Testing the Accuracy of the Cell-Set Model Applied on Vane-Type Sub-Boundary Layer Vortex Generators
Abstract
:1. Introduction
2. Numerical Setup
2.1. Computational Domain and Physic Models
2.2. Fully Resolved Mesh Model
2.3. Cell-Set Model
3. Results and Discussion
3.1. Vortex Structure Regimes in the Wake
3.2. Vortical Structure of the Primary Vortex
3.3. Vortex Path
3.4. Vortex Size
3.5. Vortex Strength
3.6. Wall Shear Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Definition | |
CFD | Computational Fluid Dynamics |
CS | Cell-Set model |
D | Discrete vortex |
FM | Fully resolved Mesh model |
H | Height of the VG |
Hs | Suction side of the horseshoe vortex |
Hp | Pressure side of the horseshoe vortex |
L | Length of the VG |
LE | Leading Edge |
LES | Large Eddy Simulation |
MVG | Micro-Vortex Generator |
P | Primary vortex |
RANS | Reynolds-Averaged Navier-Stokes |
SBVG | Sub-Boundary Layer Vortex Generator |
SGS | Sub-Grid-Scale |
SST | Shear Stress Transport |
TE | Trailing Edge |
VG | Vortex Generator |
x/δ | Normalized axial distance |
y/δ | Normalized vertical distance |
z/δ | Normalized lateral distance |
α | Incident angle (°) |
Δ | Mesh resolution (m) |
δ | Boundary layer thickness (m) |
λ | Taylor length-scale (m) |
Γ | Circulation (·) |
Re | Reynolds number |
Half-Life Radius (m) | |
Free stream velocity (m/s) | |
υ | Kinematic viscosity () |
Vorticity () |
References
- Ashill, P.; Fulker, J.; Hackett, K. Research at DERA on Sub Boundary Layer Vortex Generators (SBVGs). In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Ashill, P.; Fulker, J.; Hackett, K. Studies of Flows Induced by Sub Boundary Layer Vortex Generators (SBVGs). In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Aramendia-Iradi, I.; Fernandez-Gamiz, U.; Sancho-Saiz, J.; Zulueta-Guerrero, E. State of the Art of Active and Passive Flow Control Devices for Wind Turbines. DYNA 2016, 91, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Aramendia, I.; Fernandez-Gamiz, U.; Ramos-Hernanz, J.A.; Sancho, J.; Lopez-Guede, J.M.; Zulueta, E. Flow Control Devices for Wind Turbines. In Energy Harvesting and Energy Efficiency; Bizon, N., Mahdavi Tabatabaei, N., Blaabjerg, F., Kurt, E., Eds.; Lecture Notes in Energy; Springer: Cham, Switzerland, 2017; Volume 37, pp. 629–655. ISBN 978-3-319-49874-4. [Google Scholar]
- Lin, J.C. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Taylor, H.D. Summary Report on Vortex Generators; Research Department Report No. R-05280-9; Research Department, United Aircraft Corporation: Moscow, Russia, 1947. [Google Scholar]
- Øye, S. The Effect of Vortex Generators on the Performance of the ELKRAFT 1000 KW Turbine. In Proceedings of the 9. Symposium on Aerodynamics of Wind Turbines, Stockholm, Sweden, 11–12 December 1995. [Google Scholar]
- Miller, G. Comparative Performance Tests on the Mod-2, 2.5-MW Wind Turbine with and without Vortex Generators; NASA TM: Cleveland, OH, USA, 1984.
- Heyes, A.L.; Smith, D.A.R. Modification of a Wing Tip Vortex by Vortex Generators. Aerosp. Sci. Technol. 2005, 9, 469–475. [Google Scholar] [CrossRef]
- Tai, T. Effect of Micro-Vortex Generators on V-22 Aircraft Forward-Flight Aerodynamics. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Agnew, B.; Tam, I.C.; Shi, X. Optimization of Heat and Mass Exchange. Processes 2020, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Joardar, A.; Jacobi, A.M. Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers. Int. J. Refrig. 2008, 31, 87–97. [Google Scholar] [CrossRef]
- Subbiah, G.; Allaudeen, A.S.; Janarthanam, H.; Mani, P.; Gnanamani, S.; Raja, K.S.S.; Raja, T.A. Computational Investigation and Design Optimization of Vortex Generator for a Sport Utility Vehicle Using CFD. AIP Conf. Proc. 2020, 2311, 090001. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, H.; Zeng, M.; Wang, R.; Gao, B. Numerical Study on Turbulent Heat Transfer Performance of a New Compound Parallel Flow Shell and Tube Heat Exchanger with Longitudinal Vortex Generator. Appl. Therm. Eng. 2020, 164, 114449. [Google Scholar] [CrossRef]
- Carapau, F.; Janela, J. A One-Dimensional Model for Unsteady Axisymmetric Swirling Motion of a Viscous Fluid in a Variable Radius Straight Circular Tube. Int. J. Eng. Sci. 2013, 72, 107–116. [Google Scholar] [CrossRef]
- Sheng, T.C.; Sulaiman, S.A.; Kumar, V. One-Dimensional Modeling of Hydrodynamics in a Swirling Fluidized Bed. IJMME 2012, 12, 13–22. [Google Scholar]
- Ibarra-Udaeta, I.; Errasti, I.; Fernandez-Gamiz, U.; Zulueta, E.; Sancho, J. Computational Characterization of a Rectangular Vortex Generator on a Flat Plate for Different Vane Heights and Angles. Appl. Sci. 2019, 9, 995. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Filgueira, P.; Fernandez-Gamiz, U.; Zulueta, E.; Errasti, I.; Fernandez-Gauna, B. Parametric Study of Low-Profile Vortex Generators. Int. J. Hydrogen Energy 2017, 42, 17700–17712. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Errasti, I.; Gutierrez-Amo, R.; Boyano, A.; Barambones, O. Computational Modelling of Rectangular Sub-Boundary Layer Vortex Generators. Appl. Sci. 2018, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Amo, R.; Fernandez-Gamiz, U.; Errasti, I.; Zulueta, E. Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate. Energies 2018, 11, 3107. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros-Coll, A.; Fernandez-Gamiz, U.; Aramendia, I.; Zulueta, E.; Lopez-Guede, J.M. Computational Methods for Modelling and Optimization of Flow Control Devices. Energies 2020, 13, 3710. [Google Scholar] [CrossRef]
- Chillon, S.; Uriarte-Uriarte, A.; Aramendia, I.; Martínez-Filgueira, P.; Fernandez-Gamiz, U.; Ibarra-Udaeta, I. JBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance. Energies 2020, 13, 2423. [Google Scholar] [CrossRef]
- Fernandez-Gamiz, U.; Réthoré, P.-E.; Sørensen, N.N.; Velte, C.M.; Frederik, Z.; Egusquiza, E. Comparison of Four Different Models of Vortex Generators; European Wind Energy Association (EWEA): Copenhagen, Denmark, 2012. [Google Scholar]
- Bender, E.E.; Anderson, B.H.; Yagle, P.J. Vortex Generator Modelling for Navier–Stokes Codes. In Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference: FEDSM ’99, San Francisco, CA, USA, 18–23 July 1999. ASME Paper FEDSM99-6919. [Google Scholar]
- Errasti, I.; Fernández-Gamiz, U.; Martínez-Filgueira, P.; Blanco, J.M. Source Term Modelling of Vane-Type Vortex Generators under Adverse Pressure Gradient in OpenFOAM. Energies 2019, 12, 605. [Google Scholar] [CrossRef] [Green Version]
- Jirasek, A. Vortex-Generator Model and Its Application to Flow Control. J. Aircr. 2005, 42, 1486–1491. [Google Scholar] [CrossRef]
- Ballesteros-Coll, A.; Fernandez-Gamiz, U.; Aramendia, I.; Zulueta, E.; Ramos-Hernanz, J.A. Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil. Energies 2020, 13, 6723. [Google Scholar] [CrossRef]
- Ibarra-Udaeta, I.; Portal-Porras, K.; Ballesteros-Coll, A.; Fernandez-Gamiz, U.; Sancho, J. Accuracy of the Cell-Set Model on a Single Vane-Type Vortex Generator in Negligible Streamwise Pressure Gradient Flow with RANS and LES. J. Mar. Sci. Eng. 2020, 8, 982. [Google Scholar] [CrossRef]
- STAR-CCM+ V2019.1. Available online: https://www.plm.automation.siemens.com/ (accessed on 2 June 2020).
- Menter, F. Zonal Two Equation K-w Turbulence Models for Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1993. [Google Scholar]
- Allan, B.; Yao, C.-S.; Lin, J. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate. In Proceedings of the 1st Flow Control Conference, St. Louis, MO, USA, 24–26 June 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Urkiola, A.; Fernandez-Gamiz, U.; Errasti, I.; Zulueta, E. Computational Characterization of the Vortex Generated by a Vortex Generator on a Flat Plate for Different Vane Angles. Aerosp. Sci. Technol. 2017, 65, 18–25. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Richardson, L.F.; Gaunt, J.A. The Deferred Approach to the Limit. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1927, 226, 299–361. [Google Scholar] [CrossRef]
- Kuczaj, A.K.; Komen, E.M.J.; Loginov, M.S. Large-Eddy Simulation Study of Turbulent Mixing in a T-Junction. Nucl. Eng. Des. 2010, 240, 2116–2122. [Google Scholar] [CrossRef] [Green Version]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972; ISBN 978-0-262-20019-6. [Google Scholar]
- Velte, C.M.; Hansen, M.O.L.; Okulov, V.L. Multiple Vortex Structures in the Wake of a Rectangular Winglet in Ground Effect. Exp. Therm. Fluid Sci. 2016, 72, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.C.R.; Wray, A.A.; Moin, P. Eddies, Stream, and Convergence Zones in Turbulent Flows; Center for Turbulence Research Report CTR-S88; Center for Turbulence Research: Stanford, CA, USA, 1988; pp. 193–208. [Google Scholar]
- Yao, C.; Lin, J.; Allen, B. Flowfield Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate. In Proceedings of the 1st Flow Control Conference, St. Louis, MO, USA, 24–26 June 2002; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2002. [Google Scholar]
- Bray, T.P. A Parametric Study of Vane and Air-Jet Vortex Generators. Ph.D. Thesis, Cranfield University, College of Aeronautics, Bedford, UK, 1998. [Google Scholar]
- Godard, G.; Stanislas, M. Control of a Decelerating Boundary Layer. Part 1: Optimization of Passive Vortex Generators. Aerosp. Sci. Technol. 2006, 10, 181–191. [Google Scholar] [CrossRef]
VG Height (H) | Vane Height to Boundary Layer Thickness (H/δ) | VG Length (L) | Aspect Ratio |
---|---|---|---|
0.05 m | 0.2 | 0.50 m | 10 |
0.10 m | 0.4 | 0.50 m | 5 |
0.15 m | 0.6 | 0.50 m | 3.33 |
0.20 m | 0.8 | 0.50 m | 2.5 |
0.25 m | 1 | 0.50 m | 2 |
VG Height | Maximum Skewness Angle | Minimum Volume Change | Minimum Face Validity |
---|---|---|---|
0.2 δ | 81.1° | 0.029 | 1 |
0.4 δ | 75.1° | 0.029 | 1 |
0.6 δ | 66.7° | 0.029 | 1 |
0.8 δ | 64.8° | 0.03 | 1 |
1 δ | 65.3° | 0.03 | 1 |
Variable | Mesh Resolution | Richardson Extrapolation | ||||
---|---|---|---|---|---|---|
Coarse (N) | Medium (N) | Fine (N) | RE (N) | P | R | |
Drag force | 98.0699 | 89.8929 | 87.199 | 85.875 | 1.6018 | 0.329 |
Lift force | 261.605 | 247.715 | 241.39 | 236.1 | 1.135 | 0.455 |
VG Height | Maximum Skewness Angle | Minimum Volume Change | Minimum Face Validity |
---|---|---|---|
0.2 δ | 83.8° | 0.365 | 1 |
0.4 δ | 83.8° | 0.365 | 1 |
0.6 δ | 87.2° | 0.359 | 1 |
0.8 δ | 81.5° | 0.355 | 1 |
1 δ | 80.6° | 0.352 | 1 |
Variable | Mesh Resolution | Richardson Extrapolation | ||||
---|---|---|---|---|---|---|
Coarse (N) | Medium (N) | Fine (N) | RE (N) | P | R | |
Drag force | 101.632 | 98.1029 | 96.3945 | 94.5856 | 1.0466 | 0.484 |
Lift force | 259.1973 | 252.912 | 248.5026 | 237.7241 | 0.0495 | 0.7015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portal-Porras, K.; Fernandez-Gamiz, U.; Aramendia, I.; Teso-Fz-Betoño, D.; Zulueta, E. Testing the Accuracy of the Cell-Set Model Applied on Vane-Type Sub-Boundary Layer Vortex Generators. Processes 2021, 9, 503. https://doi.org/10.3390/pr9030503
Portal-Porras K, Fernandez-Gamiz U, Aramendia I, Teso-Fz-Betoño D, Zulueta E. Testing the Accuracy of the Cell-Set Model Applied on Vane-Type Sub-Boundary Layer Vortex Generators. Processes. 2021; 9(3):503. https://doi.org/10.3390/pr9030503
Chicago/Turabian StylePortal-Porras, Koldo, Unai Fernandez-Gamiz, Iñigo Aramendia, Daniel Teso-Fz-Betoño, and Ekaitz Zulueta. 2021. "Testing the Accuracy of the Cell-Set Model Applied on Vane-Type Sub-Boundary Layer Vortex Generators" Processes 9, no. 3: 503. https://doi.org/10.3390/pr9030503
APA StylePortal-Porras, K., Fernandez-Gamiz, U., Aramendia, I., Teso-Fz-Betoño, D., & Zulueta, E. (2021). Testing the Accuracy of the Cell-Set Model Applied on Vane-Type Sub-Boundary Layer Vortex Generators. Processes, 9(3), 503. https://doi.org/10.3390/pr9030503