Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Process Parameters on the Morphology of Cladding Layer
3.2. Modeling and Prediction of Microhardness of Cladding Layer
3.2.1. Effect of Process Parameters on the Microhardness of Cladding Layer
3.2.2. Orthogonal Polynomial Regression Modeling
3.2.3. Microhardness Prediction and Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Z.; Pei, W.; Gong, X.; Chen, H. Superplasticity of Annealed H13 Steel. Materials 2017, 10, 870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, J.; Wang, H.; Lu, L.; Cui, H.; Zhang, J. Microstructures and mechanical properties of spray formed h13 tool steel. Acta Metall. Sin. 2014, 50, 787–794. [Google Scholar]
- Girisha, V.A.; Joshi, M.M.; Kirthan, L.J.; Bharatish, A.; Hegde, R. Thermal fatigue analysis of H13 steel die adopted in pressure-die-casting process. Sadhana 2019, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Molian, P. Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting dies. Surf. Coat. Technol. 2001, 135, 139–149. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Ferguson, W.G.; Trubuhovich, A.F. The Effect of Surface Treatments on Thermal Fatigue of H13 Die Steel. High Temp. Mater. Processes 2003, 22, 47–56. [Google Scholar] [CrossRef]
- Timotius, P.; Zhan, C.; Maziar, R.; Thomas, N.; Dominique, A. The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. J. Mater. Sci. Chem. Eng. 2013, 1, 20–29. [Google Scholar]
- Min, Y.A.; Wu, X.C.; Xu, L.P.; Tang, W.J.; Zhang, S.K.; Wallner, G.; Liang, D.; Feng, Y.Y. Influence of Different Surface Treatments of H13 Hot Work Die Steel on Its Thermal Fatigue Behaviors. J. Shanghai Univ. 2001, 5, 326–330. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, P.F.; Bai, P.K.; Zhao, Z.Y.; Liu, B. Analysis of Geometrical Characteristics and Properties of Laser Cladding 85 wt.% Ti + 15 wt.% TiBCN Powder on 7075 Aluminum Alloy Substrate. Materials 2018, 11, 1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abioye, T.E.; McCartney, D.G.; Clare, A.T. Laser cladding of Inconel 625 wire for corrosion protection. J. Mater. Process. Technol. 2015, 217, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Santo, L. Laser cladding of metals: A review. Int. J. Surf. Sci. Eng. 2008, 2, 327–336. [Google Scholar] [CrossRef]
- Dai, D.P.; Jiang, X.H.; Cai, J.P.; Lu, F.G.; Chen, Y.; Li, Z.G.; Deng, D. Numerical Simulation of Temperature Field and Stress Distribution in Incone1718 Ni Base Alloy Induced by Laser Cladding. Chin. J. Lasers 2015, 9, 113. [Google Scholar]
- Xiaoquan, W.; Hong, Y.; Yong, X.; Baobiao, Y.; Zhi, H.; Yonghui, S. Microstructure and Wear Properties of Ni-based Composite Coatings on Aluminum Alloy Prepared by Laser Cladding. Rare Metal Mater. Eng. 2020, 49, 2574–2582. [Google Scholar]
- Liu, S.; Zheng, X.; Geng, G. Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process. Mater. Des. 2010, 31, 913–917. [Google Scholar] [CrossRef]
- Yu, T.; Deng, Q.; Dong, G.; Yang, J.; Zhang, W. Influence of Ta on Crack Susceptibility and Mechanical Properties of Laser Clad Ni-based Coating. Jixie Gongcheng Xuebao (Chin. J. Mech. Eng.) 2011, 47, 25–30. [Google Scholar] [CrossRef]
- Fallah, V.; Alimardani, M.; Corbin, S.F.; Khajepour, A. Temporal development of melt-pool morphology and clad geometry in laser powder deposition. Comput. Mater. Sci. 2011, 50, 2124–2134. [Google Scholar] [CrossRef]
- Lei, K.; Qin, X.; Liu, H.; Ni, M. Analysis and modeling of melt pool morphology for high power diode laser cladding with a rectangle beam spot. Opt. Lasers Eng. 2018, 110, 89–99. [Google Scholar] [CrossRef]
- Bourahima, F.; Helbert, A.L.; Rege, M.; Ji, V.; Solas, D.; Baudin, T. Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry. J. Alloys Compd. 2019, 771, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Wu, W.; Li, W.; Liu, D. Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt. Laser Technol. 2019, 116, 345–355. [Google Scholar] [CrossRef]
- Goodarzi, D.M.; Pekkarinen, J.; Salminen, A. Analysis of laser cladding process parameter influence on the clad bead geometry. Weld. World 2017, 61, 883–891. [Google Scholar] [CrossRef]
- Caiazzo, F.; Caggiano, A. Laser direct metal deposition of 2024 Al alloy: Trace geometry prediction via machine learning. Materials 2018, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Gangxian, Z.; Anfeng, Z.; Dichen, L. Effect of Process Parameters on Surface Smoothness in Laser Cladding. Chin. J. Lasers 2010, 37, 296–302. [Google Scholar] [CrossRef]
- Yu, T.B.; Song, B.X.; Xi, W.C.; Ma, Z.L. Influence of Laser Cladding Process Parameters on Morphology of Cladding Layer and Its Optimization. J. Northeast. Univ. (Nat. Sci.) 2019, 40, 537–542. [Google Scholar]
- Fan, P.; Zhang, G. Study on process optimization of WC-Co50 cermet composite coating by laser cladding. Int. J. Refract. Metals Hard Mater. 2020, 87, 105133. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Yadroitsava, I.; Bertrand, P.; Smurov, I. Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp. J. 2012, 18, 201–208. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Q.; Zhang, J.; Yao, J.; Volodymyr, S.K. Influence of Atmospheres on Morphology, Microstructure and Properties of Laser Cladding IN718 Coatings. Surf. Technol. 2018, 47, 185–190. [Google Scholar]
- Huang, A.; Li, G.; Wang, Y.; Li, L.; Li, Z. Predietion of Characteristie and Performanee of Laser Cladding for Al Alloy Based on Artifieial Neural Network. Chin. J. Lasers 2008, 10, 1632–1636. [Google Scholar] [CrossRef]
- Clark, V.P. Orthogonal Polynomial Regression for the Detection of Response Variability in Event-Related fMRI. Neuroimage 2002, 17, 344–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, X.; Chen, Y.; Wang, M.; Li, Y.; Zhou, Z. Research of heat treatment process of H13 die steel based on artificial neural networks and orthogonal polynomial regression analysis. Heat Treat. Metals 2013, 38, 5–9. [Google Scholar]
Element | C | Cr | Si | B | Fe | WC | Ni |
---|---|---|---|---|---|---|---|
Value | 0.4–0.9 | 13–17 | 3.2–4.8 | 2.5–4.0 | ≤8.0 | 8.0 | Bal. |
Element | C | Si | Mn | Cr | Mo | V | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
Value | 0.32–0.45 | 0.8–1.2 | 0.2–0.5 | 4.75–5.5 | 1.1–1.75 | 0.8–1.2 | ≤0.03 | ≤0.03 | Bal. |
No. | Feeding Voltage F/V | Laser Power P/kW | Scanning Speed Vs/mm·s−1 |
---|---|---|---|
1 | F1 = 12 | P1 = 0.9 | V1 = 1 |
2 | F2 = 14 | P2 = 1.1 | V2 = 2 |
3 | F3 = 16 | P3 = 1.3 | V3 = 3 |
No. | Feeding Voltage (V) | Laser Power (kW) | Scanning Speed (mm/s) | Test Parameters | |||
---|---|---|---|---|---|---|---|
Cladding Width W (mm) | Cladding Height H (mm) | Microhardness D (Hv) | |||||
A | B | C | |||||
1 | 1 (12) | 1 (0.9) | 1 (1) | 3.23 | 1.03 | 863 | |
2 | 1 | 2 (1.1) | 2 (2) | 3.27 | 0.91 | 1080 | |
3 | 1 | 3 (1.3) | 3 (3) | 2.91 | 0.71 | 1017 | |
4 | 2 (14) | 1 | 2 | 2.99 | 0.91 | 1153 | |
5 | 2 | 2 | 3 | 2.83 | 0.67 | 1310 | |
6 | 2 | 3 | 1 | 4.89 | 1.39 | 1160 | |
7 | 3 (16) | 1 | 3 | 2.46 | 0.65 | 832 | |
8 | 3 | 2 | 1 | 3.73 | 0.97 | 1137 | |
9 | 3 | 3 | 2 | 3.67 | 0.85 | 904 | |
Cladding width W | I | 9.45 | 8.72 | 11.83 | Relationship of factors: C B A Best process parameter combination: C1 B3 A2 | ||
II | 10.69 | 9.81 | 9.93 | ||||
III | 9.86 | 11.47 | 8.21 | ||||
R | 1.22 | 2.79 | 3.62 | ||||
Cladding height H | I | 2.67 | 2.61 | 3.42 | Relationship of factors: C A B Best process parameter combination: C1 A2 B3 | ||
II | 2.98 | 2.59 | 2.64 | ||||
III | 2.51 | 2.97 | 2.03 | ||||
R | 0.44 | 0.37 | 1.32 | ||||
Microhardness D | I | −35 | −150 | 164 | Relationship of factors: A B C Best process parameter combination: A2 B2 C0 | ||
II | 626 | 531 | 141 | ||||
III | −125 | 86 | 160 | ||||
R | 751 | 680 | 22 |
No. | Feeding Voltage (V) | Laser Power (kW) | Scanning Speed (mm/s) | Microhardness yi-1000 (Hv) | ||
---|---|---|---|---|---|---|
A | B | C | Deviation | |||
1 | 1 (12) | 1 (0.9) | 1 (1) | 1 | −137 | |
2 | 1 | 2 (1.1) | 2 (2) | 2 | 80 | |
3 | 1 | 3 (1.3) | 3 (3) | 3 | 17 | |
4 | 2 (14) | 1 | 2 | 3 | 153 | |
5 | 2 | 2 | 3 | 1 | 310 | |
6 | 2 | 3 | 1 | 2 | 160 | |
7 | 3 (16) | 1 | 3 | 2 | −168 | |
8 | 3 | 2 | 1 | 3 | 137 | |
9 | 3 | 3 | 2 | 1 | −96 | |
Microhardness | I | −36 | −151 | 163 | 79 | T = 465 |
II | 626 | 530 | 140 | 74 | ||
III | −126 | 85 | 161 | 312 | ||
R | 752 | 681 | 23 |
Feeding Voltage F | Laser Power P | Scanning Speed Vs | |||
---|---|---|---|---|---|
Effect function coefficient | Sum of squares of the deviation | Effect function coefficient | Sum of squares of the deviation | Effect function coefficient | Sum of squares of the deviation |
Sources of Variance | Variable Sum of Squares | Degrees of Freedom | Average Variable Sum of Squares | F | Significance |
---|---|---|---|---|---|
111,078 | 1 | 111,078 | 41 | 0.5 | |
9283 | 1 | 9283 | 3 | ||
70,438 | 1 | 70,438 | 26 | 0.5 | |
error | 13,685 | 5 | 2737 |
yi-1000 (Hv) | |||||||||
---|---|---|---|---|---|---|---|---|---|
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Calculated value | −90.05 | 95.121 | −90.612 | 144.95 | 332.789 | 145.985 | −90.456 | 99.011 | −88.654 |
measured value | −137 | 80 | 17 | 153 | 310 | 160 | −168 | 137 | −96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Fang, L.; Chen, X. Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel. Processes 2021, 9, 408. https://doi.org/10.3390/pr9030408
Yao F, Fang L, Chen X. Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel. Processes. 2021; 9(3):408. https://doi.org/10.3390/pr9030408
Chicago/Turabian StyleYao, Fangping, Lijin Fang, and Xiang Chen. 2021. "Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel" Processes 9, no. 3: 408. https://doi.org/10.3390/pr9030408
APA StyleYao, F., Fang, L., & Chen, X. (2021). Geometry Analysis and Microhardness Prediction of Nickel-Based Laser Cladding Layer on the Surface of H13 Steel. Processes, 9(3), 408. https://doi.org/10.3390/pr9030408