Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Material Collection
2.3. Sample Preparation and Spray-Drying of Tintorera Grape Extracts
2.4. Identification of Phenolic Compounds of Tintorera Grape Wastes and the New Formulations by HPLC–DAD–ESI-MSn and Quantification by HPLC–DAD
2.5. Biological Activity In Vitro of Tintorera Grapes: Acetylcholinesterase Activity Assay, Pancreatic Lipase Activity Assay, and α-Glucosidase Activity Assay
2.6. Total Polyphenol Content and Antioxidant Capacity of Tintorera Grapes and Formulations
2.7. Scanning Electron Microscopy of Formulations
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification and Quantification of Phenolic Compounds in Tintorera Grapes
3.2. Biological Activity of Tintorera Grapes In Vitro
3.3. Anthocyanins and Antioxidant Capacity in Spray-Drying Formulations of Tintorera Grape
3.4. Effect of Storage Temperature on Anthocyanin-Rich Formulations of Tintorera Grape
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Sharifi-Rad, J.; Herrera-Bravo, J.; Salazar, L.A.; Delporte, C.; Barra, G.V.; Cazar Ramirez, M.E.; Lopez, M.D.; Ramirez Alarcon, K.; Martins, N.; et al. Ethnopharmacology, Phytochemistry and Biological Activities of Native Chilean Plants. Curr. Pharm. Des. 2020, 26, 1–23. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Ormazabal, M.; Vallejo, A.; Olivares, M.; Navarro, P.; Etxebarria, N.; Usobiaga, A. Optimization of supercritical fluid consecutive extractions of fatty acids and polyphenols from Vitis vinifera grape wastes. J. Food Sci. 2015, 80, E101–E107. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Castillo-Munoz, N.; Fernandez-Gonzalez, M.; Gomez-Alonso, S.; Garcia-Romero, E.; Hermosin-Gutierrez, I. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J. Agric. Food Chem. 2009, 57, 7883–7891. [Google Scholar] [CrossRef]
- Castillo-Munoz, N.; Gomez-Alonso, S.; Garcia-Romero, E.; Hermosin-Gutierrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crop. Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Spray Drying Techniques for Food Ingredient Encapsulation; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Tolun, A.; Artik, N.; Altintas, Z. Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food Chem. 2020, 302, 125347. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Cocero, M.J.; Rodríguez-Rojo, S. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food Bioprod. Process. 2018, 112, 96–107. [Google Scholar] [CrossRef]
- Souza, V.B.; Fujita, A.; Thomazini, M.; Da Silva, E.R.; Lucon, J.F., Jr.; Genovese, M.I.; Favaro-Trindade, C.S. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chem. 2014, 164, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods 2014, 7, 599–608. [Google Scholar] [CrossRef]
- Noriega, F.; Mardones, C.; Fischer, S.; García-Viguera, C.; Moreno, D.A.; López, M.D. Seasonal changes in white strawberry: Effect on aroma, phenolic compounds and its biological activity. J. Berry Res. 2020, 11, 103–118. [Google Scholar] [CrossRef]
- Gilham, D.; Lehner, R. Techniques to measure lipase and esterase activity in vitro. Methods 2005, 36, 139–147. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Chan, H.-H.; Sun, H.-D.; Reddy, M.V.B.; Wu, T.-S. Potent α-glucosidase inhibitors from the roots of Panax japonicus CA Meyer var. major. Phytochemistry 2010, 71, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- López, M.D.; Baenas, N.; Retamal-Salgado, J.; Zapata, N.; Moreno, D.A. Underutilized Native Biobío Berries: Opportunities for Foods and Trade. Nat. Prod. Commun. 2018, 13, 1934578X1801301226. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Figueiredo-Gonzalez, M.; Cancho-Grande, B.; Simal-Gandara, J. Evolution of colour and phenolic compounds during Garnacha Tintorera grape raisining. Food Chem. 2013, 141, 3230–3240. [Google Scholar] [CrossRef]
- Figueiredo-Gonzalez, M.; Regueiro, J.; Cancho-Grande, B.; Simal-Gandara, J. Garnacha Tintorera-based sweet wines: Detailed phenolic composition by HPLC/DAD-ESI/MS analysis. Food Chem. 2014, 143, 282–292. [Google Scholar] [CrossRef] [PubMed]
- De Torres, C.; Diaz-Maroto, M.C.; Hermosin-Gutierrez, I.; Perez-Coello, M.S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Anal. Chim. Acta 2010, 660, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, A.A.; El-Sers, D.A.; Al-Zokeim, N.I.; Gomaa, M.A. Amelioration of experimental metabolic syndrome induced in rats by orlistat and Corchorus olitorius leaf extract; role of adipo/cytokines. J. Pharm. Pharmacol. 2019, 71, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol. 2000, 22, 609–613. [Google Scholar] [CrossRef]
- Önal, S.; Timur, S.; Okutucu, B.; Zihnioğlu, F. Inhibition of α-glucosidase by aqueous extracts of some potent antidiabetic medicinal herbs. Prep. Biochem. Biotechnol. 2005, 35, 29–36. [Google Scholar] [CrossRef]
- Pintac, D.; Cetojevic-Simin, D.; Berezni, S.; Orcic, D.; Mimica-Dukic, N.; Lesjak, M. Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties. Food Chem. 2019, 286, 686–695. [Google Scholar] [CrossRef]
- Céspedes, C.L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008, 107, 820–829. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X.; Hu, X.; Li, T.; Fu, X.; Liu, R.H. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017, 217, 773–781. [Google Scholar] [CrossRef]
Peak | RT (min) | λmax (nm) | M+ or M− | Ion | MSn | Compound | Total Concentration |
---|---|---|---|---|---|---|---|
1 | 22.3 | 278, 520 | 465 | + | 303 | Delphinidin 3-O-hexoside | 0.82 ± 0.002 |
2 | 24.7 | 280, 516 | 449 | + | 287 | Cyanidin 3-O-hexoside | 0.57 ± 0.006 |
3 | 26.5 | 276, 524 | 479 | + | 317 | Petunidin 3-O-hexoside | 1.02 ± 0.001 |
4 | 28.1 | 358 | 481 | − | 316 | Myricetin 3-O-glucoside | 0.22 ± 0.004 |
5 | 28.3 | 278, 514 | 463 | + | 301 | Peonidin 3-O-hexoside | 3.40 ± 0.016 |
6 | 29.6 | 276, 522 | 493 | + | 331 | Malvidin 3-O-hexoside | 5.66 ± 0.122 |
7 | 33.2 | 282, 346, 524 | 507 | + | 303, | Delphinidin 3-O-(6-acetyl)-glycoside | 0.33 ± 0.002 |
8 | 36.0 | 354 | 477 | − | 301 | Quercetin 3-O-glycoside | 0.67 ± 0.003 |
9 | 36.9 | 278, 520 | 491 | + | 287 | Cyanidin 3-O-(6-acetyl)-glycoside | 0.23 ± 0.001 |
10 | 38.7 | 276, 528 | 521 | + | 317 | Petunidin 3-O-(6-acetyl)-glycoside | 0.41 ± 0.005 |
11 | 40.8 | 278, 526 | 505 | + | 301 | Peonidin 3-O-(6-acetyl)-glycoside | 0.78 ± 0.008 |
12 | 42.9 | 280, 528 | 535 | + | 331 | Malvidin 3-O-(6-acetyl)-glucoside | 1.25 ± 0.005 |
13 | 46.6 | 280, 532 | 611 | + | 303 | Delphinidin 3,5-O-di-hexoside | 0.21 ± 0.107 |
14 | 49.4 | 280, 522 | 625 | + | 301 | Peonidin 3,5-O-diglucoside | 0.15 ± 0.011 |
15 | 51.1 | 278, 528 | 655 | + | 331 | Malvidin 3,5-O-di-hexoside | 0.15 ± 0.002 |
16 | 53.0 | 280, 536 | 625 | + | 317 | Petunidin 3,5-O-di-hexoside | 0.13 ± 0.001 |
17 | 57.7 | 280, 518 | 609 | + | 301 | Peonidin 3,5-O-diglucoside | 0.28 ± 0.004 |
18 | 58.9 | 280, 532 | 639 | + | 331 | Malvidin derivative | 1.65 ± 0.052 |
Enzyme | IC50 |
---|---|
Acetylcholinesterase | 0.29 ± 0.02 |
Lipase | 0.16 ± 0.07 |
α-glucosidase | 0.26 ± 0.02 |
Treatments * | Anthocyanin Content (mg g−1 DW) | |||
---|---|---|---|---|
Malvidin 3-O-Hexoside | Peonidin 3-O-Hexoside | Petunidin 3-O-Hexoside | Delphinidin 3-O-Hexoside | |
LT10 | 0.90b | 0.47b | 0.19b | 0.21b |
LT30 | 0.51c | 0.25c | 0.09c | 0.09c |
HT10 | 0.79b | 0.34b | 0.16b | 0.18b |
HT30 | 0.48c | 0.20c | 0.08c | 0.12c |
Tintorera grapes | 5.66a | 3.40a | 1.02a | 0.82a |
Samples | a Total Polyphenols | b FRAP | b DPPH |
---|---|---|---|
Tintorera grapes | 19.77a | 203.40a | 108.27a |
LT10 | 3.35b | 98.62b | 39.97b |
LT30 | 2.07c | 58.12c | 32.90c |
HT10 | 2.76b | 120.37b | 34.64c |
HT30 | 1.93c | 66.45c | 31.18c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Belchí, M.D.; Caamaño, E.F.; Pascual, G.; Noriega, F.; Fierro-Morales, P.; Romero-Román, M.E.; Jara, P.; Schoebitz, M.; Serra, I.; Moreno, D.A. Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage. Processes 2021, 9, 518. https://doi.org/10.3390/pr9030518
López-Belchí MD, Caamaño EF, Pascual G, Noriega F, Fierro-Morales P, Romero-Román ME, Jara P, Schoebitz M, Serra I, Moreno DA. Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage. Processes. 2021; 9(3):518. https://doi.org/10.3390/pr9030518
Chicago/Turabian StyleLópez-Belchí, María Dolores, Esteban F. Caamaño, Guillermo Pascual, Felipe Noriega, Paulo Fierro-Morales, María Eugenia Romero-Román, Pamela Jara, Mauricio Schoebitz, Ignacio Serra, and Diego A. Moreno. 2021. "Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage" Processes 9, no. 3: 518. https://doi.org/10.3390/pr9030518
APA StyleLópez-Belchí, M. D., Caamaño, E. F., Pascual, G., Noriega, F., Fierro-Morales, P., Romero-Román, M. E., Jara, P., Schoebitz, M., Serra, I., & Moreno, D. A. (2021). Spray-Dried Formulations Rich in Malvidin from Tintorera Grape Wastes: Characterization, Stability, and Storage. Processes, 9(3), 518. https://doi.org/10.3390/pr9030518