain, M.; Modelling of Oil-Water Separator Using Computational Fluid Dynamics (CFD). July 2010. Available online: http://hdl.handle.net/2263/44920 (accessed on 30 June 2020).
- Liang, Y.; Zhao, S.-Q.; Jiang, X.-X.; Jia, X.-Q.; Li, W. Numerical Simulation on Flow Field of Oilfield Three-Phase Separator. J. Appl. Math. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Famisa, R.B. HYSYS Modelling of a Horizontal Three-Phase Subsea Separator (Issue July) [Norwegian University of Science and Technology]. 2016. Available online: http://hdl.handle.net/11250/2424067 (accessed on 30 June 2020).
- Edwards, J.E. Process Modelling Selection of Thermodynamic Methods; P & I Design Ltd: Thornaby, UK, 2008; Available online: www.pidesign.co.uk (accessed on 15 May 2020).
- Zeng, X.; Zhao, L.; Zhao, W.; Hou, M.; Zhu, F.; Fan, G.; Yan, C. Experimental study on a compact axial separator with conical tube for liquid-liquid separation. Sep. Purif. Technol. 2021, 257, 117904. [Google Scholar] [CrossRef]
- Tillman, D.A.; Duong, D.N.B.; Harding, S.N. Solid Fuel Blending: Principles, Practices, and Problems, 1st ed.; Butterworth-Heinemann: London, UK, 2012. [Google Scholar]
- Piña-Martinez, A.; Privat, R.; LaSala, S.; Soave, G.; Jaubert, J.-N. Search for the optimal expression of the volumetric dependence of the attractive contribution in cubic equations of state. Fluid Phase Equilibria 2020, 522, 112750. [Google Scholar] [CrossRef]
- Soave, G. Equilibrium Constants from a Modified Redkh-Kwong EOS. Chem. Eng. Sci. 1972, 27, 1197–1203. Available online: http://dns2.asia.edu.tw/~ysho/YSHO-English/2000 Engineering/PDF/Che Eng Sci27, 1197.pdf (accessed on 12 June 2020). [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M. Introduction to Chemical Engineering Thermodynamics, 7th ed.; McGraw-Hill: New York City, NY, USA, 2005. [Google Scholar]
- Olufemi, O.; Bello, O.; Olaywiola, O.; Teodoriu, C.; Salehi, S.; Osundare, O. Geothermal Heat Recovery from Matured Oil and Gas Fields in Nigeria–Well Integrity Considerations and Profitable Outlook. 2020. Available online: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2020/Bello.pdf (accessed on 15 May 2020).
- Sylvester, O.; Samuel, O.; Bibobra, I. PVT Analysis Reports of Akpet GT9 and GT12 Reservoirs. Am. J. Manag. Sci. Eng. 2017, 2, 132. [Google Scholar] [CrossRef] [Green Version]
- Obomanu, D.A.; Okpobiri, G.A. Correlating the PVT Properties of Nigerian Crudes. J. Energy Resour. Technol. 1987, 109, 214–217. [Google Scholar] [CrossRef]
- Ikiensikimama, S.S.; Ogboja, O. Review Of PVT Correlations For Crude Oils. Glob. J. Pure Appl. Sci. 2008, 14, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Naji, H.S. Conventional and rapid flash calculations for the soave-redlich-kwong and peng-robinson equations of state. Emir. J. Eng. Res. 2008, 13, 81–91. [Google Scholar]
- ASPENTECH INCORPORATIONS, Aspen Hysys V 8.8. Available online: https://www.scribd.com/document/362669425/Hysys-8-8-Manual (accessed on 10 June 2020).
- Adewumi, M. Acentric Factor and Corresponding States. PNG 520 Phase Reelations in Reservoir Engineering. 2018. Available online: www.e-education.psu.edu/png520/m8_p3.html (accessed on 20 January 2020).
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. The Properties of Gases and Liquids; Mcgraw-Hill: New York, NY, USA, 2001; Volume 5, pp. 8–17. [Google Scholar]
- Hajivand, P.; Vaziri, A. Optimization of demulsifier formulation for separation of water from crude oil emulsions. Braz. J. Chem. Eng. 2015, 32, 107–118. [Google Scholar] [CrossRef]
- Abdulsalam, Y.O.; Abdulkareem, A.S.; Uthman, H.; Afolabi, A.E.; Olugbenga, A.G. Thermo-economic analy-sis of PEM fuel cell fuelled with biomethane obtained from human waste by computer simulation. Sci. Afr. 2020, 9, e00485. [Google Scholar]
Inlet Feed Component | Mole Fraction of Inlet Feed | K-Value | Fugacity | Outlet Gas Mole Fraction (HYSYS) | Outlet Oil Mole Fraction (HYSYS) |
---|---|---|---|---|---|
H2S | 0.0143 | 0.7969 | 0.6380 | 0.0127 | 0.0169 |
CO2 | 0.0264 | 1.6540 | 0.7483 | 0.0325 | 0.0214 |
N2 | 0.0081 | 6.6090 | 1.1192 | 0.0139 | 0.0023 |
Methane | 0.4938 | 3.1521 | 0.8908 | 0.7410 | 0.2575 |
Ethane | 0.1172 | 0.9767 | 0.5990 | 0.1200 | 0.1216 |
Propane | 0.0780 | 0.4476 | 0.4406 | 0.0506 | 0.1128 |
i-Butane | 0.0087 | 0.2564 | 0.3450 | 0.0037 | 0.0146 |
n-Butane | 0.0369 | 0.2077 | 0.3210 | 0.0132 | 0.0649 |
i-Pentane | 0.0106 | 0.1208 | 0.2415 | 0.0024 | 0.0202 |
n-Pentane | 0.0217 | 0.1022 | 0.2384 | 0.0041 | 0.0422 |
n-Hexane | 0.0249 | 0.0483 | 0.1760 | 0.0024 | 0.0509 |
n-Heptane | 0.0215 | 0.0246 | 0.1301 | 0.0011 | 0.0450 |
n-Octane | 0.0203 | 0.0125 | 0.0989 | 0.0005 | 0.0431 |
n-Nonane | 0.0167 | 0.0063 | 0.0715 | 0.0002 | 0.0356 |
n-Decane | 0.0135 | 0.0035 | 0.0525 | 0.0001 | 0.0289 |
n-C11 | 0.0116 | 0.0018 | 0.0380 | 0.0000 | 0.0249 |
n-C12 | 0.0091 | 0.0010 | 0.0277 | 0.0000 | 0.0195 |
n-C13 | 0.0080 | 0.0005 | 0.0207 | 0.0000 | 0.0172 |
n-C14 | 0.0067 | 0.0003 | 0.0152 | 0.0000 | 0.0144 |
n-C15 | 0.0055 | 0.0002 | 0.0112 | 0.0000 | 0.0118 |
n-C16 | 0.0046 | 0.0001 | 0.0078 | 0.0000 | 0.0099 |
n-C17 | 0.0041 | 0.0001 | 0.0060 | 0.0000 | 0.0088 |
n-C18 | 0.0034 | 0.0000 | 0.0103 | 0.0000 | 0.0073 |
n-C19 | 0.0033 | 0.0000 | 0.0082 | 0.0000 | 0.0071 |
H2O | 0.312 | 0.0242 | 0.7632 | 0.0015 | 0.0011 |
Total | 1.0000 | 1.0000 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olugbenga, A.G.; Al-Mhanna, N.M.; Yahya, M.D.; Afolabi, E.A.; Ola, M.K. Validation of the Molar Flow Rates of Oil and Gas in Three-Phase Separators Using Aspen Hysys. Processes 2021, 9, 327. https://doi.org/10.3390/pr9020327
Olugbenga AG, Al-Mhanna NM, Yahya MD, Afolabi EA, Ola MK. Validation of the Molar Flow Rates of Oil and Gas in Three-Phase Separators Using Aspen Hysys. Processes. 2021; 9(2):327. https://doi.org/10.3390/pr9020327
Chicago/Turabian StyleOlugbenga, Adeola Grace, Najah M. Al-Mhanna, Muibat Diekola Yahya, Eyitayo Amos Afolabi, and Martins Kolade Ola. 2021. "Validation of the Molar Flow Rates of Oil and Gas in Three-Phase Separators Using Aspen Hysys" Processes 9, no. 2: 327. https://doi.org/10.3390/pr9020327
APA StyleOlugbenga, A. G., Al-Mhanna, N. M., Yahya, M. D., Afolabi, E. A., & Ola, M. K. (2021). Validation of the Molar Flow Rates of Oil and Gas in Three-Phase Separators Using Aspen Hysys. Processes, 9(2), 327. https://doi.org/10.3390/pr9020327