Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alkali Pretreatment of SCGs
2.3. Optimization of Alkali Pretreatment of SCGs Using Response Surface Methodology
2.4. Enzymatic Hydrolysis of SCGs
2.5. Lactic Acid Production Using SCG Hydrolysates
2.6. Analytical Methods
3. Results and Discussion
3.1. Optimization of KOH Pretreatment Conditions for SCGs Using RSM
3.2. Profiling for Enzymatic Hydrolysis of SCGs
3.3. Lactic Acid Production Using SCG Hydrolysates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Im, G.; Yeom, S.H. Repeated biodiesel production from waste coffee grounds via a one-step direct process with a cartridge containing solid catalysts manufactured from waste eggshells. Biotechnol. Bioprocess Eng. 2020, 25, 623–632. [Google Scholar] [CrossRef]
- Elmously, M.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Hornung, A. Thermo-catalytic reforming of spent coffee grounds. Bioresour. Bioprocess. 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Friman, V.-P.; Geisen, S.; Zhao, Q.; Cui, P.; Lu, X.; Chen, Z.; Yu, Z.; Zhou, S. Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting. Sci. Total Environ. 2019, 660, 841–850. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, W.; Whitaker, L. Promoting the use of reusable coffee cups through environmental messaging, the provision of alternatives and financial incentives. Sustainability 2018, 10, 873. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Chun, Y.; Jang, Y.W.; Lee, S.K.; Kim, H.R.; Lee, J.H.; Kim, S.W.; Park, C.; Yoo, H.Y. Fabrication of functional bioelastomer for food packaging from Aronia (Aronia melanocarpa) juice processing by-products. Foods 2020, 9, 1565. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Kim, S.W. The Next-generation Biomass for Biorefining. Bioresources 2021, 16, 2188–2191. [Google Scholar]
- Karmee, S.K. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Park, B.H. Phenolic compound extraction from spent coffee grounds for antioxidant recovery. Korean J. Chem. Eng. 2020, 36, 186–190. [Google Scholar] [CrossRef]
- Cai, W.; Chen, Q.; Xuan, H.; Li, C.; Yu, H.; Cui, L.; Yu, Z.; Zhang, S.; Qu, F. One-pot synthesis of lactic acid from cellulose over a sulfonated Sn-KIT6 catalyst. Korean J. Chem. Eng. 2019, 36, 513–521. [Google Scholar] [CrossRef]
- Sohn, Y.J.; Kim, H.T.; Jo, S.Y.; Song, H.M.; Baritugo, K.-A.; Pyo, J.; Choi, J.-I.; Joo, J.C.; Park, S.J. Recent advances in systems metabolic engineering strategies for the production of biopolymers. Biotechnol. Bioprocess Eng. 2020, 25, 848–861. [Google Scholar] [CrossRef]
- Alves de Oliveira, R.; Komesu, A.; Vaz Rossell, C.E.; Maciel Filho, R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem. Eng. J. 2018, 133, 219–239. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.Y.; Yang, X.; Kim, D.S.; Lotrakul, P.; Prasongsuk, S.; Punnapayak, H.; Kim, S.W. Evaluation of the overall process on bioethanol production from miscanthus hydrolysates obtained by dilute acid pretreatment. Biotechnol. Bioprocess Eng. 2016, 21, 733–742. [Google Scholar] [CrossRef]
- Battista, F.; Barampouti, E.M.; Mai, S.; Moustakas, D.B.D.M.K.; Loizidou, M. Added-value molecules recovery and biofuels production from spent coffee grounds. Renew. Sustain. Energy Rev. 2020, 131, 110007. [Google Scholar] [CrossRef]
- Kim, C.K.; Choi, H.S.; Lee, S.J.; Lee, J.H.; Yoo, H.Y.; Han, S.O.; Kim, S.W. Production of xylanase from a novel engineered Pichia pastoris and application to enzymatic hydrolysis process for biorefinery. Process. Biochem. 2018, 65, 130–135. [Google Scholar] [CrossRef]
- Gogoi, G.; Hazarika, S. Dissolution of lignocellulosic biomass in ionic liquid-water media: Interpretation from solubility parameter concept. Korean J. Chem. Eng. 2019, 36, 1626–1636. [Google Scholar] [CrossRef]
- Tian, S.Q.; Zhao, R.Y.; Chen, Z.C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- An, H.-E.; Lee, K.H.; Jang, Y.W.; Kim, C.-B.; Yoo, H.Y. Improved glucose recovery from Sicyos angulatus by NaOH pretreatment and application to bioethanol production. Processes 2021, 9, 245. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Paixão, S.M.; Ladeira, S.A.; Silva, T.P.; Arez, B.F.; Roseiro, J.C.; Martins, M.L.L.; Alves, L. Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis. RSC Adv. 2016, 6, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Kapanji, K.K.; Haigh, K.F.; Görgens, J.F. Techno-economic analysis of chemically catalysed lignocellulose biorefineries at a typical sugar mill: Sorbitol or glucaric acid and electricity co-production. Bioresour. Technol. 2019, 289, 121635. [Google Scholar] [CrossRef] [PubMed]
- Karimifard, S.; Moghaddam, M.R.A. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Sci. Total Environ. 2018, 640–641, 772–797. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Lee, J.H.; Kim, D.S.; Lee, J.H.; Lee, S.K.; Lee, S.J.; Park, C.; Kim, S.W. Enhancement of glucose yield from canola agricultural residue by alkali pretreatment based on multi-regression models. J. Ind. Eng. Chem. 2017, 51, 303–311. [Google Scholar] [CrossRef]
- Trinh, L.T.P.; Lee, Y.-J.; Lee, J.-W.; Lee, W.-H. Optimization of ionic liquid pretreatment of mixed softwood by response surface methodology and reutilization of ionic liquid from hydrolysate. Biotechnol. Bioprocess Eng. 2018, 23, 228–237. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, H.Y.; Lee, S.K.; Chun, Y.; Kim, H.R.; Bankeeree, W.; Lotrakul, P.; Punnapayak, H.; Prasongsuk, S.; Kim, S.W. Significant impact of casein hydrolysate to overcome the low consumption of glycerol by Klebsiella aerogenes ATCC 29007 and its application to bioethanol production. Energy Convers. Manag. 2020, 221, 113181. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.Y.; Park, N.; Kim, H.; Lee, J.; Baek, Y.; Lee, T.; Oh, J.-M.; Cho, J.; Park, C. Enhanced l-lysine into 1,5-diaminopentane conversion via statistical optimization of whole-cell decarboxylation system. Polymers 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Selig, M.; Weiss, N.; Ji, Y. Enzymatic Saccharification of Lignocellulosic Biomass Technical Report No. NREL/TP-510-42629; NREL: Golden, CO, USA, 2008.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass Technical Report No. NREL/TP-510-42618; NREL: Golden, CO, USA, 2012.
- Lee, K.H.; Jang, Y.W.; Kim, H.; Ki, J.-S.; Yoo, H.Y. Optimization of lutein recovery from Tetraselmis suecica by response surface methodology. Biomolecules 2021, 11, 182. [Google Scholar] [CrossRef]
- Law, P.G.; Sebran, N.H.; Zawawi, A.Z.; Hussain, A.S. Optimization study of biomass hydrogenation to ethylene glycol using response surface methodology. Processes 2020, 8, 588. [Google Scholar] [CrossRef]
- Jung, G.-T.; Kim, S.-K. Efficient conversion of glucosamine to ethyl levulinate catalyzed by methanesulfonic acid. Korean J. Chem. Eng. 2020, 37, 1743–1750. [Google Scholar] [CrossRef]
- Ying, T.Y.; Raman, A.A.A.; Bello, M.M.; Buthiyappan, A. Magnetic graphene oxide-biomass activated carbon composite for dye removal. Korean J. Chem. Eng. 2020, 37, 2179–2191. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yeom, S.H. Optimization of biodiesel production from waste coffee grounds by simultaneous lipid extraction and transesterification. Biotechnol. Bioprocess Eng. 2020, 25, 320–326. [Google Scholar] [CrossRef]
- Behera, S.K.; Meena, H.; Chakraborty, S.; Meikap, B.C. Application of Response Surface Methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. [Google Scholar] [CrossRef]
- Sari, C.N.; Hertadi, R.; Harahap, A.F.P.; Ramadhan, M.Y.A.; Gozan, M. Process optimization of palm oil mill effluent-based biosurfactant of Halomonas meridiana BK-AB4 originated from Bledug Kuwu Mud Volcano in Central Java for microbial enhanced oil recovery. Processes 2020, 8, 716. [Google Scholar] [CrossRef]
- Siripong, P.; Doungporn, P.; Yoo, H.Y.; Kim, S.W. Improvement of sugar recovery from Sida acuta (Thailand Weed) by NaOH pretreatment and application to bioethanol production. Korean J. Chem. Eng. 2018, 35, 2413–2420. [Google Scholar] [CrossRef]
- Regmi, S.; Choi, Y.S.; Kim, Y.K.; Khan, M.D.; Lee, S.H.; Cho, S.S.; Jin, Y.-Y.; Lee, D.Y.; Yoo, J.C.; Suh, J.-W. Endoglucanase produced by Bacillus subtilis strain CBS31: Biochemical characterization, thermodynamic study, enzymatic hydrolysis, and bio-industrial applications. Biotechnol. Bioprocess Eng. 2020, 25, 104–116. [Google Scholar] [CrossRef]
- Cui, F.; Li, Y.; Wan, C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 2011, 102, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, I.; Ladero, M.; Santos, V.E. D-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Ind. Crops Prod. 2020, 146, 112176. [Google Scholar] [CrossRef]
- Hudeckova, H.; Neureiter, M.; Obruca, S.; Frühauf, S.; Marova, I. Biotechnological conversion of spent coffee grounds into lactic acid. Lett. Appl. Microbiol. 2018, 66, 306–312. [Google Scholar] [CrossRef]
Factors | Unit | Symbol | Coded Factor Levels | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
Temperature | °C | X1 | 0 | 25 | 50 | 75 | 100 |
KOH concentration | % | X2 | 0 | 1 | 2 | 3 | 4 |
Time | h | X3 | 0 | 1 | 2 | 3 | 4 |
Std | Coded Factor Levels | Response | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | GC 1 (%) | MC 2 (%) | ED 3 (%) | |
1 | −1 | −1 | −1 | 13.5 | 32.6 | 26.7 |
2 | 1 | −1 | −1 | 14.0 | 35.0 | 37.3 |
3 | −1 | 1 | −1 | 16.4 | 35.2 | 41.1 |
4 | 1 | 1 | −1 | 16.2 | 37.5 | 47.3 |
5 | −1 | −1 | 1 | 13.7 | 34.3 | 34.3 |
6 | 1 | −1 | 1 | 13.8 | 34.9 | 39.4 |
7 | −1 | 1 | 1 | 16.1 | 36.0 | 40.2 |
8 | 1 | 1 | 1 | 18.2 | 41.1 | 47.1 |
9 | −2 | 0 | 0 | 14.2 | 33.8 | 43.5 |
10 | 2 | 0 | 0 | 19.0 | 41.6 | 47.6 |
11 | 0 | −2 | 0 | 9.8 | 23.8 | 32.6 |
12 | 0 | 2 | 0 | 15.5 | 35.4 | 48.1 |
13 | 0 | 0 | −2 | 9.3 | 23.3 | 35.2 |
14 | 0 | 0 | 2 | 14.9 | 34.8 | 46.3 |
15 | 0 | 0 | 0 | 16.2 | 38.9 | 41.1 |
16 | 0 | 0 | 0 | 14.4 | 33.8 | 45.2 |
17 | 0 | 0 | 0 | 14.6 | 36.1 | 43.3 |
18 | 0 | 0 | 0 | 14.3 | 36.4 | 35.5 |
19 | 0 | 0 | 0 | 14.2 | 36.0 | 38.4 |
20 | 0 | 0 | 0 | 14.1 | 35.9 | 40.8 |
Source | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 78.83 | 9 | 8.76 | 5.21 | 0.0083 | significant |
X1 | 9.15 | 1 | 9.15 | 5.44 | 0.0419 | significant |
X2 | 34.05 | 1 | 34.05 | 20.25 | 0.0011 | significant |
X3 | 10.63 | 1 | 10.63 | 6.32 | 0.0307 | significant |
X1X2 | 0.24 | 1 | 0.24 | 0.14 | 0.7118 | |
X1X3 | 0.49 | 1 | 0.49 | 0.29 | 0.6021 | |
X2X3 | 0.33 | 1 | 0.33 | 0.20 | 0.6675 | |
X12 | 12.13 | 1 | 12.13 | 7.22 | 0.0228 | significant |
X22 | 2.19 | 1 | 2.19 | 1.30 | 0.2800 | |
X32 | 4.49 | 1 | 4.49 | 2.67 | 0.1335 |
Source | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 302.26 | 9 | 33.58 | 5.45 | 0.0070 | significant |
X1 | 41.92 | 1 | 41.92 | 6.80 | 0.0262 | significant |
X2 | 82.26 | 1 | 82.26 | 13.34 | 0.0044 | significant |
X3 | 52.61 | 1 | 52.61 | 8.53 | 0.0153 | significant |
X1X2 | 2.45 | 1 | 2.45 | 0.40 | 0.5426 | |
X1X3 | 0.15 | 1 | 0.15 | 0.024 | 0.8801 | |
X2X3 | 1.05 | 1 | 1.05 | 0.17 | 0.6891 | |
X12 | 11.19 | 1 | 11.19 | 1.81 | 0.2078 | |
X22 | 46.70 | 1 | 46.70 | 7.57 | 0.0204 | significant |
X32 | 55.87 | 1 | 55.87 | 9.06 | 0.0131 | significant |
Source | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 535.21 | 9 | 59.47 | 16.87 | <0.0001 | significant |
X1 | 114.68 | 1 | 114.68 | 32.53 | 0.0002 | significant |
X2 | 332.85 | 1 | 332.85 | 94.42 | <0.0001 | significant |
X3 | 38.48 | 1 | 38.48 | 10.92 | 0.0080 | significant |
X1X2 | 0.90 | 1 | 0.90 | 0.26 | 0.6244 | |
X1X3 | 2.79 | 1 | 2.79 | 0.79 | 0.3944 | |
X2X3 | 14.72 | 1 | 14.72 | 4.18 | 0.0682 | |
X12 | 11.59 | 1 | 11.59 | 3.29 | 0.0999 | |
X22 | 5.98 | 1 | 5.98 | 1.70 | 0.2220 | |
X32 | 7.05 | 1 | 7.05 | 2.00 | 0.1877 |
Factors | Coded Levels | Actual Levels |
Temperature | 1.0 | 75.0 °C |
KOH concentration | 1.0 | 3.0% |
Time | 0.8 | 2.8 h |
Response | Predicted | Experimental |
GC (%) | 18.1 | 18.9 |
MC (%) | 41.1 | 47.5 |
ED (%) | 46.8 | 42.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.H.; Jang, Y.W.; Lee, J.; Kim, S.; Park, C.; Yoo, H.Y. Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation. Processes 2021, 9, 494. https://doi.org/10.3390/pr9030494
Lee KH, Jang YW, Lee J, Kim S, Park C, Yoo HY. Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation. Processes. 2021; 9(3):494. https://doi.org/10.3390/pr9030494
Chicago/Turabian StyleLee, Kang Hyun, Ye Won Jang, Jeongho Lee, Seunghee Kim, Chulhwan Park, and Hah Young Yoo. 2021. "Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation" Processes 9, no. 3: 494. https://doi.org/10.3390/pr9030494
APA StyleLee, K. H., Jang, Y. W., Lee, J., Kim, S., Park, C., & Yoo, H. Y. (2021). Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation. Processes, 9(3), 494. https://doi.org/10.3390/pr9030494