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Abstract: Efficient monitoring is an open problem in the operation of anaerobic digestion processes,
due to the lack of accurate, low-cost, and proper sensors for the on-line monitoring of key process
variables. This paper presents two approaches for the indirect monitoring of the anaerobic digestion
of cheese whey wastewater. First, the observability property is addressed using conventional and
nonconventional techniques, including an observability index. Then, two model-based observer
techniques, an extended Luenberger observer, a sliding mode observer, and a data-driven technique
based on fractal analysis are formulated and discussed. The performance and capabilities of the
proposed methodologies are illustrated on a validated model with experimental data of the anaerobic
digestion of cheese whey. Experimental pH measurements are used for the data-driven approach
based on fractal analysis. The experimental data sets correspond to experimental conditions (pH > 7.5
and temperature (T) = 40 ◦C) favoring volatile fatty acid (VFA) production (30 g/L) with simultane-
ously acceptable biogas production (3420 mL). Results also show that the proposed observers were
able to predict satisfactory key process variables. On the other hand, the fractal analysis provides
reliable qualitative trends of VFA production and chemical oxygen demand (COD) consumption.

Keywords: indirect monitoring; anaerobic digestion; observer design; observability index; frac-
tal analysis

1. Introduction

Anaerobic digestion (AD) has been used to treat agro-industrial and dairy wastew-
aters [1,2]. The selection and design of an anaerobic digester depend on several factors,
such as organic loads, biological kinetics, and environmental conditions [3,4]. Moreover,
due to the continuous variation of wastewater quantity and composition, the AD operation
is not a simple task [1,4]. Furthermore, internal and external factors, as well as complex
and synergistic interactions between different groups of microorganisms lead to microbial
consortium changes [3].

A proper monitoring of the key AD variables is required for process understanding,
process control, diagnosis, and making appropriate decisions [4–6]. Key process variables
and available conventional measurement methods encountered in the field of bioprocesses,
include [4–6] chemical oxygen demand (COD), which is used as a proxy measure for carbon
bioavailability and to quantify the amount of organics in wastewater. Conventional COD
measurement uses dichromate or permanganate titration methods [5,7]. More advanced
methods include flow-injection analysis using microwave digestion, thermal oxidation
techniques, and spectrophotometry [8,9]. In addition, volatile fatty acids (VFAs) are inter-
mediate products of AD, and are one of the major indicators of organic matter degradation
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present in wastewater. Available methods for VFA measurement include [5,9–12] fluores-
cence spectroscopy, near-infrared (NIR) spectroscopy, titration [10], spectrofluorimetric
system [11], and gas chromatography [5,9,12]. Lastly, biogas is one of the end products
of AD. The measurement of biogas composition (CH4, CO2, O2, H2S, N2, and H2) is per-
formed in specialized devices, such as gas chromatograph, commercial on-line CH4/CO2
sensors, and electrochemical cells [5,6]. The biogas mass flow measurement can be realized
with advanced thermal mass meters or ultrasonic flowmeters [5,9]. A common method for
the quantification of biogas is liquid displacement [13].

Some drawbacks of these methods include [5,9,14] (i) long processing time delays for
off-line measurements; (ii) expensive specialized devices and accessories; and (iii) some
require costly, corrosive, and highly toxic reagents. Furthermore, bioprocesses are complex
and strongly influenced by several factors. Thus, the AD operation is usually limited to the
monitoring of pressure, flow rates, temperature, and pH.

The problem of monitoring unmeasured key bioprocess variables has been addressed
using two main categories [5,6]: model-based [15,16] and data-driven approaches [6,17].
Model-based approaches depart from a process model and available measurements, such
as state observers. In these approaches, one can distinguish the so-called software sensors,
including the basic and extended versions of Kalman filters (KF) and Luenberger observers,
asymptotic observers, high gain observers, and the interval observer [18–20]. On the
other hand, data-driven approaches are based only on on-line measurement signals. These
approaches include neural networks, support vector machine techniques [16,17], and fractal
analysis [21,22].

A vast amount of literature on applications state observers in mechanical, electrical,
chemical, and biochemical systems is available [19,23,24]. The proposed state observers
vary in complexity and robustness. Some relevant contributions to the estimation of un-
measured key variables in AD are described in the following. Alcaraz-Gonzalez et al. [25]
introduce interval observers to estimate four unmeasured variables in a six-state AD model,
based on the measurements of organic substrate and VFA. In Morel et al. [26], an observer-
based estimator technique using multi-models was developed and applied in lab-scale AD.
The observer uses measurements of COD and VFA, and allows the estimation of state vari-
ables and kinetic parameters. Super-twisting observers were applied by Sbarciog et al. [27]
on the AD benchmark model introduced by Bernard (the AM2 model). For estimation
purposes, the authors consider the measurement of both substrate and the flow rate of
biogas. In Didi et al. [28], a nonlinear Luenberger type observer was designed for the state
estimation of the AM2 model, using both substrates’ measurements. Rodriguez et al. [29]
address the states’ simultaneous estimation and kinetic parameters for the AM2 model.
They propose an adaptive exponential observer, exploiting the cascade structure of the
model using both model substrates as measurable variables. In Lara-Cisneros et al. [30],
a nonlinear observer uses a sigmoid-type output injection for the estimation of the VFAs,
using the methane flow rate as measured output. The AM2 model is used as the case study.
Chaib Draa et al. [31] design a linear matrix inequality (LMI)-based H∞ discrete-time non-
linear state observer. The proposed state observer provides estimates of all state variables
using the measurement of the organic substrate, VFA, and the alkalinity concentration in
a six-state model. A super twisting-observer was formulated and applied in a two-state
AD model by Lara-Cisneros and Dochain [32] to estimate VFA using the methane gas
flow as the measured variable. Continuous discrete observers for exogenous input and
unknown input based on the extended KF were formulated by Dewasme et al. [33]. The
proposed observer’s performance, using as the measured output the flow rate of methane,
was tested on a four-state AD model and a pilot-plant AD. Duan and Kravaris [34] exploit
the two-time scale of a class of nonlinear systems to propose a nonlinear observer design
methodology based on Luenberger observers. A four-state AD model is considered as a
case study, and the measured output is the total biomass concentration and the VFA.

The property of observability is a prerequisite for the estimation of non-measurable
states through state observers. Various methodologies can be applied to study the ob-
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servability property with different degrees of complexity [18,19,35]. The observability
analysis for linear systems is well established, and includes Kalman’s rank condition, the
Gramian of observability, and the Popov–Belevith–Hautus (PBH) criteria [36]. On the
other hand, the observability for nonlinear systems is not easy to establish, and is still an
open research topic [18,35,37]. Two approaches to address the observability analysis for
nonlinear systems are an equivalent Kalmans’ rank condition, using Lie derivatives, and
incidence diagrams to establish connections between states and system outputs [35,37,38].
In the case of anaerobic digestion, few papers have addressed the observability properties.
Observability analysis based on the rank condition using Lie derivatives was studied by
Didi et al. [28] and Rodriguez et al. [29]. Algebraic observability was considered by Lara-
Cisneros et al. [30] and Lara-Cisneros and Dochain [32]. In other cases, the observability
analysis has been restricted to the classical Kalman´s rank conditions from a local linear
approximation of the non-linear model of the process at an equilibrium point [19,34]. It is
also noted that due to parameter variations, the process may gradually become unobserv-
able. Moreover, some operating regions in phase space are less observable than others. The
concept of observability index was introduced to quantify the degree of observability [35].
Several approaches have been proposed for the observability index. Most of them are
based on the observability matrix’s singular values using the corresponding condition
number [35,37,38]. A set theoretical approach considering uncertain measurements aimed
to control applications was introduced by Lopez et al. [39]. Nahar et al. [40] use an observ-
ability index that relates the spatial relationships among all the rows of the observability
matrix with the degree of observability.

Data-driven techniques, such as artificial neural networks (ANNs) and support vector
machine techniques, allow the estimation of unmeasured key process variables using
available measurements that are seemingly unrelated [5,17,19]. ANNs have been ap-
plied in AD to estimate removal efficiencies and CO2 and biogas productions [41–43]. In
Kazemi et al. [44], different data-driven methods were proposed and evaluated, including
ANN and support vector machines, for estimating VFAs using synthetic data from the
wastewater treatment Benchmark Simulation Model No. 2. Some limitations of these
techniques include the long-term or historic multi-variable measurements, the training
step, and the model architecture selection.

In the last few years, fractal analysis has been introduced as an effective diagnostic
tool in studying biological fluctuations with efficient handling noise, as well as robustness
for unveiling correlations between variables [45–47]. Indeed, fractal analysis can reveal
the following [21,22,45]: (i) characteristic time scales; (ii) stochastic, persistence, and anti-
persistence behaviors; and (iii) dynamic changes of fractal parameters. In AD, fractal
analysis of pH fluctuations has allowed inferring correlations between fractal parameters
and key physical parameters (i.e., COD, VFA, and biogas production) [21,22,47].

The objective of this paper is to assess the performance of two model-based esti-
mator approaches, an extended Luenberger observer, and a high-order sliding mode
observer [15,19], as well as one data-driven approach based on fractal analysis [21,22,47]
for the AD of cheese whey wastewater. Because of their physicochemical characteristics and
an elevated amount of organic matter, cheese whey effluents pose severe environmental
hazards [48]. The AD of cheese allows potential pollution reduction with simultaneous
energy production [49].

The main contributions of this paper are two-fold: (i) it extends the applicability of two
indirect monitoring techniques to the AD of cheese whey wastewater using experimental
data, and (ii) it presents an in in-depth observability analysis considering conventional
and non-conventional methods. Thus, by this contribution, a systematic and practical
methodology to address the indirect monitoring of AD processes is provided.
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2. Materials and Methods

In this section, the main aspects of the applied methods (observability analysis, state
observer designs, and the rescaled range fractal analysis) for the indirect monitoring of
key process variables of the cheese whey treatment, using different available experimental
information, are described. Moreover, for completeness, both the experimental set-up
used to obtain the experimental measurements and the validated mathematical model for
observability and observer design purposes are briefly described.

2.1. Experimental Set-Up for Cheese Whey Treatment

The experimental tests were carried out using raw cheese whey as substrate, which
was obtained as a byproduct in the fresh cheesemaking process from a community dairy
located in Coacoatzintla Veracruz, Mexico. The cheese whey did not receive pretreatment.
Moreover, to avoid acidification or chemical composition modification, it was stored at
4 ◦C for no more than 12 h before its use. The sludge used as inoculum was conditioned
in a laboratory-scale anaerobic digester fed with raw cheese whey (organic load rate
OLR = 3.6 gCOD L−1 d−1) under conditions of 33 ◦C, pH = 8.0, hydraulic retention time
(HRT) = 30 d, and having been operated for 365 days.

Anaerobic treatment of raw cheese whey was carried out in duplicate using a batch
reactor with an effective volume of 5.1 L, operated at initial pH = 7.5 and under mesophilic
conditions, maintaining the reactor temperature at 40 ◦C by controlling the circulation of
the cooling water. The pH control system was only established to avoid acidification of the
system, i.e., when the pH is lower than the initial pH, an NaOH solution was added.

For process monitoring, pH, temperature, and the biogas flow rate were monitored on-
line, and VFAs and COD were monitored offline using standardized analytical techniques.
Biogas production was measured on a daily basis by using the volumetric methodology.
Biogas composition was measured using a GOW-MAC 580 series gas chromatograph,
equipped with an isothermal column oven, and hauling gas of helium and hydrogen. The
pH measurements were sampled at 1 data per second for 5 days (432,000 points), with an
accuracy of ±0.02, using a National Instrument cRIO-9074 system with a Mettler-Toledo
M300 pH/ORP transmitter.

2.2. Mathematical Model for Cheese Whey Treatment

An unstructured dynamical model describing the behavior of the AD of cheese
whey was proposed by B-Arrollo et al. [50]. The model parameters were estimated using
Levenberg–Marquardt’s method, based on experimental data sets from the above-described
experimental set-up. The effects of pH and temperature variations are also considered in
the proposed model. Hence, this experimentally validated model has been used as the base
model for observability analysis and observer designs described below.

The main model assumptions [50] are (i) four consecutive stages—hydrolysis, aci-
dogenesis, acetogenesis, and methanogenesis; (ii) homogeneous conditions; (iii) that the
organic load is lumped into two substrates, S1 (g/L) and S2 (g/L), where S1 lumps the long-
chain components (carbohydrates, proteins, and lipids) and S2 represents simple organic
compounds (carbohydrates and amino acids); (iv) the AD biomass is lumped into three
species—hydrolytic biomass Xh (g/L), acidogenic bacteria XA (g/L), and methanogenic
biomass Xm (g/L); (v) the acidogenic bacteria XA consumes S2 to produce the VFA (A); (vi)
the methanogenic biomass Xm produces biogas B; (vii) first-order kinetics is used for the hy-
drolysis phase; (viii) the kinetics of the acidogenesis step is described with a Monod kinetic;
and (ix) the methanogenic growth is described with Haldane kinetics, which considers
VFA inhibition. The mathematical model is given by B-Arrollo et al. [50].

dXh
dt

= KhS1Xh − KdhXh

dS1

dt
= −KhS1Xh

YXh/S1
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dXA
dt

=
µamaxS2

KS2 + S2
IXA − KdaXA

dS2

dt
= KhS1XhYS2/Xh

− 1
YXA/S2

µamaxS2

KS2 + S2
IXA (1)

dXm

dt
=

µmmax A
KA + A + A2/KI

IXm − KdmXm

dA
dt

= YA/Xa

µamaxS2

KS2 + S2
IXa −

1
YXm/A

µmmax A
KA + A + A2/KI

IXm

dCH4

dt
= YCH4/Xm

µmmax A
KA + A + A2/KI

IXm

where Kh is the hydrolytic constant, and the death constants of the hydrolytic, acidogenic,
and methanogenic bacteria are Kdh, Kda, and Kdm, respectively. The production yield coeffi-
cients are YXh/S1, YS2/Xh, YA/Xa, and YCH4/Xm. Degradation yield coefficients are YXa/S2 and
YXm/A. Maximum growth rates are µamax, and µmmax for the acidogenesis and methanogenic
kinetics, respectively. The kinetic constants are KS2, KA, and KIm. Variable I was introduced
into the model to consider the simultaneous effects of pH and temperature on the biomass
kinetics. Additional model details are found in B-Arrollo et al. [50].

2.3. Observability Analysis

Observability is a structural system property to identify the possibility of inferring
the unmeasured states based on available measurements. In this section, the observability
properties using linear and non-linear approaches are briefly described.

2.3.1. Linear Observability Analysis

Linear observability criteria are based on the linearized version of the non-linear
model. Thus, consider the classical linear state–space approximation, given by

dx(t)
dt = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2)

where A(t) is the matrix of states, B(t) is the matrix of inputs, C(t) is the matrix of outputs,
and D(t) is the matrix of measured inputs. If A, B, C, D are constant matrices, model (2) rep-
resents the most common linear time-invariant system (LTI) for linear control studies [36].

1. Kalman range condition.

The classic observability test, the Kalman range condition [36], states that the LTI
system is observable if and only if the following observability matrix OKal has a full range,

OKal =
[
C CA CA2 . . . . . . .CAN−1

]T
(3)

Kalman´s range condition is based on the fact that if there are N columns independent
of OKal, then each state variable can be determined by a linear combination of the output
variable y(t) and the time t [36].

2. Popov–Belevitch–Hautus (PBH) test.

For LTI systems with an accurate knowledge of system parameters, the PBH observ-
ability test establishes that an LTI system is observable if and only if [36]

rank
[

sI − A
C

]
= N ∀λi ∈ A (4)

It can be noted that the test requires evaluating Equation (4) for each eigenvalue of
A. It also should be noted that the above observability conditions, i.e., the Kalman rank
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condition, the PBH test, and the corresponding Gramian test, are equivalent and applicable
to the LTI version given by the state–space model (2).

For non-linear observability analysis, consider the following non-linear system,

dx(t)
dt = f (x(t), u(t))

y(t) = hx(t)
(5)

where x(t) is the vector of states of the system, and y(t) is the vector of measurable outputs.

1. Rank condition using Lie derivatives.

The observability concept for non-linear systems was extended using differential
geometry concepts [35,38]. In this case, observability can be established locally from an
observability matrix that is constructed with Lie derivatives or square brackets, given as

OLie =
[

h(x)L f h(x) L2
f h(x) . . . . . .LN−1

f h(x)
]T

(6)

A sufficient observability condition for the nonlinear system given by Equation (5)
is that the observability matrix OLie, given by Equation (6), is of a dimension equal to the
dimension of the vector of states N [35]. The observability matrix given by Equation (6)
can be considered a generalization for non-linear systems of the observability matrix
given by Equation (3) for linear systems. Due to the more considerable computational
effort of the Lie derivatives calculation, an observability condition using the simple linear
approximation is more common.

2. Incidence diagrams.

The observability property can be studied by exploiting the structure of the connec-
tions between the states, inputs, and outputs of the system, using a graphic representa-
tion [35,37]. Liu et al. [35] describe the approach to building an inference diagram based
on the system model’s structure. The incidence diagram is constructed considering the
following points [35]:

• A link is drawn, xi → xj, if xj appears in the differential equation of xi. This implies
that one can collect information from xj by monitoring xi as a function of time;

• The inference diagram is broken down into sets of firmly connected maximum com-
ponents (SCCs), which are select graphs that directly link to each node of another
sub-graph. Usually, they are enclosed in dotted circles;

• At least one node is selected from each root of the SCCs, which do not have input axes,
to ensure system observability.

Thus, the incidence diagram approach provides a practical observability analysis
based on the nonlinear systems.

2.3.2. Observability Index

The observability index was introduced to provide information on the singularity of
the observability matrix [37]. Indeed, when the observability matrix is near the singularity,
the observability properties are lost, leading to problems in the estimation of unmeasured
states or in observer-based control schemes. This paper considers the observability index
applied by Nahar et al. [40] to an agro-hydrological system, which relates the spatial
relationships among all the rows of the observability matrix with the degree of observability.
Hence, the degree of observability is quantified with the smallest eigenvalue of the product
øTø, where ø denotes the normalized observability matrix at the sampling time k, which is
written as

O(k) =
[
C(k) C(k)A(k) C(k)A(k)2 . . . . . . .C(k)A(k)N−1

]T
(7)



Processes 2021, 9, 539 7 of 15

The normalized element at the j-th row and the i-th column in matrix ø is computed
as follows [40]:

øj
i =

Oj
i√(

∑N
i=1

∣∣∣Oj
i

∣∣∣2) (8)

where Oj are the rows of observability matrix O. The degree of observability is then given
as [40]

deg∅ = λmin (9)

where λmin is the minimum among all the eigenvalues λi (i = 1, . . . , N). The ratio of
eigenvalues gives the relative measure of system observability [40]:

ø =
λmax

λmin
(10)

where λmax is the maximum eigenvalue of øTø. A value of ø closer to one is associated with
a highly observable system. On the other hand, larger values of ø correspond to poorly
observable conditions [40].

2.4. Observer Designs

The following dynamic model gives the general structure of a nonlinear observer for
the nonlinear system (5):

dx̂
dt

= f (x̂(t), u(t)) + ϕ(ee(t)) (11)

with
ee = y(t)− ŷ(t) (12)

where x̂(t) is the vector of the estimated states and ŷ(t) is the estimation of the measured
states. Thus, the observer design structure consists of a copy of the process model, plus
a corrective term ϕ(ee(t)) driven by the measured signal y(t) [15,19,23]. The observer
problem´s design is to devise the form of function ϕ, such that ‖x(t)− x̂(t)‖ → 0, either
asymptotically (t→ ∞) or in finite time (t→ tf).

2.4.1. Extended Luenberger Observer

The structure of the extended Luenberger observer (ELO) is obtained with the correc-
tion term, selected as [15,19]

ϕ(ee(t)) = L(y(t)− ŷ(t)) (13)

L is the gain observer matrix, which can be calculated to guarantee the desired con-
vergence rate and its stability [19,23]. Nonetheless, the computing of L requires model
linearization, which is valid only around a given linearization point.

2.4.2. Sliding Mode Observers

Sliding mode observers (SMOs) belong to the class of high-gain observer (HGO)
designs, with a convergence rate higher than the ELO [19,27]. SMOs are a family of
observer designs based on the convergence properties of a switching action driven by a
sign function. Indeed, in SMOs, a discontinuous action is used to reach the so-called sliding
surface for which the state estimation error is zero. Thus, roughly speaking, in SMOs the
correction term is endowed with a discontinuous switched signal.
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High-order SMOs have been proposed to provide smooth estimation in finite time [51,52].
In this paper, a high-order SMO is proposed to estimate the model states from the only
experimental measurement of CH4. The correction term is then given as [51,52]

ϕ(ee(t)) = Ksign(y(t)− ŷ(t))‖y(t)− ŷ(t)‖
1
p (14)

where K is an observer design parameter and p is an odd number.

2.5. Fractal Analysis

Data-driven techniques offer the possibility to use data sets of available measurements,
such as temperature, pH, conductivity, etc., and establish a map to some of the key process
variables [17,41–44]. Fractal analysis is a simple, data-driven technique proven quite use-
ful and effective to infer unmeasurable variables in many process applications [21,53,54].
Several methodologies are available in the literature for fractal analysis. However, rescaled
range (R/S) has been widely applied for time-series analysis obtained from physical, chem-
ical, and biological processes, due to its simplicity and easy implementation [55]. The
R/S statistical measures the range of the partial sums’ deviations in a time series about
its average, rescaled by the series standard deviation. Consider a time series ZN = (zi) of
length N, and the subsequence XNS = (xi) of length NS, where NS < N. The R/S statistic for
XNS is calculated as [55](

R
S

)
S
=

1
σS(NS)

(
max
1≤i≤M

i

∑
k=1

(xk − xNS)

)
(15)

where xNs is the subsequent mean, xNs = 1
NS

Ns
∑

i=1
xi, and σS(NS) is the sample standard

deviation σS(NS) =

√
1

NS

NS
∑

k=1
(xk − xNs)

2. The R/S statistic can be described with a power

law, (R/S)S = aNH
S , where a is a constant and H is the Hurst exponent. In the pox diagram,

obtained with a log–log plot of (R/S) as a function of NS ∈ (NS,min, NS,max), gives a straight
line with slope H. For independent series data (e.g., white noise process), H = 0.5. If H > 0.5,
the time series is persistent, indicating the presence of long-term autocorrelations. Finally,
if H < 0.5, the series data displays anti-persistent autocorrelations. Dynamical changes of
the Hurst exponent are obtained considering a moving window of m points.

3. Results and Discussion

In this section, we discuss the application and limitations of the above-described
methods for the indirect monitoring of key process variables in cheese whey wastew-
ater treatment. For numerical simulations and computational analysis, the following
numerical parameter values were considered [50]: Kh = 100, Kdh = 100, Kda = 100, Kdm = 100,
YXh/S1 = 100, YS2/Xh = 100, YA/Xa = 100, YCH4/Xm = 100, YXa/S2 = 100, YXm/A = 100, µamax = 100,
µm = 100, KS2 = 100, KA = 100, and KIm = 100. Initial conditions were set as [S1, S2, Xh, XA,
Xm, A, CH4] = [20.3342, 36.1908, 0.9969, 1.047, 0.3287, 94.5439, 0].

3.1. Experimental Profiles

Figure 1 shows the experimental profiles of COD, VFA, and biogas production, dur-
ing 120 hours of operation of the anaerobic sequencing batch reactor (AnSBR) treating
the cheese whey, and nominal conditions of pH = 7.5 and temperature (T) = 40 ◦C [50].
Experimental results present a percentage of COD removal of 35%, a VFA generation of
30 g/L, and biogas production of 3420 mL. The pH was maintained above the base value of
pH = 7.5 to avoid the system’s acidification with a simple on/off control scheme. Despite
the fact that pH fluctuations are typically assumed to be non-correlated noise, providing
information related to process acidification, such a pH fluctuations, reflects essential aspects
of the digester metabolic status.
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3.2. Observability Analysis

Following the graphical approach method by Liu et al. [35], Figure 2 shows the
constructed inference diagrams for cheese whey AD. It is noted from the incidence diagram
that the CH4 state is the only root SCC, i.e., one that has no incoming edges. Thus, the CH4
measurement, which is available using different conventional techniques, is necessary to
ensure the whole system’s observability.
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Since incidence diagrams provide necessary conditions for observing the non-linear
system’s states, the Kalman rank condition and the observability matrix’s rank condition
based on Lie derivatives were computed. The structures of both the standard observability
matrix and observability matrix using Lie derivatives are identical and given as

O =



0 0 0 0 0 0 1
0 0 J23 J24 J25 J26 0

J31 J32 J33 J34 J35 J36 0
J41 J42 J43 J44 J45 J46 0
J51 J52 J53 J54 J55 J56 0
J61 J62 J63 J64 J65 J66 0
J71 J72 J73 J74 J75 J76 0


(16)
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where Jij denotes the corresponding non-vanish element in the i-th row and j-th column
of the corresponding observability matrix. Thus, in both cases, the full rank condition is
satisfied with the measurement of CH4.

The observability index’s behavior, considering the measurement of CH4, along the
trajectory of model (1) for 120 h, is shown in Figure 3. It is noted that the observability
index’s lower values are obtained at the beginning of the dynamic simulation until 45 h.
In 45–100 h, considerable fluctuations are shown, indicating poor full-state observability
properties using only the measurement of CH4. For comparison purposes, the observability
index using the simultaneous measurement of CH4 and VFAs is also presented in Figure 3.
Interestingly, after a slight fluctuation at the time interval of 45–60 h, observability proper-
ties are improved, which can reflect that the production of VFAs and thus better reflect the
status of the AD. In fact, at t = 45 h, the maximum production of S2 is achieved; after that,
fast consumption of this substrate from the acidogenic bacteria is observed.
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3.3. Observer Designs

Based on previous observability analysis, for observer designs, the measured variable
is selected as the CH4 concentration. It should be noted that several observer designs
applied to AD units consider as available measurements the VFA and COD concentra-
tions [25,27–29], which is only possible using costly measurement devices, limiting its
practical applicability. On the other hand, other observer designs, utilizing the methane
gas flow as a measurement variable [30,31,33], have been applied to reduced AD models.

Figure 4 shows the performance of both the ELO and high-order SMOHOSMO ob-
server designs. The ELO gain matrix is determined based on the LMI methodology [56].
The gains of the sliding mode observer are selected by trial and error. Both observers are
driven by a simple interpolation of available experimental measurement of CH4 (13 points
at different sampling times) and its corresponding estimated value from the observers.

A similar behavior of each observer designs for the estimation of substrates S1 and S2
can be noted from Figure 4. The most important differences between estimated states and
the experimental data are observed before the substrates’ depletion.
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The observer performance was evaluated using the normalized mean squared error
(NMSE), given as

NMSE =
1
N ∑

i=1

(Pi −Mi)
2

P ∗M
, P =

1
N ∑

i
Pi, M =

1
N ∑

i
Mi

where Pi and Mi are experimental and estimated values, respectively. Results are shown
in Table 1.

Table 1. Performance indexes (normalized mean squared error (NMSE)) for the ELO and high-
order SMO.

NMSE ELO High-Order SMO

CH4 0.01006 0.0079
VFA (A) 0.0269 0.0304

S1 0.0601 0.0601
S2 0.01502 0.0153

The analysis of the results obtained shows a similar performance of both observer de-
signs. However, the ELO was slightly superior to the performance of the high-order SMO.

3.4. Fractal Analysis

R/S analysis was applied to the experimental pH time series collected in the fermen-
tation of raw whey. Figure 5 shows the R/S statistic as a function of the scale s, calculated
using the complete pH time series (global analysis), and considering samples from the
6 h pH time series (local analysis). The global analysis shows three different Hurst expo-
nent values corresponding to regions A, B, and C, suggesting that the R/S analysis can
identify three characteristic phenomena in the anaerobic treatment of raw cheese whey.
Sanchez-Garcia et al. [47] indicate that each region can be related to a stage of the AD
process, i.e., region A is associated with hydrolysis, region B to acidogenesis, and region C
to methanogenesis. The local R/S analysis shows that the three regions are conserved in
the analyzed samples. However, the slopes (i.e., Hurst exponent values) exhibit dynamic
variations as the process is performed, which suggests that the calculated Hurst exponents
could be correlated to dynamic changes in the process stages.
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To analyze such dynamic Hurst exponent changes, a 6 h window was used, moving
through the entire time series in 1 h increments, which allowed the calculation of the Hurst
exponent values as a function of scale and time. According to Mendez-Acosta et al. [21],
the average of each region can be used as an index of the dynamic behavior of COD con-
sumption or VFA production. Figure 6 shows the averages of regions A and C compared
with COD consumption and total VFA production, respectively. Hurst exponents and
experimental data exhibit the same trend, corroborating that R/S analysis is a statistical
technique that allows identification of the stages of whey fermentation and indirect moni-
toring of the key process parameters. Thus, the results presented in this section extend the
results found by Sanchez-Garcia et al. [47] under different operation conditions, including a
wider pH variability. Moreover, the same experimental conditions and data are used for the
observability analysis, as well as the observer’s evaluations. It should be noted that it was
not possible to determine correlations for the biogas production, such as those obtained by
Sanchez-García et al. [47], since the process operation conditions in this study favor the
VFA production. Conditions established in Sanchez- Garcia et al., [47] were established to
favor biogas production.
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For diagnostic purposes, Morel et al. [26] use a knowledge-based system based on
measurements of biogas composition and pH, which allow the prediction of different pro-
cess conditions (methanogenic, organic overload, and acidogenic) in an AD unit. Thus, the
fractal analysis offers an alternative to process diagnoses based only on the measurement
of pH.

4. Conclusions

Anaerobic digestion processes are broadly used for treating agro-industrial and dairy
wastewaters. Effective monitoring and diagnostics technologies are mandatory to improve
AD performance. In this paper, the indirect monitoring of key process variables of the
AD of cheese whey was addressed using both model-based and data-driven approaches.
Experimental data from an anaerobic sequencing batch reactor operated at pH > 7.5 and
T = 40 ◦C, favoring that VFA production is used to validate and evaluate the performance
of both approaches. Moreover, an in-depth observability analysis was performed to identify
the most convenient measurement process variable that guarantees process observability.
It can be established that the observability analysis by differential geometry, together with
the inference diagram, are the tools that provide a complete observability assessment
for the AD of cheese whey. Two model-based monitoring approaches were applied,
an extended Luenberger observer and a high-order sliding mode observer, to monitor
substrate consumption and VFA production in the AD of cheese whey, based on the single
measurement of CH4. The performance of proposed observers was quantified with the
NMSE. The extended Luenberger observer presents a slightly better global performance for
the estimation of key process variables. A data-driven approach based on fractal analysis
of the single measurement of pH of the AD of cheese whey was also presented. Dynamical
changes of fractal parameters can be used for the qualitative monitoring of key bioprocess
variables. Since fractal analysis allows qualitative monitoring, its application is limited for
control design purposes. However, due to its fast and low computational demand, it can
be useful for diagnostics purposes of the AD operation, enabling fast and simple detection
of process failures. Although the indirect monitoring study is restricted to the AD of cheese
whey, the general ideas of the observability analysis, observer designs, and fractal analysis
presented here present a systematic framework for the reliable monitoring of a broad class
of AD processes.
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45. Gosak, M.; Markovič, R.; Dolenšek, J.; Rupnik, M.S.; Marhl, M.; Stožer, A.; Perc, M. Network science of biological systems at
different scales: A review. Phys. Life Rev. 2018, 24, 118–135. [CrossRef]

46. Jalan, S.; Yadav, A.; Sarkar, C.; Boccaletti, S. Unveiling the multi-fractal structure of complex networks. Chaos Solitons Fractals
2017, 97, 11–14. [CrossRef]

47. Sánchez-García, D.; Hernández-García, H.; Mendez-Acosta, H.O.; Hernández-Aguirre, A.; Puebla, H.; Hernández-Martínez,
E. Fractal analysis of pH time-series of an anaerobic digester for cheese whey treatment. Int. J. Chem. Reactor Eng. 2018, 16.
[CrossRef]

48. Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013,
445, 385–396. [CrossRef]

49. Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic digestion of cheese whey: Energetic and nutritional
potential for the dairy sector in developing countries. Waste Manag. 2018, 71, 711–718. [CrossRef]

50. B-Arrollo, C.; Lara-Musule, A.; Alvarez-Sanchez, E.; Trejo-Aguilar, G.; Bastidas-Oyanedel, J.R.; Hernandez-Martinez, E. An
unstructured model for anaerobic treatment of raw cheese whey for volatile fatty acids production. Energies 2020, 13, 1850.
[CrossRef]

51. Fridman, L.; Shtessel, Y.; Edwards, C.; Yan, X.G. Higher-order sliding-mode observer for state estimation and input reconstruction
in nonlinear systems. Int. J. Robust Nonlin. Contr. 2008, 18, 399–412. [CrossRef]

52. Chawengkrittayanont, P.; Pukdeboon, C. Continuous higher order sliding mode observers for a class of uncertain nonlinear
systems. Trans. Instit. Meas. Cont. 2019, 41, 717–728. [CrossRef]

53. Campos-Dominguez, A.; Ceballos-Ceballos, Y.; Velazquez-Camilo, O.; Puebla, H.; Hernandez-Martinez, E. Fractal analysis of
temperature time series from batch sugarcane crystallization. Fractals 2019, 27, 1950004. [CrossRef]

54. Hernandez-Martinez, E.; Perez-Muñoz, T.; Velasco-Hernandez, J.X.; Altamira-Areyan, A.; Velasquillo-Martinez, L. Facies
recognition using multifractal Hurst analysis: Applications to well-log data. Math. Geosci. 2013, 45, 471–486. [CrossRef]

55. Mandelbrot, B.B. The Fractal Geometry of Nature; WH freeman: New York, NY, USA, 1982.
56. Korbicz, J.; Witczak, M.; Puig, V. LMI-based strategies for designing observers and unknown input observers for non-linear

discrete-time systems. Bull. Polish Acad. Sci. Tech. Sci. 2007, 55, 31–42.

http://doi.org/10.1007/s40313-020-00633-5
http://doi.org/10.1002/btpr.2176
http://www.ncbi.nlm.nih.gov/pubmed/26404038
http://doi.org/10.1016/j.jprocont.2019.03.018
http://doi.org/10.1016/j.compchemeng.2018.11.015
http://doi.org/10.1002/jctb.854
http://doi.org/10.1016/j.envsoft.2006.03.004
http://doi.org/10.1016/j.envsoft.2004.09.006
http://doi.org/10.3390/pr8010067
http://doi.org/10.1016/j.plrev.2017.11.003
http://doi.org/10.1016/j.chaos.2017.01.021
http://doi.org/10.1515/ijcre-2017-0261
http://doi.org/10.1016/j.scitotenv.2012.12.038
http://doi.org/10.1016/j.wasman.2017.09.026
http://doi.org/10.3390/en13071850
http://doi.org/10.1002/rnc.1198
http://doi.org/10.1177/0142331218769130
http://doi.org/10.1142/S0218348X1950004X
http://doi.org/10.1007/s11004-013-9445-6

	Introduction 
	Materials and Methods 
	Experimental Set-Up for Cheese Whey Treatment 
	Mathematical Model for Cheese Whey Treatment 
	Observability Analysis 
	Linear Observability Analysis 
	Observability Index 

	Observer Designs 
	Extended Luenberger Observer 
	Sliding Mode Observers 

	Fractal Analysis 

	Results and Discussion 
	Experimental Profiles 
	Observability Analysis 
	Observer Designs 
	Fractal Analysis 

	Conclusions 
	References

