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Abstract: The lateral migration of elastic capsules towards a microchannel centerline plays a
major role in industrial and physiological processes. Via our computational investigation, we show
that a constriction connecting two straight microchannels facilitates the lateral capsule migration
considerably, which is relatively slow in straight channels. Our work reveals that the significant
cross-streamline migration inside the constriction is dominated by the strong hydrodynamic forces
due to the capsule size. However, in the downstream straight channel, the increased interfacial
deformation at higher capillary numbers or a lower viscosity ratio and lower membrane hardness
results in increased lateral cross-streamline migration. Thus, our work highlights the different
migration mechanisms occurring over curved and straight streamlines.

Keywords: elastic capsule; microfluidics; stokes flow

1. Introduction

The study of the interfacial dynamics of artificial or physiological capsules (i.e.,
membrane-enclosed fluid volumes) in viscous flows has seen increased interest during the
last few decades, owing to their numerous engineering and biomedical applications [1,2].
In the area of interest of the present work, the flow-induced lateral migration of soft parti-
cles (such as droplets, elastic capsules, vesicles or erythrocytes) plays a significant role in
industrial and physiological processes [3–6]. Common examples include the erythrocyte
migration in blood vessels and the migration of soft particles towards a device centerline
which is desirable for the targeted drag delivery and for fabrication or characterization
purposes [7–10].

Owing to the small particle size and the microdevice flow properties, lateral migration
often happens under inertialess conditions, provided that the symmetry of the Stokes flow
is broken owing to the particle deformation, which may occur due to the shear flow close
to a solid boundary or the shear-gradient of the Poiseuille flow in a channel [3,4]. However,
in straight channels (i.e., straight streamlines), the lateral migration is quite slow [9,11].
Typically, the migration velocity is O(10−2) or even less of the channel’s main velocity, and
thus a long channel is required to achieve considerable lateral migration [11,12]. (Note
that for a migration distance comparable to the particle size, a microchannel with a length
higher than 100 times the particle size is required [11,13]).

To facilitate the cross-streamline migration towards the channel centerline, in this work
we propose flowing elastic capsules in a converging micro-capillary of comparable size
under Stokes flow conditions. Our work highlights the different migration mechanisms
occurring over curved and straight streamlines. In particular, our investigation shows
that the significant cross-streamline migration over the curved streamlines inside the
constriction is dominated by the strong hydrodynamic forces due to the capsule size.
However, the interfacial deformation does facilitate the lateral migration over the straight
streamlines of the downstream straight channel, as our results for varying capillary number,
viscosity ratio and membrane hardness reveal.
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2. Problem Description

In this work, we investigate the motion and deformation of an elastic capsule flowing
through a straight micro-channel made of two square channels with a converging section
in the middle, as shown in Figure 1. The three-dimensional capsule consists of a fluid
volume enclosed by a thin elastic membrane with a spherical, undisturbed shape. For
illustration purposes, we assume that the channel is horizontal, as shown in Figure 1a.
Thus, the flow direction (i.e., the x-axis) will be referred to as length, while the z and
y-directions will be referred as height and width, respectively. The height of the upstream
square channel is 3`, while that of the downstream square channel is 2`. The converging
middle section, connecting the two square channels, has length `con = `. The half-height `
of the downstream square channel serves as the length scale for this problem, while the
origin of the coordinate system is placed at the beginning of this channel (just after the
converging section), as illustrated in Figure 1a.

(a)

3ℓ 2ℓx

z

y

(b)

Figure 1. (a) Illustration of an elastic capsule flowing off the centerline of a converging square
micro-channel. (b) Spectral boundary element discretization of the micro-capillary geometry.

The shape of the converging middle section in our micro-geometry is defined via a
“quarter-cosine” variation, which for the coordinate system shown in Figure 1a is given by

f (x) = `
{3

2
+

1
2

cos
[
(

x
`
+ 2)

π

2

]}
(1)

where −1 ≤ x/` ≤ 0 and f (x) defines the geometry’s height z(x) or width y(x). Similar
micro-devices involving converging capillaries with circular or square cross-sections have
been produced via glass fabrication to study the dynamics of soft particles, e.g., for the
generation of monodisperse double emulsions and the elasticity determination of soft
gels [14–16]. Note that we utilized the same micro-device to study centerline capsule
motion in the constriction as a moduli determination method [17].

The capsule’s interior and exterior are Newtonian fluids, with viscosities λµ and
µ, and the same density. The capsule volume V = 4πa3/3 defines the capsule size a
which is smaller than the micro-device’s half-height `. In our computations, the elastic
capsule was 5% over-inflated, made of a thin strain-hardening membrane, following the
Skalak et al. constitutive law [18] (and thus called Skalak capsule in this paper) with
comparable shearing and area-dilatation resistance but negligible bending resistance. Thus,
the membrane resistance is described by the shear and area-dilatation moduli Gs and
Ga, respectively.
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In particular, the in-plane tension tensor τ is described by the strain-hardening consti-
tutive law of Skalak et al. [18] which relates τ’s eigenvalues (or principal elastic tensions
τP

β , β = 1, 2) to the principal stretch ratios λβ by

τP
1 =

Gsλ1

λ2
{λ2

1 − 1 + Cλ2
2[(λ1λ2)

2 − 1]} (2)

Note that the reference shape of the elastic tensions is the spherical quiescent shape of the
capsule, and to calculate τP

2 , reverse the λβ subscripts [18,19].
This modeling represents artificial and biological capsules with thin membranes

where the membrane tensions increase superlinearly with the applied strain [19,20]. The
strength of the membrane’s strain-hardening nature is described by the dimensionless
membrane hardness C, which is associated with the scaled area-dilatation modulus Ga of
the membrane, Ga/Gs = 1 + 2C [19].

At time t = 0 the capsule is located off the centerline in the upstream square channel
so that its centroid is xc = (xc, yc, zc) = (−4`, 0, z0

c ); the flow is turned on inside the
microdevice; and we investigated the lateral migration of the capsule towards the device’s
centerline. We emphasize that the specific choice for the capsule’s initial position xc
does not affect the capsule dynamics inside the constriction or downstream of it, i.e., we
obtained identical results even for capsules placed further upstream of the constriction.
At the upstream and downstream ends of the micro-device far from the capsule, the flow
approaches the single-phase Poiseuille flow in a square channel that serves as the boundary
condition, while the flow rate Q is fixed inside the micro-device. We assume that the
Reynolds number is small for both the surrounding and the inner flows, and thus the
capsule deformation occurs in the Stokes regime.

The present problem depends on the capsule’s size a/` and initial position z0
c /`, the

fluids viscosity ratio λ, the membrane’s hardness C and the capillary number Ca = µU/Gs
where U is the average undisturbed velocity at the downstream square micro-channel. Note
that we investigated capsules with size a/` = 0.1–0.8 and capillary number Ca = 0.02–0.1;
these conditions can readily be used in experimental microfluidic systems; e.g., see [10,21].
The numerical solution of the interfacial Stokes flow problem was achieved through our
membrane spectral boundary element method [17,20]. Convergence runs covering the
entire interfacial evolution revealed that our results are accurate to at least two significant
digits. The interested reader is referred to our recent publications for more details on
our spectral boundary algorithm and our studies on capsule dynamics in microfluidic
flows, e.g., [13,17,22–24]. An extended description of our capsule modeling and our
computational method for centerline capsule motion in a constriction (used as a moduli
determination method) has been included in the electronic supplementary information
of [17].

3. Results

We begin our investigation by comparing the lateral migration of an elastic capsule
inside two different microchannel geometries: a straight square channel and a constriction
made of the same upstream square channel. The capsule of size a/` = 0.8 is released at
three different locations so that its initial centroid is z0

c /` = 0.2, 0.5 or 0.8, as shown in
Figure 2. The capsule has membrane hardness C = 1, viscosity ratio λ = 1 and capillary
number Ca = 0.1.

As seen in Figure 2, all capsules migrate towards the channel centerline; however,
the lateral migration in the straight channel is much slower than that in the constriction.
This is due to the significant increase of the migration velocity Uz inside the constriction
which occupies the x/`-region [−1, 0], owing to the local strong hydrodynamic forces on
the capsule surface.



Processes 2021, 9, 452 4 of 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4 5

z c
/ℓ

xc/ℓ (a)

-0.2

-0.15

-0.1

-0.05

0

-4 -3 -2 -1 0 1 2 3 4 5

U
z
/U

xc/ℓ

z0c/ℓ increasing

(b)

Figure 2. Capsule properties as a function of the centroid xc, for a Skalak capsule with a/` = 0.8, Ca = 0.1, C = 1, λ = 1
and initial position z0

c /` = 0.2, 0.5, 0.8, moving inside a constriction (——) or a straight channel (- - -). (a) Capsule centroid
zc, and (b) migration velocity Uz.

Three-dimensional shapes of the capsule with initial position z0
c /l = 0.8 flowing

through the constriction are shown in Figure 3. When the capsule moves inside the
upstream square channel, the Poiseuille flow deforms and orients the capsule, producing a
small lateral migration. As the capsule approaches the constriction, a higher deformation
occurs and the capsule moves faster towards the device centerline. After the constriction,
the capsule is more deformed in the smaller square channel on the right, owing to the
higher average velocity while it is significantly closer to the device centerline. At this
location, the capsule migration velocity is reduced compared to that inside the constriction,
but is still higher than that in the straight channel, as shown in Figure 2b.

Figure 3. Lateral migration of a Skalak capsule with Ca = 0.1, C = 1, λ = 1, a/` = 0.8 and
initial position z0

c /` = 0.8 moving inside the constriction. Row-wise, the capsule centroid is xc/` =
−4,−1.71, 0.103, 2.76.

To provide more details on the capsule’s transient deformation at different initial posi-
tions, in Figure 4 we present the evolution of the capsule dimensions along the coordinate
axes. In all cases, the capsule deforms significantly inside the constriction while the shape
elongation is accompanied by a reduction of its width and height to accommodate the
constant capsule volume. After the constriction, the capsule deformation is reduced. In this
location, the capsule which was placed initially further away from the device centerline
is more deformed owing to the stronger wall effects and thus migrates faster towards
the device’s centerline. Clearly, the proposed converging micro-capillary facilitates the
capsule’s migration towards the device centerline considerably.
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Figure 4. The capsule lengths as a function of the centroid xc, for a Skalak capsule with a/` = 0.8, Ca = 0.1, C = 1, λ = 1
and initial position z0

c /` = 0.2, 0.5, 0.8. (a) Length Lx, (b) width Ly and (c) height Lz.

We investigate now the effects of the capsule size by considering the lateral migration
of Skalak capsules with the same initial position z0

c /` = 0.5 and different sizes presented
in Figures 5 and 6.
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Figure 5. Capsule properties as a function of the centroid xc, for a Skalak capsule with Ca = 0.1, C = 1, λ = 1, z0
c /` = 0.5

and capsule sizes a/` = 0.2, 0.4, 0.6, 0.8 moving inside the constriction. Our results for a/` = 0.1, 0.2 are practically identical.
(a) Capsule centroid zc. (b) As in (a) but for the scaled centroid (zc/`)/(a/`)3 − z̄c, where z̄c is subtracted so that the curves
have practically the same value at xc/` = 12.



Processes 2021, 9, 452 6 of 10

Our computations revealed that the smaller capsules with size a/` = 0.1, 0.2 have
practically identical lateral migration. These small capsules at the flow rates studied in
this work showed very small interfacial deformation, and thus they practically moved like
spherical capsules; their path was quite close to the streamline of the single-phase flow
passing though the initial position z0

c /` = 0.5 at the upstream channel. When the capsule
size increased to a/` = 0.6, 0.8, the stronger hydrodynamic forces on the capsule surface
owing to the higher flow blocking caused a significant cross-streamline migration inside
and downstream the constriction, as shown in Figure 5a, along with a significant interfacial
deformation inside the constriction. As seen in Figure 6, as the capsule size a increased, the
capsule length Lx increased and its height Lz decreased; i.e., the interfacial deformation
increased as the capsule flowed through the constriction. Observe that under the same
conditions, a larger capsule flowing in the constriction produced a higher flow blocking
and thus increased hydrodynamic forces which result in higher interfacial deformation.
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Figure 6. The capsule lengths as a function of the centroid xc, for a Skalak capsule with Ca = 0.1, C = 1, λ = 1, z0
c /` = 0.5

and capsule sizes a/` = 0.2, 0.4, 0.6, 0.8. (a) Length Lx, (b) width Ly and (c) height Lz.

In essence, Figure 5a reveals that the curved streamlines of the single-phase flow inside
the constriction facilitated the migration of large capsules towards the device centerline.
In addition, in the downstream straight channel, the increased deformation of the larger
capsules resulted in increased cross-streamline migration which scaled as (a/`)3, as shown
in Figure 5b:

zc ∼ (a/`)3 xc or Uz ∼ (a/`)3 Ux (3)

We now turn our attention to the effects of the flow rate by considering the lateral
migration of an elastic capsule with size a/` = 0.8 and initial position z0

c /` = 0.5 at



Processes 2021, 9, 452 7 of 10

capillary numbers Ca = 0.02, 0.05, 0.1. As shown in Figure 7, in these flow rates the
capsule’s transverse path is the same upstream and inside the constriction. Only after the
constriction does the capsule with the higher capillary number migrate faster towards the
device centerline.
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Figure 7. (a) The capsule centroid zc as a function of the centroid xc, for a Skalak capsule with a/` = 0.8, C = 1, λ = 1,
z0

c /` = 0.5 and capillary numbers Ca = 0.02, 0.05, 0.1. (b) As in (a) but for the scaled centroid (zc/`)/Ca− ẑc, where ẑc is
subtracted so that the curves have practically the same value at xc/` = 8.

Therefore, the increased capsule deformation at the higher flow rates (presented in
Figure 8), does not have any practical effects on the lateral migration over the curved
streamlines inside the constriction. Thus, in this location, the lateral capsule migration is
dominated by the strong hydrodynamic forces due to the large capsule size, which cause a
significant cross-streamline migration for all the capillary numbers studied. However, in
the downstream straight channel, the increased interfacial deformation at the higher flow
rates results in increased lateral cross-streamline migration which is linearly proportionally
to the capillary number, as shown in Figure 7b,

zc ∼ Ca xc or Uz ∼ Ca Ux (4)

It is of interest to note that both findings represented by Equations (3) and (4) are in
agreement with the analytical predictions for the migration of a small droplet or capsule in
an unbounded parabolic flow in the limit of small deformations [3,25].

We conclude our investigation by considering the effects of the viscosity ratio λ and
membrane hardness C on the capsule lateral migration. Figure 9 presents the effects of
viscosity ratio λ and membrane hardness C on the capsule lateral migration. In particular,
both variables have practically no effects on the capsule lateral migration upstream and
inside the constriction. Again, the significant cross-streamline migration occurring inside
the constriction is dominated by the strong hydrodynamics forces of the surrounding flow
due to the large capsule size.



Processes 2021, 9, 452 8 of 10

In contrast, after the constriction, the viscosity ratio and the membrane hardness do
affect the capsule lateral migration via the interfacial deformation, as seen in Figure 9. In
particular, the low-viscosity and equiviscous capsules (i.e., λ = 0.1, 1) exhibit practically the
same interfacial deformation (not shown) and thus very similar lateral migration. The high-
viscosity capsule with λ = 5 is affected by a much slower deformation rate, represented by
the membrane time scale [23]

τm ∼ (1 + λ)Ca
a
`

τf (5)

(where τf = `/U is the flow time scale), which reduces its lateral migration in the down-
stream square channel. In addition, as the membrane hardness C increases, the increased
area-dilatation resistance reduces the capsule deformation and its lateral migration, as
shown in Figure 9b.
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Figure 8. The capsule lengths as a function of the centroid xc, for a Skalak capsule with a/` = 0.8, C = 1, λ = 1, z0
c /` = 0.5

and capillary numbers Ca = 0.02, 0.05, 0.1. (a) Length Lx, (b) width Ly and (c) height Lz.



Processes 2021, 9, 452 9 of 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -2 0 2 4 6 8 10 12

z c
/ℓ

xc/ℓ

λ increasing

(a)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -2 0 2 4 6 8 10 12

z c
/ℓ

xc/ℓ

C increasing

(b)

Figure 9. The capsule centroid zc as a function of the centroid xc, for a Skalak capsule with a/` = 0.8, Ca = 0.1 and
z0

c /` = 0.5. (a) The viscosity ratio is λ = 0.1, 1 or 5, and C = 1. (b) The membrane stiffness is C = 1, 2 and λ = 1.

4. Conclusions

In this work we have investigated the capsule motion in a converging micro-capillary
as a medium to facilitate the cross-streamline migration towards a channel’s centerline un-
der Stokes flow conditions. Figure 7a clearly reveals that the increased capsule deformation
at the higher flow rates does not have any practical effects on the lateral migration inside
the constriction. Therefore, the significant cross-streamline migration over the curved
streamlines inside the constriction is dominated by the strong hydrodynamic forces due to
the capsule size. However, the interfacial deformation does facilitate the lateral migration
over the straight streamlines of the downstream straight channel, as our results for varying
capillary number, viscosity ratio and membrane hardness revealed. We emphasize that
we have obtained similar behavior by utilizing a converging micro-capillary of circular
cross-sections.

Thus our work highlights the different migration mechanisms occurring over curved
and straight streamlines. We hope that our study motivates far more experiments of
flowing elastic capsules in a variety of micro-geometries, involving curved streamlines.
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