The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of Biodrying Piles
2.3. Monitoring
2.4. Characterization of the Biodried Material
3. Results and Discussion
3.1. Decrease in Weight, Volume and Water Content
3.2. Decrease in Moisture and Drying Rate
3.3. Behavior of the Oxygen Level Inside the Piles
3.4. Temperature Behavior
3.5. O2 and CO2 and Their Relationship with the Moisture and Temperature Inside the Piles
3.6. Carbon, Nitrogen and Calorific Value
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
(average) | Ceq (×10-6 kg O2/L) |
0.115 | 3.19 |
0.080 | 2.22 |
0.160 | 4.43 |
0.165 | 4.57 |
References
- Rodionova, M.V.; Poudyal, R.S.; Tiwari, I.; Voloshin, R.A.; Zharmukhamedov, S.K.; Nam, H.G.; Zayadan, B.K.; Bruce, B.D.; Hou, H.J.M.; Allakhverdiev, S.I. Biofuel production: Challenges and opportunities. Int. J. Hydrog. Energy 2017, 42, 8450–8461. [Google Scholar] [CrossRef]
- San Miguel, G.; Gutiérrez-Martín, F. Tecnologías para el Uso y Transformación de Biomasa Energética; Mundi-Prensa: Madrid, Spain, 2015; p. 442. [Google Scholar]
- FAO. Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe; Tercer Boletín; FAO Regional Office for Latin America and the Caribbean: Santiago, Chile, 2016. [Google Scholar]
- Debernardi, T.D.; Contreras, R.M.; Piña, A.B.; Robles, F.; Aguilar, N.; Murguía, J. Management of Orange (Citrus sinensis) wastes from agroindustrial activities using sustainable biodrying and composting processes. In Agricultural Research Updates; Gorawala, P., Mandhatri, S., Eds.; Nova Science Publishers: New York, NY, USA, 2017; Volume 19, pp. 97–123. [Google Scholar]
- Barbosa-Evaristo, A.; Saraiva-Grossi, J.A.; Oliveira-Carneiro, A.; Duarte-Pimentel, L.; Yoshimitsu-Motoike, S.; Kuki, K.N. Actual, and putative potentials of macauba palm as feedstock for solid biofuel production from residues. Biomass Bioenerg. 2016, 85, 18–24. [Google Scholar] [CrossRef]
- Dai, J.; Saayman, J.; Grace, J.R.; Ellis, N. Gasification of woody biomass. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 77–99. [Google Scholar] [CrossRef]
- Joshi, G.; Pandey, J.K.; Rana, S.; Rawat, D.S. Challenges and opportunities for the application of biofuel. Renew. Sust. Energ. Rev. 2017, 79, 1013–1026. [Google Scholar] [CrossRef]
- Dziedzic, K.; Łapczyńska-Kordon, B.; Malinowski, M.; Niemiec, M.; Sikora, J. Impact of aerobic biostabilization and biodrying process of municipal solid waste on minimization of waste deposited in landfills. Chem. Process Eng. 2015, 36, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Dominczyk, A.; Krzystek, L.; Ledakowicz, S. Biodrying of organic municipal wastes and residues from the pulp and paper industry. Dry. Technol. 2014, 32, 1297–1303. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, L.; Jahng, D. Importance of Initial Moisture Content and Bulking Agent for Biodrying Sewage Sludge. Dry. Technol. 2014, 32, 135–144. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Cai, L.; Krafft, T.; Gao, D.; Wang, L. Biodrying performance and bacterial community structure under variable and constant aeration regimes during sewage sludge biodrying. Dry. Technol. 2018, 36, 84–92. [Google Scholar] [CrossRef]
- Robles-Martínez, F.; Ramírez-Sánchez, I.M.; Piña-Guzmán, A.B.; Colomer-Mendoza, F.J. Efecto de la adición de agentes estructurante a residuos hortícolas en tratamientos aerobios. INAGBI 2010, 2, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Ozbay, I.; Durmusoglu, E. Biodrying of green waste with high moisture content. Process Saf. Environ. Protect. 2017, 3, 420–427. [Google Scholar] [CrossRef]
- Navaee-Ardeh, S.; Bertrand, F.; Stuart, P. Key variables analysis of a novel continuous biodrying process for dryed mixed sludge. Bioresour. Technol. 2010, 101, 3379–3387. [Google Scholar] [CrossRef]
- Cai, L.; Chen, T.-B.; Zheng, S.-W.; Liu, H.-T.; Zheng, G.-D. Decomposition of lignocellulose and readily degradable carbohydrates during sewage sludge biodrying, insights of the potential role of microorganisms from a metagenomic analysis. Chemosphere 2018, 201, 127–136. [Google Scholar] [CrossRef]
- Valter-Francescato, E.A.; Luca, Z.B. Manual de Combustibles de Madera; Asociación Española de Valorización Energética de la Biomasa AVEBIOM: Valladolid, Spain, 2008; p. 79. [Google Scholar]
- Hamidian, A.; Sarshar, Z.; Stuart, P.R. Technoeconomic analysis of continuous biodrying process in conjunction with gasification process at pulp and papermills. Dry. Technol. 2017, 35, 300–311. [Google Scholar] [CrossRef]
- DOF. Norma Oficial Mexicana. NOM-021-RECNAT-2000. In Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos, Estudio, Muestreo y Análisis; Diario Oficial de la Federación; SEMARNAT: Mexico City, Mexico, 2003. [Google Scholar]
- DOF. Norma Mexicana. NMX-AA-33-1985. In Protección Al Ambiente-Contaminación del Suelo-Residuos Sólidos Municipales-Determinación Del Poder Calorífico Superior; Diario Oficial de la Federación; SEMARNAT: Mexico City, Mexico, 1992. [Google Scholar]
- Osorio, G. Buenas Prácticas Agrícolas (BPA) y Buenas Prácticas de Manufactura (BPM) en la Producción de Caña y Panela; FAO: Medellín, Colombia, 2007. [Google Scholar]
- Tom, A.P.; Pawels, R.; Haridas, A. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Waste Manag. 2016, 49, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Álvarez, C.; Díaz-Megchún, J.; Díaz-Hernández, M.; Robles-Martínez, F. Efecto de la frecuencia de volteo en el biosecado de residuos sólidos orgánicos. Rev. Int. de Contam. Ambient. 2019, 35, 979–989. [Google Scholar] [CrossRef]
- Orozco-Álvarez, C.; Molina-Carbajal, E.; Díaz-Megchún, J.; Osorio-Mirón, A.; Robles-Martínez, F. Desarrollo de un modelo matemático para el biosecado de residuos sólidos orgánicos en pilas. Rev. Int. Contam. Ambient. 2019, 35, 79–90. [Google Scholar] [CrossRef]
- Soda, K. Structural and thermodynamic aspects of the hydrophobic effect. Adv. Biophys. 1993, 29, 1–54. [Google Scholar] [CrossRef]
- Mentré, P. Water in the orchestration of the cell machinery. Some misunderstandings: A short review. J. Biol. Phys. 2012, 38, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Safefood 360. Safefood 360° Inc. 2014, Retrieved from Water Activity (aw) in Foods. Available online: https://www.safefood360.com/resources/Water-Activity.pdf (accessed on 10 February 2021).
- Téllez-Pérez, C.; Sobolik, V.; Montejano-Gaitán, J.G.; Abdulla, G.; Allaf, K. Impact of swell-drying process on water activity and drying kinetics of Moroccan pepper (Capsicum annum). Dry. Technol. 2015, 33, 131–142. [Google Scholar] [CrossRef]
- Omaña, M.; Cortes, F.; Isáza, C.; García, A. Isotermas de sorción de agua en residuos de extracción de jugo de naranja. Biotecnol. Sect. Agropecu. Agroind. 2010, 8, 61–67. [Google Scholar]
- Bailey, J.E.; Ollis, D.F. Metabolic Stoichiometry and Energetics. Biochemical Engineering Fundamentals; McGraw-Hill Education: Dunfermline, UK, 1986; p. 984. [Google Scholar]
- Colomer-Mendoza, F.J.; Robles-Martínez, F.; Herrera-Pratz, L.; Gallardo-Izquierdo, A.; Bovea, M.D. Biodrying as a biological process to diminish moisture in gardening and harvest wastes. Environ. Dev. Sustain. 2012, 14, 1013–1026. [Google Scholar] [CrossRef] [Green Version]
- Robles-Martínez, F.; Gerardo-Nieto, O.; Piña-Guzmán, B.; Montiel-Frausto, L.; Colomer-Mendoza, F.J.; Orozco-Álvarez, C. Obtención de un combustible alterno a partir del biosecado de residuos hortofrutícolas. Rev. Int. Contam. Ambient. 2013, 29, 79–88. [Google Scholar]
- Conn, E.E.; Stumpf, P.K. Bioquímica Fundamental; Editorial Limusa: Mexico City, Mexico, 1980. [Google Scholar]
- Monteiro-Santos, C.; Dweck, J.; Silva-Viotto, R.; Rosa, A.; Cardoso de Morais, L. Applications of Orange peel waste in the production of solid biofuels and biosorbents. Bioresour. Technol. 2015, 196, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Adani, F.; Baido, D.; Calcaterra, E.; Genevini, P.L. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresour. Technol. 2002, 83, 173–179. [Google Scholar] [CrossRef]
- Shao, L.-M.; Ma, Z.-H.; Zhang, H.; Zhang, D.-Q.; He, P.-J. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Manag. Res. 2010, 30, 1165–1170. [Google Scholar] [CrossRef]
- Dach, J.; Bode, S. Biological Drying of Biowaste to Generate Biomass. In Proceedings of the ORBIT 2006 5th International Conference, Biological Waste Management, From Local to Global, Weimar, Germany, 13–15 September 2006; pp. 859–866. [Google Scholar]
- Cengel, Y.A.; Ghajar, A.J. Transferencia de Calor y Masa, 4th ed.; McGraw-Hill: Mexico City, Mexico, 2011; Volume 7. [Google Scholar]
- Barboza-Cánovas, G.V.; Ibarz, A. Operaciones Unitarias en la Ingeniería de Alimentos; Ediciones Mundi-Prensa: Madrid, Spain, 2005; Volume 9. [Google Scholar]
Material | Composition | |||
---|---|---|---|---|
Pile 1 | Pile 2 | |||
(kg) | (%) | (kg) | (%) | |
Orange peel | 394.3 | 79.8 | 297 | 79.8 |
Mulch | 50.2 | 10.2 | 13.3 | 3.5 |
Carrot bagasse | 49.5 | 10.0 | 0.0 | 0.0 |
Sugarcane bagasse | 0.0 | 0.0 | 62 | 16.7 |
Total | 494 | 100 | 372.3 | 100 |
Turning frequency | Every 7 days |
PILE | Time (days) | Weight (kg) | Volume (m3) | Density (kg/m3) | Water Content (%) | Total Water (kg) | Weight Reduction (%) | Volume Reduction (%) | Density Reduction (%) | Water Content Reduction (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|
START | P1 | 0 | 494.0 | 1.49 | 331 | 75 | 370.5 | / | / | / | / |
P2 | 0 | 372.3 | 1.13 | 329 | 88 | 327.62 | / | / | / | / | |
END | P1 | 46 | 81.51 | 0.447 | 182 | 14.4 | 11.73 | 83.5 | 70 | 45 | 96.83 |
P2 | 46 | 55.84 | 0.746 | 75 | 11.9 | 6.25 | 85.0 | 34 | 77 | 98.09 |
Duration (Days) | Moisture Reduction (%) | Drying Rate (kg Water per Day) | ||||
---|---|---|---|---|---|---|
P1 | P2 | P1 | P2 | P1 | P2 | |
Phase I | 0 to 16 | 0 to 12 | 10.25 | 23.58 | 4.06 | 8.12 |
Phase II | 16 to 31 | 12 to 26 | 26.42 | 20.89 | 7.56 | 4.11 |
Phase III | 31 to 46 | 26 to 46 | 23.93 | 29.65 | 4.43 | 2.55 |
Overall drying rate | 5.32 | 4.60 |
Interval 1 | Interval 2 | Interval 3 | Interval 4 | |||||
---|---|---|---|---|---|---|---|---|
P1 | P2 | P1 | P2 | P1 | P2 | P1 | P2 | |
% O2, v/v | 19 | 4 | 15 | 1 | 20 | 12 | 18 | 15 |
Average between start and end; % O2 v/v | 11.5 | 8 | 16 | 16.5 | ||||
Days | 0 | 3 | 5 | 9 | 11 | 17 | 18 | 20.5 |
ΔO2; % O2 v/v | 15 | 14 | 8 | 3 | ||||
Δt; days | 3 | 4 | 6 | 2.5 | ||||
Oxygen consumption (OCexp=ΔO2 /100/Δt); Liters_O2/Liters of air per day | 0.050 | 0.035 | 0.013 | 0.012 | ||||
Wet pile weight; water loss of 7.79 kg /day | 494 | 471 | 455 | 424 | 408 | 362 | 354 | 334 |
Average pile weight (pw); kg | 482 | 439 | 385 | 344 | ||||
Pile porosity (ε) | 0.1 | 0.1 | 0.1 | 0.1 | ||||
Air occluded in the pile (Ap = pw * ε); kg | 48.23 | 43.95 | 38.49 | 34.40 | ||||
Oxygen consumption in the pile (OCP= OCexp * 32/29 * Ap); kg O2/day | 2.66 | 1.70 | 0.57 | 0.46 | ||||
* Estimated oxygen supply (OS = OTR * Vpile), kg O2/day | 3.32 | 2.31 | 4.62 | 4.77 | ||||
Oxygen remaining in the porosity [Or=(OS-OCP) * 100 * ρair/ρoxygen], % v/v | - | 1.26 | - | 1.28 | - | 10 | - | 12 |
Microorganisms | aw |
---|---|
Bacteria | 0.90 |
Yeasts | 0.88 |
Molds | 0.80 |
Halophilic bacteria | 0.75 |
Xerophilic molds | 0.61 |
Osmophilic yeasts | 0.61 |
PILE | Time (Days) | Organic Matter (%) | Carbon (%) | Nitrogen (%) | C/N | pH | Organic Matter Reduction (%) | Carbon Reduction (%) | Nitrogen Increase (%) | |
---|---|---|---|---|---|---|---|---|---|---|
START | P1 | 0 | 93.69 | 54.34 | 0.70 | 77.57 | 3.4 | 0 | 0 | 0 |
P2 | 0 | 95.41 | 55.34 | 0.76 | 72.75 | 3.6 | 0 | 0 | 0 | |
END | P1 | 46 | 73.69 | 42.74 | 0.93 | 45.59 | 8.23 | 20.00 | 11.6 | 0.23 |
P2 | 46 | 69.59 | 40.36 | 0.80 | 49.88 | 6.76 | 25.82 | 14.9 | 0.04 |
Waste Type | Heat of Combustion (kJ/kg) | Moisture (%) | Process Time (days) | Characteristics | Reference |
---|---|---|---|---|---|
Organic solid waste | 15,272 15,832 | 14.4 11.9 | 46 46 | Pile 1 Pile 2 | The present work |
Organic solid waste | 17,139 | 6 | 35 | In piles without forced aeration | [31] |
Organic solid waste from gardening and harvesting | 6964 15,688 | 50 12.5 | 12 30 | In piles without forced aeration | [30] |
Municipal solid waste | 10,531 14,056 | 59 32 | 6 11 | In a reactor with forced aeration | [34] |
Municipal solid waste | 10,300 | 48 | 16 | In a reactor with forced aeration | [35] |
Biological waste | 9900 11,200 | 20 30 | 14 | In tunnels with forced aeration | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Cisneros, R.M.; Orozco-Álvarez, C.; Piña-Guzmán, A.B.; Ballesteros-Vásquez, L.C.; Molina-Escobar, L.; Alcántara-García, S.S.; Robles-Martínez, F. The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles. Processes 2021, 9, 520. https://doi.org/10.3390/pr9030520
Contreras-Cisneros RM, Orozco-Álvarez C, Piña-Guzmán AB, Ballesteros-Vásquez LC, Molina-Escobar L, Alcántara-García SS, Robles-Martínez F. The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles. Processes. 2021; 9(3):520. https://doi.org/10.3390/pr9030520
Chicago/Turabian StyleContreras-Cisneros, Rosa María, Carlos Orozco-Álvarez, Ana Belem Piña-Guzmán, Luis Carlos Ballesteros-Vásquez, Liliana Molina-Escobar, Sandra Sharo Alcántara-García, and Fabián Robles-Martínez. 2021. "The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles" Processes 9, no. 3: 520. https://doi.org/10.3390/pr9030520
APA StyleContreras-Cisneros, R. M., Orozco-Álvarez, C., Piña-Guzmán, A. B., Ballesteros-Vásquez, L. C., Molina-Escobar, L., Alcántara-García, S. S., & Robles-Martínez, F. (2021). The Relationship of Moisture and Temperature to the Concentration of O2 and CO2 during Biodrying in Semi-Static Piles. Processes, 9(3), 520. https://doi.org/10.3390/pr9030520