An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies
Abstract
:1. Introduction
2. Apple Varieties for Cider-Processing
3. Impact of Processing to Cider Microbial Populations
3.1. Apple’s Microbiota and Pre-Fermentative Treatments
3.2. Cider Fermentation
3.3. Advanced Methods Applied for Cider Fermentation Monitoring
3.4. Cider Contaminants Affecting Fermentation
4. Changes in Sensory, Volatile and Phenolic Profiles during Cider Processing
5. Emerging Technologies Applied in Apple Cider Production
5.1. Pulsed Electric Field
5.2. Microwave Extraction
5.3. Enzymatic Treatment
5.4. Ultraviolet Treatment
5.5. Ultrasound Treatments
5.6. High-Pressure Processing
5.7. Pulsed Light Processing
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- European Cider and Fruit Wine Association. 2018. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/fs_labelling-nutrition_legis_alcohol-self-regulatory-proposal_cider_en.pdf (accessed on 15 January 2021).
- Buglass, A.J. Cider and Perry. In Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects; John Wiley & Sons Ltd.: Chichester, UK, 2011. [Google Scholar]
- Mitchell, P. Out of the Orchard, into the Glass: An Appreciation of Cider and Perry; National Association of Cider Makers and Mitchell F & D Limited: Newent, UK, 2006. [Google Scholar]
- Rodríguez, M.E.; Pérez-Través, L.; Sangorrín, M.P.; Barrio, E.; Querol, A.; Lopes, C.A. Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia. FEMS Yeast Res. 2017, 17, fow109. [Google Scholar] [CrossRef] [Green Version]
- Rana, T.S.; Datt, B.; Rao, R.R. Soor: A traditional alcoholic beverage in Tons Valley, Garhwal Himalaya. Indian J. Tradit. Knowl. 2004, 3, 59–65. [Google Scholar]
- Sekar, S.; Mariappan, S. Usage of traditional fermented products by Indian rural folks and IPR. Indian J. Tradit. Knowl. 2007, 6, 111–120. [Google Scholar]
- Merwin, I.A.; Valois, S.; Padilla-Zakour, O.I. Cider Apples and Cider-Making Techniques in Europe and North America; John Wiley & Sons Ltd.: Chichester, UK, 2008; Volume 34. [Google Scholar]
- Langley, M.; Jenkin, E. Westons Cider Report, 4th ed.; Technical Report for Weston’s Cider; Weston’s Cider: Herefordshire, UK, 2019. [Google Scholar]
- The European Cider & Fruit Wine Associaton. European Cider Trends; The European Cider & Fruit Wine Associaton: Brussels, Belgium, 2019. [Google Scholar]
- Bedriñana, R.P.; Lobo, A.P.; Madrera, R.R.; Valles, B.S. Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chem. 2020, 310, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Berber, V. Young People’s Beliefs about the Health Effects of Different Alcoholic Beverages: An Exploratory Comparison of the UK and France; Kingston University London: London, UK, 2016. [Google Scholar]
- Joshi, V.K.; Sharma, S.; Thakur, A.D. 13-Wines: White, red, sparkling, fortified, and cider. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Sanromán, M.Á., Du, G., Soccol, C.R., Dussap, C.-G., Eds.; Elsevier: Cham, Switzerland, 2017; pp. 353–406. [Google Scholar] [CrossRef]
- Hammel, K.; Arnold, T. Understanding the loss of traditional agricultural systems: A case study of orchard meadows in Germany. J. Agric. Food Syst. Community Dev. 2012, 2, 119–136. [Google Scholar] [CrossRef] [Green Version]
- León-Muñoz, L.M.; Galán, I.; Donado-Campos, J.; Sánchez-Alonso, F.; López-García, E.; Valencia-Martín, J.L.; Guallar-Castillón, P.; Rodríguez-Artalejo, F. Patterns of alcohol consumption in the older population of Spain, 2008–2010. J. Acad. Nutr. Diet. 2015, 115, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Włodarska, K.; Pawlak-Lemańska, K.; Górecki, T.; Sikorska, E. Classification of commercial apple juices based on multivariate analysis of their chemical profiles. Int. J. Food Prop. 2017, 20, 1773–1785. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef]
- Wei, K.; Ma, C.; Sun, K.; Liu, Q.; Zhao, N.; Sun, Y.; Tu, K.; Pan, L. Relationship between optical properties and soluble sugar contents of apple flesh during storage. Postharvest Biol. Technol. 2020, 159, 1–9. [Google Scholar] [CrossRef]
- Harker, F.R.; Amos, R.L.; Echeverría, G.; Gunson, F.A. Influence of texture on taste: Insights gained during studies of hardness, juiciness, and sweetness of apple fruit. J. Food Sci. 2006, 71, 77–82. [Google Scholar] [CrossRef]
- Planchon, V.; Lateur, M.; Dupont, P.; Lognay, G. Ascorbic acid level of Belgian apple genetic resources. Sci. Hortic. 2004, 100, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Camporro, A.; Díaz, M.B. Elaboración de sidras con manzanas gallegas de producción ecológica. In Proceedings of the IV Congreso Internacional de Agroecoloxía e Agricultura Ecolóxica, Vigo, Spain, 21–23 June 2012. [Google Scholar]
- Danbrew, K.J. Cider Production in England and France and Denmark? Brygmesteren 2000, 4, 1–15. [Google Scholar]
- Nybom, H.; Spoor, T.; Sehic, J.; Ekholm, A.; Rumpunen, K.; Tahir, I. Growing English and French cider apple cultivars in Sweden. Acta Hortic. 2020, 1281, 9–14. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Maroun, R.G.; Salameh, D.; Louka, N.; Vorobiev, E. Suitability of the Lebanese “Ace Spur” apple variety for cider production using Hanseniaspora sp. yeast. Fermentation 2020, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Valois, S.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization of fermented cider apple varieties grown in Upstate New York. J. Am. Pom. Soc. 2006, 60, 113–128. [Google Scholar]
- Ewing, B.L.; Peck, G.M.; Ma, S. Management of apple maturity and postharvest storage conditions to increase polyphenols in cider. HortScience 2019, 54, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.-F. Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.E.; Chirtel, S.J.; Merker, R.I.; Taylor, K.T.; Tan, H.L.; Miller, A.J. Influence of fruit variety, harvest technique, quality sorting, and storage on the native microflora of unpasteurized apple cider. J. Food Prot. 2004, 67, 2240–2247. [Google Scholar] [CrossRef]
- Villière, A.; Arvisenet, G.; Bauduin, R.; Le Quéré, J.-M.; Sérot, T. Influence of cider-making process parameters on the odourant volatile composition of hard ciders. J. Inst. Brew. 2015, 121, 95–105. [Google Scholar] [CrossRef]
- Girschik, L.; Jones, J.E.; Kerslake, F.L.; Robertson, M.; Dambergs, R.G.; Swarts, N.D. Apple variety and maturity profiling of base ciders using UV spectroscopy. Food Chem. 2017, 228, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Way, M.L.; Jones, J.E.; Swarts, N.D.; Da Bergs, R.G. Phenolic content of apple juice for cider making as influenced by common pre-fermentation processes using two analytical methods. Beverages 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Lea, A. Craft Cider Making, 3rd ed.; The Crowood Press Ltd.: Ramsbury, UK, 2015. [Google Scholar]
- Zielinski, A.A.F.; Braga, C.M.; Demiate, I.M.; Beltrame, F.L.; Nogueira, A.; Wosiacki, G. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stage. Food Sci. Technol. 2014, 34, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Machado dos Santos, T.P.; Ferreira Zielinski, A.A.; Eleuterio dos Santos, C.M.; Braga, C.M.; Demiate, I.M.; Nogueira, A. Impact on chemical profile in apple juice and cider made from unripe, ripe and senescent dessert varieties. LWT Food Sci. Technol. 2016, 65, 436–443. [Google Scholar] [CrossRef]
- Alberti, A.; Vieira, R.G.; Dirlleau, J.F.; Wosiacki, G.; Nogueira, A. Apple wine processing with different nitrogen contents. Braz. Arch. Biol. Technol. 2011, 54, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Karl, A.D. Apple Orchard Management for Hard Cider Production: Influence of Nitrogen Fertilization and Carbohydrate Availability on Tannin Synthesis, Yeast Assimilable Nitrogen, and Fermentation Kinetics. Ph.D. Thesis, Cornell University, New York, NY, USA, 2020. [Google Scholar]
- Torrea, D.; Varela, C.; Ugliano, M.; Ancin-Azpilicueta, C.; Francis, I.L.; Henschke, P.A. Comparison of inorganic and organic nitrogen supplementation of grape juice—Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem. 2011, 127, 1072–1083. [Google Scholar] [CrossRef]
- Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice. Food Sci. Nutr. 2017, 6, 119–123. [Google Scholar] [CrossRef]
- Tahim, C.M.; Mansfield, A.K. Yeast assimilable nitrogen (YAN) optimization for cool-climate Riesling. Am. J. Enol. Vitic. 2018, 70, 127–138. [Google Scholar] [CrossRef]
- Schmid, T.; Baumann, B.; Himmelsbach, M.; Kampfl, C.W.; Buchberger, W. Analysis of saccharides in beverages by HPLC with direct UV detection. Anal. Bioanal. Chem. 2016, 408, 1871–1878. [Google Scholar] [CrossRef] [PubMed]
- Lea, A.G.H.; Piggott, J.R. Fermented Beverage Production, 2nd ed.; Springer Science+Business Media: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Carrín, M.E.; Ceci, L.N.; Lozano, J.E. Characterization of starch in apple juice and its degradation by amylases. Food Chem. 2004, 87, 173–178. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Victoria-Campos, C.I.; Ochoa-Reyes, E.; de Jesús Ornelas-Paz, J.; Zamudio-Flores, P.B.; Rios-Velasco, C.; Reyes-Hernández, J.; Pérez-Martínez, J.; Ibarra-Junquera, V. Physicochemical properties of apple juice during sequential steps of the industrial processing and functional properties of pectin fractions from the generated pomace. LWT Food Sci. Technol. 2017, 86, 465–472. [Google Scholar]
- Abel, E.S.; Aidoo, K.E. A comparative study of the nutritional quality of freshly extracted juices from organic versus conventional orange and apple fruits. EC Nutr. 2016, 4, 945–959. [Google Scholar]
- Ma, S.; Nielson, A.P.; Lahne, J.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino acid composition of apple juices with potential for cider making as determined by UPLC-PDA. J. Inst. Brew. 2018, 124, 467–476. [Google Scholar] [CrossRef]
- Karl, A.D.; Brown, M.G.; Ma, S.; Sandbrook, A.; Stewart, A.C.; Cheng, L.; Mansfield, A.K.; Peck, G.M. Foliar urea applications increase yeast assimilable nitrogen concentration and alcoholic fermentation rate in ‘Red Spy’ apples used for cider production. HortScience 2020, 55, 1356–1364. [Google Scholar] [CrossRef]
- Song, Y.; Gibney, P.; Cheng, L.; Liu, S.; Peck, G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front. Microbiol. 2020, 11, 1264. [Google Scholar] [CrossRef]
- Cline, J.A.; Plotkowski, D.; Beneff, A. Juice attributes of Ontario-grown culinary (dessert) apples for cider. Can. J. Plant Sci. 2021. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple fermented products: An overview of technology, properties and health effects. Processes 2021, 9, 223. [Google Scholar] [CrossRef]
- Vilela, A. Sensory and volatile flavor analysis of beverages. Foods 2021, 10, 177. [Google Scholar] [CrossRef]
- Fuertes, M.C.; Diaz-Hernandez, M.B.; Carcia-Rubio, J.C. El cultivo del manzano en Asturias. Serv. Publ. Astur. 1996, 1–223. [Google Scholar]
- Boré, J.M.; Fleckinger, J. Pommiers à cidre. Variétés de France; Inra-Quae: Versailles Cedex, France, 1997. [Google Scholar]
- Dunn, D.; Awdey, G.; McGonegal, C. Cider Style Guidelines; BJCP: St. Louis Park, MN, USA, 2015. [Google Scholar]
- Copas, L. A Somerset Pomona: The Cider Apples of Somerset, 1st ed.; The Dovecote Press Ltd.: Stanbridge, UK, 2001. [Google Scholar]
- Christensen, H.B.; Granby, K. Method validation for strobilurin fungicides in cereals and fruit. Food Addit. Contam. 2001, 10, 866–874. [Google Scholar] [CrossRef]
- Navarro, S.; Barba, A.; Navarro, G.; Vela, N.; Oliva, J. Multiresidue method for the rapid determination—In grape, must and wine—Of fungicides frequently used on vineyards. J. Chromatogr. A 2000, 882, 221–229. [Google Scholar] [CrossRef]
- Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 2012, 46, 399–409. [Google Scholar] [CrossRef]
- Vysini, E.; Dunwell, J.; Froud-Williams, B.; Hadley, P.; Hatcher, P.; Ordidge, M.; Shaw, M.; Battey, N. Sustainable Cider Apple Production; University of Reading: Reading, UK, 2011. [Google Scholar]
- Wojdyło, A.; Oszmiański, J. Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef]
- Bedriñana, R.P.; Querol, S.A.; Suárez, V.B. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food Microbiol. 2010, 27, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, W.F.; Davenport, B.; Querol, A.; Dobson, A.D.W. The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol. 2004, 97, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Graça, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M.; Quintas, C. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol. 2015, 51, 179–185. [Google Scholar] [CrossRef]
- Cousin, F.J.; Le Guellec, R.; Schulusselhuber, M.; Dalmasso, M.; Laplace, J.-M.; Cretenet, M. Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, G.; Santos, J.L.; Berregi, I.; Velasco, S.; Ibarburu, I.; Duenãs, M.T.; Irastorza, A. Ciders produced by two types of presses and fermented in stainless steel and wooden vats. J. Inst. Brew. 2003, 109, 342–348. [Google Scholar] [CrossRef]
- Garcia, L.; Henderson, J.; Fabri, M.; Oke, M. Potential sources of microbial contamination in unpasteurized apple cider. J. Food Prot. 2006, 69, 137–144. [Google Scholar] [CrossRef]
- Gomes, T.A.; Filho, M.R.S.; Zielinski, A.A.F.; Pietrowski, G.A.M.; Nogueira, A. Microbial levels in apple must and their association with fruit selection, washing and sanitization. J. Food Saf. 2014, 34, 141–149. [Google Scholar] [CrossRef]
- Jarvis, B.; LEA, A.G.H. Sulphite binding in ciders. Int. J. Food Sci. Technol. 2000, 35, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Morgan, S.C.; Haggerty, J.J.; Johnston, B.; Jiranek, V.; Durall, D.M. Response to sulfur dioxide addition by two commercial Saccharomyces cerevisiae strains. Fermentation 2019, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.; Wosiacki, G. Apple Cider Fermentation. In Handbook of Plant-Based Fermented Food and Beverage Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 209–235. [Google Scholar] [CrossRef]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Tech. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-Hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 2009, 51, 287–296. [Google Scholar] [CrossRef]
- Jackson, L.S.; Becham-Bowden, T.; Keller, S.E.; Adhikari, C.; Taylor, K.T.; Chirtel, S.J.; Merker, R.I. Apple quality, storage, and washing treatments affect patulin levels in apple cider. J. Food Prot. 2003, 66, 618–624. [Google Scholar] [CrossRef]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef]
- Pernica, M.; Martiník, J.; Boško, R.; Zušťáková, V.; Benešová, K.; Běláková, S. Determination of patulin and hydroxymethylfurfural in beverages by UPLC-PDA. World Mycotoxin J. 2021, 14, 41–48. [Google Scholar] [CrossRef]
- Nadai, C.; Lemos Junior, W.J.F.; Favaron, F.; Giacomini, A.; Corich, V. Biocontrol activity of Starmerella bacillaris yeast against blue mold disease on apple fruit and its effect on cider fermentation. PLoS ONE 2018, 13, e0204350. [Google Scholar] [CrossRef] [PubMed]
- Valles, B.S.; Bedriñana, R.P.; Tascón, N.F.; Simón, A.Q.; Madrera, R.R. Yeast species associated with the spontaneous fermentation of cider. Food Microbiol. 2007, 24, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Yue, T.; Yuan, Y. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation. FEMS Yeast Res. 2014, 14, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT Food Sci. Technol. 2019, 99, 224–230. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Mihajlovic, B.; Dixon, B.; Couture, H.; Farber, J. Qualitative microbiological risk assessment of unpasteurized fruit juice and cider. Int. Food Risk Anal. J. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hu, Z.; Long, F.; Guo, C.; Niu, C.; Yuan, Y.; Yue, T. Combined effect of sugar content and pH on the growth of a wild strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control 2016, 59, 298–305. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef]
- Sukhvir, S.; Kocher, G.S. Development of apple wine from Golden Delicious cultivar using a local yeast isolate. J. Food Sci. Technol. 2019, 56, 2959–2969. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; de Revel, G.; Antalick, G.; Herrero, M.; García, L.A.; Díaz, M. Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider. J. Ind. Microbiol. Biotechnol. 2014, 41, 853–867. [Google Scholar] [CrossRef]
- Morgan, P.; Foss, C.; Jane, T.; McKay, M. Course Notes for Winemaking Module PW203 for BSc Viticulture and Oenology, and Summer Winemaking; Plumpton College: Ditchling, UK, 2006. [Google Scholar]
- Purves, W.K.; Sadava, D.; Orians, G.H.; Heller, H.C. Life, the Science of Biology, 6th ed.; W.H.Freeman & Co Ltd.: London, UK, 2001. [Google Scholar]
- Jackosn, R.S. Wine Science: Principles, Practice, Perception, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: New York, NY, USA, 2000. [Google Scholar]
- Boulton, C.; Quain, D. Brewing Yeast and Fermentation; Wiley-Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zhang, D.; Lovitt, R.W. Strategies for enhanced malolactic fermentation in wine and cider maturation. J. Chem. Technol. Biotechnol. 2006, 81, 1130–1140. [Google Scholar] [CrossRef]
- Jarvis, B.; Forster, M.J.; Kinsella, W.P. Factors influencing the flavour of cider: The effect of fermentation treatments on fusel oil production. J. Appl. Microbiol. 1966, 29, 253–259. [Google Scholar]
- Herrero, M.; García, L.A.; Díaz, M. Volatile compounds in cider: Inoculation time and fermentation temperature effects. J. Inst. Brew. 2012, 112, 210–214. [Google Scholar] [CrossRef]
- Villar, A.; Vadillo, J.; Santos, J.I.; Gorritxategi, E.; Mabe, J.; Arnaiz, A.; Fernández, L.A. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics. Food Chem. 2017, 221, 100–106. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Compr. Rev. Food Sci. F. 2018, 18, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Cosano, E.; Simonato, B.; Consonni, R. Fermentation process of apple juice investigated by NMR spectroscopy. LWT Food Sci. Technol. 2018, 96, 147–151. [Google Scholar] [CrossRef]
- Llorente, D.D.; Abrodo, P.A.; González-Álvarez, J.; de la Fuente, E.D.; Alonso, J.J.M.; Álvarez, M.D.G.; Gomis, D.B. A New Analytical Method to Volatile Compounds in Cider Apples: Application to Evaluate the Starch Index. Food Bioprocess. Technol. 2013, 6, 2447–2454. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Manojlović, V.; Nedović, V.A. Immobilization of microbial cells for alcoholic and malolactic fermentation of wine and cider. Encapsulation Technol. Act. Food Ingred. Food Process. 2010, 1, 327–343. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Bekatorou, A.; Banat, I.M.; Marchant, R.; Koutinas, A.A. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 2004, 21, 377–397. [Google Scholar] [CrossRef]
- Boudreau, T.F.; Peck, G.M.; O’Keefe, S.; Stewart, A.C. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation. J. Sci. Food Agric. 2016, 97, 693–704. [Google Scholar] [CrossRef]
- Boudreau, T.F.; Peck, G.M.; Ma, S.; Patrick, N.; Duncan, S.; O’Keefe, S.; Stewart, A.C. Hydrogen sulphide production during cider fermentation is moderated by pre-fermentation methionine addition. J. Inst. Brew. 2017, 123, 553–561. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.-R.; Kim, M.S.; Chan, D.E.; Lefcourt, A.M. Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. J. Food Eng. 2007, 81, 412–418. [Google Scholar] [CrossRef]
- Simonato, B.; Lorenzini, M.; Zapparoli, G. Effects of post-harvest fungal infection of apples on chemical characteristics of cider. LWT Food Sci. Technol. 2021, 138. [Google Scholar] [CrossRef]
- Han, Y.; Dong, F.; Xu, J.; Liu, X.; Li, X.; Kong, Z.; Liang, X.; Liu, N.; Zheng, Y. Residue change of pyridaben in apple samples during apple cider processing. Food Control 2014, 34, 240–244. [Google Scholar] [CrossRef]
- Rosend, J.; Kuldjärv, R.; Rosenvald, S.; Paalme, T. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Helyon 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Antón-Díaz, M.J.; Valles, B.S.; Mangas-Alonso, J.J.; Fernández-García, O.; Picinelli-Lobo, A. Impact of different techniques involving contact with lees on the volatile composition of cider. Food Chem. 2016, 190, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.T.; Lee, P.-R.; Yu, B.; Liu, S.-Q. Cider fermentation with three Williopsis saturnus yeast strains and volatile changes. Ann. Microbiol. 2014, 65, 921–928. [Google Scholar] [CrossRef]
- Arvisenet, G.; Billy, L.; Royer, G.; Prost, C. Role of mastication on the release of apple volatile compounds in a model mouth system. Dev. Food Sci. 2006, 43, 465–468. [Google Scholar] [CrossRef]
- Villière, A.; Arvisenet, G.; Lethuaut, L.; Prost, C.; Sérot, T. Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GC–MS–O and GC × GC–TOF-MS. Food Chem. 2012, 131, 1561–1568. [Google Scholar] [CrossRef]
- Madrera, R.R.; Bedriñana, R.P.; Valles, B.S. Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT Food Sci. Technol. 2015, 64, 1342–1353. [Google Scholar] [CrossRef]
- Rita, R.-D.; Zanda, K.; Daina, K.; Dalija, S. Composition of aroma compounds in fermented apple juice: Effect of apple variety, fermentation temperature and inoculated yeast concentration. Procedia Food Sci. 2011, 1, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Hewett, E.W. Temperature of hypoxic treatment alters volatile composition of juice from ‘Fuji’ and ‘Royal Gala’ apples. Postharvest Biol. Technol. 2001, 22, 71–83. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Changes in the profile of volatile compounds and amino acids during cider fermentation using dessert variety of apples. Eur. Food Res. Technol. 2014, 239, 67–77. [Google Scholar] [CrossRef]
- Dos Santos, C.M.E.; Alberti, A.; Pietrowski, G.A.M.; Zielinski, A.A.F.; Wosiacki, G.; Nogueira, A.; Jorge, R.M.M. Supplementation of amino acids in apple must for the standardization of volatile compounds in ciders. J. Inst. Brew. 2016, 122, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-Q.; Aung, M.T.; Lee, P.-R.; Yu, B. Yeast and volatile evolution in cider co-fermentation with Saccharomyces cerevisiae and Williopsis saturnus. Ann. Microbiol. 2015, 66, 307–315. [Google Scholar] [CrossRef]
- Bingman, M.T.; Stellick, C.E.; Pelkey, J.P.; Scott, J.M.; Cole, C.A. Monitoring cider aroma development throughout the fermentation process by headspace solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Beverages 2020, 6, 40. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, W.; Quian, M.C. characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J. Agric. Food Chem. 2007, 55, 3051–3057. [Google Scholar] [CrossRef]
- Buron, N.; Coton, M.; Desmaris, C.; Ledauphin, J.; Guichard, H.; Barillier, D.; Coton, E. Screening of representative cider yeasts and bacteria for volatile phenol-production ability. Food Microbiol. 2011, 28, 1243–1251. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Sanoner, P.; Drilleau, J.-F. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J. Agric. Food Chem. 2003, 51, 6240–6247. [Google Scholar] [CrossRef]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Le Quere, J.-M.; Renard, C.M.G.C. Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice: Studies in model suspensions and application. Agric. Food Chem. 2007, 55, 7896–7904. [Google Scholar] [CrossRef]
- Lea, A.G.H.; Arnold, G.M. The phenolics of ciders: Bitterness and astringency. J. Sci. Food Agric. 1978, 29, 478–483. [Google Scholar] [CrossRef]
- Martin, M.; Padilla-Zakour, O.I.; Gerling, C. Tannin additions to improve the quality of hard cider made from dessert apples. Fruit Q. 2017, 25, 25–28. [Google Scholar]
- Tozer, P.R.; Galinato, S.P.; Ross, C.F.; Miles, C.A.; McCluskey, J.J. Sensory analysis and willingness to pay for craft cider. J. Wine Econ. 2015, 10, 314–328. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Compositional characteristics of fruits of several apple (Malus domestica Bork h.) cultivars. Not. Bot. Hort. Agrobot. 2010, 38, 228–233. [Google Scholar] [CrossRef]
- Geană, E.-I.; Ciucure, C.T.; Ionete, R.E.; Ciocârlan, A.; Aricu, A.; Ficai, A.; Andronescu, E. Profiling of phenolic compounds and triterpene acids of twelve apple (Malus domestica Borkh.) cultivars. Foods 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Budak, N.H.; Ozçelik, F.; Güzel-Seydim, Z.B. Antioxidant activity and phenolic content of apple cider. Turk. J. Agric. 2015, 3, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Cliffe, S.; Fawer, M.S.; Maier, G.; Takata, K.; Ritter, G. Enzyme assays for the phenolic content of natural juices. J. Agric. Food Chem. 1994, 42, 1824–1828. [Google Scholar] [CrossRef]
- Soler, C.; Soriano, J.M.; Mañes, J. Apple-products phytochemicals and processing: A review. Nat. Prod. Commun. 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yue, T.; Yuan, Y. Impact of polyphenols on the headspace concentration of aroma compounds in apple cider. J. Sci. Food Agric. 2018, 99, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Perestrelo, R.; Santos, R.; Pereira, R.; Câmara, J.S. Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem. J. 2019, 150, 104094. [Google Scholar] [CrossRef]
- Sousa, A.; Vareda, J.; Pereira, R.; Silva, C.; Câmara, J.S.; Perestrelo, R. Geographical differentiation of apple ciders based on volatile fingerprint. Food Res. Int. 2020, 137. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef] [Green Version]
- El Hadi, M.A.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Cliff, M.; Dever, M.C.; Gayton, R. Juice extraction process and apple cultivar influences on juice properties. J. Food Sci. 1991, 56, 1614–1617. [Google Scholar] [CrossRef]
- Grimi, N.; Mamouni, F.; Lebovka, N.; Vorobiev, E.; Vaxelaire, J. Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields. J. Food Eng. 2011, 103, 52–61. [Google Scholar] [CrossRef]
- Mannozzi, C.; Fauster, T.; Haas, K.; Tylewicz, U.; Romani, S.; Rosa, M.D.; Jaeger, H. Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH). Innov. Food Sci. Emerg. Technol. 2018, 48, 131–137. [Google Scholar] [CrossRef]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grawert, T.; Van Loey, A.; Hendrickx, M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar] [CrossRef]
- Chueca, B.; Ramírez, N.; Arvizu-Medrano, S.M.; García-Gonzalo, D.; Pagán, R. Inactivation of spoiling microorganisms in apple juice by a combination of essential oils’ constituents and physical treatments. Food Sci. Technol. Int. 2015, 22, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Cheng, Z.; Mittal, G.S. Inactivation of spoilage microorganisms in apple cider using a continuous flow pulsed electric field system. LWT Food Sci. Technol. 2006, 39, 351–357. [Google Scholar] [CrossRef]
- Candrawinata, V.I.; Golding, J.B.; Roach, P.D.; Stathopoulos, C.E. From apple to juice—The fate of polyphenolic compounds. Food Rev. Int. 2013, 29, 276–293. [Google Scholar] [CrossRef]
- Massini, L.; Rico, D.; Martin-Diana, A.B. Chapter 4—Quality Attributes of Apple Juice: Role and Effect of Phenolic Compounds; Academic Press: Cambridge, MA, USA, 2018; pp. 45–57. [Google Scholar] [CrossRef]
- Ma, S.; Neilson, A.; Lahne, J.; Peck, G.; O’Keefe, S.; Hurley, E.K.; Sandbrook, A.; Stewart, A. Juice clarification with pectinase reduces yeast assimilable nitrogen in apple juice without affecting the polyphenol composition in cider. J. Food Sci. 2018, 83, 2772–2781. [Google Scholar] [CrossRef] [PubMed]
- Gerard, K.A.; Roberts, J.S. Microwave heating of apple mash to improve juice yield and quality. LWT Food Sci. Technol. 2004, 37, 551–557. [Google Scholar] [CrossRef]
- Sharma, H.P.; Patel, H.; Sugandha. Enzymatic added extraction and clarification of fruit juices—A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1215–1227. [Google Scholar] [CrossRef]
- Lee, W.C.; Yusof, S.; Hamid, N.S.A.; Bahrain, B.S. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng. 2006, 73, 55–63. [Google Scholar] [CrossRef]
- Satora, P.; Tarko, T.; Duda-Chodak, A.; Sroka, P.; Tuszyński, T.; Czepielik, M. Influence of prefermentative treatments and fermentation on the antioxidant and volatile profiles of apple wines. J. Agric. Food Chem. 2009, 57, 11209–11217. [Google Scholar] [CrossRef]
- Will, F.; Bauckhage, K.; Dietrich, H. Apple pomace liquefaction with pectinases and cellulases:analytical data of the corresponding juices. Eur. Food Res. Technol. 2000, 211, 291–297. [Google Scholar] [CrossRef]
- Islam, M.S.; Patras, A.; Pokharel, B.; Wu, Y.; Vergne, M.J.; Shade, L.; Xiao, H.; Sasges, M. UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innov. Food Sci. Emerg. 2016, 34, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Gouma, M.; Álvarez, I.; Condón, S.; Gayán, E. Modelling microbial inactivation kinetics of combined UV-H treatments in apple juice. Innov. Food Sci. Emerg. Technol. 2015, 27, 111–120. [Google Scholar] [CrossRef]
- Diao, E.; Chu, X.; Hou, H.; Dong, H.; Gao, D. Improving the safety of apple juice by UV irradiation. J. Food Meas. Charact. 2018, 12, 2005–2011. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, H.; Tian, Y.; You, Z.; Guo, Y. Effect of thermal pasteurization and ultraviolet treatment on the quality parameters of not-from-concentrate apple juice from different varieties. Cyta J. Food 2019, 17, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Koutchma, T.; Popović, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. F. 2016, 15, 844–867. [Google Scholar] [CrossRef] [Green Version]
- Urban, L.; Charles, F.; Alcantara de Miranda, M.R.; Aarrouf, J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol. Biochem. 2016, 105, 1–11. [Google Scholar] [CrossRef]
- Dong, Q.; Manns, D.C.; Feng, G.; Yue, T.; Churey, J.J.; Worobo, R.W. Reduction of patulin in apple cider by uv radiation. J. Food Prot. 2010, 73, 69–74. [Google Scholar] [CrossRef]
- Tikekar, R.V.; Anantheswaran, R.C.; LaBorde, L.F. Patulin degradation in a model apple juice system and in apple juice during ultraviolet processing. J. Food Process. Preserv. 2012, 38, 924–934. [Google Scholar] [CrossRef]
- Tremarin, A.; Brandão, T.R.S.; Silva, C.L.M. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT Food Sci. Technol. 2017, 78, 138–142. [Google Scholar] [CrossRef]
- Falguera, V.; Pagán, J.; Ibraz, A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT Food Sci. Technol. 2011, 44, 115–119. [Google Scholar] [CrossRef]
- Tandon, K.; Worobo, R.W.; Churey, J.J.; Padilla-Zakour, O. Storage quality of pasteurized and UV treated apple cider. J. Food Process. Preserv. 2003, 27, 21–35. [Google Scholar] [CrossRef]
- Geveke, D.J. UV inactivation of bacteria in apple cider. J. Food Prot. 2005, 68, 1739–1742. [Google Scholar] [CrossRef]
- Satora, P.; Sroka, P.; Duda-Chodak, A.; Tarko, T.; Tuszyński, T. The profile of volatile compounds and polyphenols in wines produced from dessert varieties of apples. Food Chem. 2008, 111, 513–519. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Rusu (Coldea), T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pârlog, R. Phenolic derivatives as authenticity markers of traditional homemade brandies from different counties of Transylvania, using UV-VIS and HPLC analysis. Buasvm Agric. 2011, 68, 518–528. [Google Scholar] [CrossRef]
- Wandjou, J.G.N.; Mevi, S.; Sagratini, G.; Vittori, S.; Dall’Acqua, S.; Caprioli, G.; Lupidi, G.; Mombelli, G.; Arpini, S.; Allegrini, P.; et al. Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of Central Italy (Mela Rosa dei Monti Sibillini). Plants 2020, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Başlar, M.; Ertugay, M.F. The effect of ultrasound and photosonication treatment on polyphenoloxidase (PPO) activity, total phenolic component and colour of apple juice. Int. J. Food Sci. Technol. 2012, 48, 886–892. [Google Scholar] [CrossRef]
- Gabriel, A.A. Microbial inactivation in cloudy apple juice by multi-frequency Dynashock power ultrasound. Ultrason. Sonochem. 2012, 19, 346–351. [Google Scholar] [CrossRef]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.; Zeng, X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT Food Sci. Technol. 2015, 64, 452–458. [Google Scholar] [CrossRef]
- Cotea, V.V.; Focea, M.C.; Luchin, C.E.; Colibaba, L.C.; Scutaraşu, E.C.; Marius, N.; Zamfir, C.I.; Popîrdă, A. Influence of different commercial yeasts on volatile fraction of sparkling wines. Foods 2021, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, H.; Cadwallader, K.R.; Feng, H.; Martin, S.E. Sonication in combination with heat and low pressure as an alternative pasteurization treatment—Effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrason. Sonochem. 2013, 20, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, S.L.; Ryser, E.T. Reduction of microbial pathogens during apple cider production using sodium hypochlorite, copper ion, and sonication. J. Food Prot. 2004, 67, 766–771. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zeng, X. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 2014, 21, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Bucher, T.; Deroover, K.; Stockley, C. Low-alcohol wine: A narrative review on consumer perception and behaviour. Beverages 2018, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borşa, A.; Pasqalone, A.; Zhao, H. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borşa, A.; Pasqalone, A.; Anjos, O.; Zhao, H. Functionality of special beer processes and potential health benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.M.; Coldea, T.E.; Borşa, A.; Pasqalone, A. Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef] [PubMed]
- Petrus, R.R.; Churey, J.J.; Humiston, G.A.; Cheng, R.M.; Worobo, R. The combined effect of high pressure processing and dimethyl dicarbonate to inactivate foodborne pathogens in apple juice. Braz. J. Microbiol. 2020, 51, 779–785. [Google Scholar] [CrossRef]
- Marszałek, K.; Szczepańska, J.; Starzonek, S.; Woźniak, Ł.; Trych, U.; Skąpska, S.; Rzoska, S.; Saraiva, J.A.; Lorenzo, J.M.; Barba, F.J. Enzyme inactivation and evaluation of physicochemical properties, sugar and phenolic profile changes in cloudy apple juices after high pressure processing, and subsequent refrigerated storage. J. Food Process Eng. 2019, 42, e13034. [Google Scholar] [CrossRef]
- Baron, A.; Dénes, J.M.; Durier, C. High-pressure treatment of cloudy apple juice. LWT Food Sci. Technol. 2006, 39, 1005–1013. [Google Scholar] [CrossRef]
- Fernández-Jalao, I.; Sánchez-Moreno, C.; De Ancos, B. Effect of high-pressure processing on flavonoids, hydroxycinnamic acids, dihydrochalcones and antioxidant activity of apple ‘Golden Delicious’ from different geographical origin. Innov. Food Sci. Emerg. Technol. 2019, 51, 20–31. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramanan, K.R.; Barba, F.J.; Lorenzo, J.M.; López-Fernández, O.; Munekata, P.E.S.; Roohinejad, S.; Sant’Ana, A.S.; Tiwari, B.K. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci. Technol. 2019, 88, 67–79. [Google Scholar] [CrossRef]
- Wiktor, A.; Mandal, R.; Singh, A.; Pratap Singh, A. Pulsed Light treatment below a Critical Fluence (3.82 J/cm2) minimizes photo-degradation and browning of a model Phenolic (Gallic Acid) Solution. Foods 2019, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Bencomo, J.J.; Viñas, I.; Martín-Belloso, O.; Soliva-Fortuny, R. Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chem. 2020, 315. [Google Scholar] [CrossRef]
Class | Chemical Composition Based on Cider Apple Variety | TA Range (%w/v) | TPC Range (%w/v) | References | |||
---|---|---|---|---|---|---|---|
Variety | Sugar Content (°Brix) | TA (%w/v) | TPC (%w/v) | ||||
Sour | Golden Russet | 17 | 0.55 | 0.04 | >0.45 | <0.20 | [2] |
Baldwin | 11.4 | 0.74 | 0.06 | [2] | |||
Roxbury Russet | 15.2 | 0.71 | 0.06 | [2] | |||
Cox’s Orange Pippin | 13 | 0.6 | 0.07 | [18] | |||
Bramley’s Seedling | 12.2 | 0.85 | 0.08 | [19] | |||
Raxao | 12.5 | 0.6 | 0.1 | [20] | |||
Judor | - | - | 0.11 | [21] | |||
Bitter sour | Kingston Black | 12.6 | 0.58 | 0.19 | >0.45 | >0.20 | [22] |
Foxwhelp | 12.6 | 1.91 | 0.22 | [22] | |||
Meana | - | 0.5 | 0.3 | [2] | |||
Kermerrien | 13.6 | - | 0.38 | [23] | |||
Bittersweet | Coloradona | - | 0.1 | 0.2 | <0.45 | >0.20 | [2] |
Michelin | 12.6 | 0.25 | 0.23 | [24] | |||
Binet Rouge | 10.9 | 0.15 | 0.24 | [25] | |||
Somerset Redstreak | - | 0.19 | 0.28 | [21] | |||
Tremletts Bitter | 12.4 | 0.27 | 0.38 | [2] | |||
Dabinett | 14.9 | 0.18 | 0.43 | [2] | |||
Yarlington Mill | 13.5 | 0.22 | 0.46 | [22] | |||
Sweet | Duron Arrores | - | 0.3 | 0.1 | <0.45 | <0.20 | [2] |
Sweet Alford | 15 | 0.22 | 0.15 | [22] | |||
Bedan | 14.4 | - | 0.34 | [24] |
Attribute | Units | Values | References |
---|---|---|---|
Sugars | (g/L) | ≈125 | [40] |
Glucose | (g/L) | 14–22 | [40] |
Fructose | (g/L) | 24–65 | [40] |
Sucrose | (g/L) | 14–32 | [32] |
Sorbitol | (g/100 mL) | 0.2–1.0 | [41] |
Starch | (g/L) | 7.5–8.5—unripe apples 2–2.5—ripe apples not detected—stored apples | [42] |
Organic acids | |||
Malic | (g/L) | 2.5–4.9 | [33,43] |
Ascorbic | (mg/L) | 800–1100 | [43] |
Succinic | (mg/L) | 420–600 | [33,43] |
Oxalic | (mg/L) | 150–240 | [43] |
Tartaric | (mg/L) | 5–7 | [43] |
Fumaric | (mg/L) | 3.5–5 | [43] |
Folic | (µg/L) | 60–75 | [44] |
Quinic | (mg/L) | 1202 | [33] |
Pyruvic | (mg/L) | 31 | [33] |
Citric | (mg/L) | 343 | [33] |
Amino acids | |||
Aspartic acid | (mg/L) | 1.2–5.6 | [45] |
Glutamic acid | (mg/L) | 1–3.3 | [45] |
Serine | (mg/L) | 0.1–0.89 | [45] |
Histidine | (mg/L) | 0.31–0.77 | [45] |
Glycine | (mg/L) | 0.03–0.12 | [45] |
Arginine | (mg/L) | 0.26–1.0 | [45] |
Alanine | (mg/L) | 0.22–1.7 | [45] |
Tyrosine | (mg/L) | 0.66–1.4 | [45] |
Methionine | (mg/L) | 0.83–1.4 | [45] |
Valine | (mg/L) | 0.59–1.8 | [45] |
Phenylalanine | (mg/L) | 2.7–13 | [45] |
Isoleucine | (mg/L) | 1.3–2.1 | [45] |
Leucine | (mg/L) | 1.1–1.8 | [45] |
Lysine | (mg/L) | 0.33–0.6 | [45] |
Minerals | |||
Potassium | (mg/L) | 374–1568 | [34] |
Phosphorus | (mg/L) | 11–76 | [34] |
Calcium | (mg/L) | 69–194 | [34] |
Magnesium | (mg/L) | 27–56 | [34] |
Copper | (mg/L) | 4.58–1.1 | [34] |
Iron | (mg/L) | 0.9–11 | [34] |
pH | 3.3–3.8 | [33,45] | |
Pectin | (g/100 mL) | 0.1–1.0 | [45] |
YAN | (mg/L) | 9–249 | [38,46,47] |
Compound | Odour Descriptor | Microorganism Specie | References |
---|---|---|---|
Esters | |||
Ethyl benzoate | Floral chamomile | S. cerevisiae, H. uvarum, H. valbyensis | [109,115] |
2-Phenylethyl acetate | Rose, honey | S. cerevisiae, H. uvarum, H. valbyensis | [107,109] |
Ethyl octanoate | Apricot | S. cerevisiae | [108,115] |
Isoamyl 2-methyl butanoate | Apple | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
2-methylbuthyl 2-methylbutanoate | Apple | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Isoamyl butanoate | Pear | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
3-Methylbuthyl acetate | Pear | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Ethyl 2-methyl butanoate | Berry | S. cervisiae, O. Oeni | [116] |
Ethyl pentanoate | Berry | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
Ethyl decanoate | Grape | S. cervisiae, O. Oeni, H. uvarum, H. valbyensis | [108,109,116] |
Methyl octanoate | Orange | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Ethyl 3-methyl butanoate | Pineapple | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
Ethyl acetate | Pineapple | S. cervisiae, O. Oeni | [116] |
Ethyl butanoate | Pineapple | S. cervisiae, O. Oeni | [116] |
Isoamyl acetate | Banana | T. delbrueckii, S. bayanus, S. cerevisiae, H. uvarum, H. Valbyensis | [104,109] |
Ethyl hexanoate | Banana | T. delbrueckii, S. bayanus, S. cerevisiae | [104,108] |
Hexyl acetate | Herbal | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Heptyl acetate | Earthy | - | [109] |
Ethyl octanoate | Fruity, candy | S. cerevisiae | [105,115] |
Ethyl hexadecanoate | Resinous | S. cerevisiae, H. uvarum, H. valbyensis | [105,109] |
3-methyl butyl octanoate | Coconut | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
Ethyl oleate | Waxy | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Ethyl tetradecanoate | Waxy, ether | S. cerevisiae, H. uvarum, H. valbyensis | [108,109] |
Butyl acetate | Sweet | S. cervisiae, O. oeni | [116] |
2-phenylethyl propanoate | Rose | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
2-phenylethyl acetate | Honey | T. delbrueckii, S. bayanus, S. cerevisiae, H. uvarum, H. valbyensis | [104,109] |
Diacetyl | Buttery | S. cervisiae, O. oeni | [105,116] |
3-hydroxy-2-butanone | Buttery | S. cervisiae, O. oeni | [116] |
2-phenylethyl acetate | Honey | T. delbrueckii, S. bayanus, S. cerevisiae, H. uvarum, H. valbyensis | [104,109] |
Acids | |||
Octanoic acid | Fatty, sweat | S. cerevisiae, H. uvarum, H. valbyensis | [108,109] |
Propanoic acid | Rancid | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
2-methyl butyric acid | Rancid | - | [105] |
Acetic acid | Vinegar | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
9-decenoic acid | Soapy | S. cervisiae, O. oeni | [115,116] |
Nonanoic acid | Fatty | S. cervisiae, O. oeni | [116] |
Hexanoic acid | Cheesy | S. cervisiae, O. oeni | [116] |
Alcohols | |||
2-Phenylethanol | Rose, honey | T. delbrueckii, S. bayanus, S. cerevisiae | [104,105] |
Eugenol | Spicy | S. cerevisiae, H. uvarum, H. valbyensis | [105,109] |
Amyl alcohol | Malt | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
3-methyl-1-butanol | Malt | S. cervisiae, O. oeni | [108,116] |
Isoeugenol | Smoky | S. cervisiae, O. oeni | [116] |
Methionol | Sulphury, vegetables | S. cervisiae, O. oeni | [105,116] |
Octan-1-ol | Oily | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Benzyl alcohol | Sweet | - | [105] |
4-ethyl guaiacol | Spicy, clove | S. cervisiae, O. oeni | [105,116] |
2-phenyl ethanol | Rose, honey | S. cervisiae, O. oeni | [108,116] |
1-octen-3-ol | Earthy | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
1-octen-3-ol | Mushroom | T. delbrueckii, S. bayanus, S. cerevisiae, H. uvarum, H. valbyensis | [104,109] |
Phenol | Phenol, medicinal | S. cervisiae, O. oeni | [116] |
1-hexanol | Herbaceous | S. cerevisiae | [115] |
Aldehydes and ketones | |||
Decan 2-one | Orange | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
2,6-dimethyloct-3-enal | Green melon | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Hexanal | Grass | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Βeta-cyclocitral | Mint | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Oct-1-en-3-one | Mushroom | S. cerevisiae, H. uvarum, H. valbyensis | [108,109] |
6-methylhepta-3,5-dien-2-one | Cinnamon | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
(E,E)-hepta-2,4-dienal | Nuts | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Benzaldehyde | Almond | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
(E)-hept-2-enal | Almond | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
3-octanone | Herbal | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
Methional | Rancid | - | [105] |
Terpenoids and lactones | |||
Βeta-citral isomer | Lemon | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Βeta-ocimene | Herbal | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
γ-nonalactone | Coconut | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
γ-decalactone | Peach | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
γ-butyrolactone | Caramel | S. cerevisiae, H. uvarum, H. valbyensis | [109] |
Others | |||
Vanillin | Vanilla | T. delbrueckii, S. bayanus, S. cerevisiae | [104] |
Benzothiazole | Smoky | S. cervisiae, O. oeni | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calugar, P.C.; Coldea, T.E.; Salanță, L.C.; Pop, C.R.; Pasqualone, A.; Burja-Udrea, C.; Zhao, H.; Mudura, E. An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes 2021, 9, 502. https://doi.org/10.3390/pr9030502
Calugar PC, Coldea TE, Salanță LC, Pop CR, Pasqualone A, Burja-Udrea C, Zhao H, Mudura E. An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes. 2021; 9(3):502. https://doi.org/10.3390/pr9030502
Chicago/Turabian StyleCalugar, Paul Cristian, Teodora Emilia Coldea, Liana Claudia Salanță, Carmen Rodica Pop, Antonella Pasqualone, Cristina Burja-Udrea, Haifeng Zhao, and Elena Mudura. 2021. "An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies" Processes 9, no. 3: 502. https://doi.org/10.3390/pr9030502
APA StyleCalugar, P. C., Coldea, T. E., Salanță, L. C., Pop, C. R., Pasqualone, A., Burja-Udrea, C., Zhao, H., & Mudura, E. (2021). An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes, 9(3), 502. https://doi.org/10.3390/pr9030502