Synbiotic Fermented Milk with Double Fortification (Fe-Zn) as a Strategy to Address Stunting: A Randomized Controlled Trial among Children under Five in Yogyakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Design of the Study
2.2. Production of Synbiotic Fermented Milk with Double Fortification (Fe-Zn)
2.3. Socio-Demographic Characteristics Assessment
2.4. Anthropometry Measurements
2.5. Dietary Intake Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Onis, M.; Blössner, M.; Borghi, E. Prevalence and trends of stunting among pre-school children, 1990–2020. Public Health Nutr. 2012, 15, 142–148. [Google Scholar] [CrossRef] [Green Version]
- International Food Policy Research Institute. Global Nutrition Report 2016: From Promise to Impact: Ending Malnutrition by 2030; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- UNICEF/ WHO/The World Bank. Levels and Trends in Child Malnutrition; World Health Organization: Washington, DC, USA, 2019; Available online: https://www.who.int/nutgrowthdb/jme-2019-key-findings.pdf (accessed on 1 February 2020).
- Ministry of Health of Republic Indonesia. Main Results of Basic Health Research 2018; Ministry of Health of Republic Indonesia: Jakarta, Indonesia, 2018.
- de Onis, M.; Borghi, E.; Arimond, M.; Webb, P.; Croft, T.; Saha, K.; Flores-Ayala, R. Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutr. 2018, 22, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Rokx, C.; Subandoro, A.; Gallagher, P. Aiming High: Indonesia’s Ambition to Reduce Stunting; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Prendergast, A.J.; Humphrey, J.H. The stunting syndrome in developing countries. Paediatr. Int. Child Health 2014, 34, 250–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soekatri, M.Y.E.; Sandjaja, S.; Syauqy, A. Stunting was associated with reported morbidity, parental education and socioeconomic status in 0.5–12-year-old Indonesian children. Int. J. Environ. Res. Public Health 2020, 17, 6204. [Google Scholar] [CrossRef] [PubMed]
- Mary, S. How much does economic growth contribute to child stunting reductions? Economies 2018, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Blaney, S.; Februhartanty, J.; Sukotjo, S. Feeding practices among Indonesian children above six months of age: A literature review on their potential determinants (part 2). Asia Pac. J. Clin. Nutr. 2015, 24, 16–27. [Google Scholar]
- Bening, S.; Margawati, A.; Rosidi, A. Zinc deficiency as risk factor for stunting among children aged 2–5 years. Universa Med. 2017, 36, 11. [Google Scholar] [CrossRef] [Green Version]
- Putri, A.R.; Anwar, A.; Chasanah, E.; Fawzya, Y.N.; Martosuyono, N.; Afifah, D.N. Analysis of iron, calcium and zinc contents in for-mulated fish protein hydrolyzate (FPH) complementary feeding instant powder. Food Res. 2020, 4 (Suppl. 3), 63–66. [Google Scholar] [CrossRef]
- Bhandari, N.; Bahl, R.; Taneja, S. Effect of micronutrient supplementation on linear growth of children. Br. J. Nutr. 2001, 85 (Suppl. 2), S131–S137. [Google Scholar] [CrossRef]
- Fahmida, U.; Rumawas, J.S.P.; Utomo, B.; Patmonodewo, S.; Schultink, W. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. Asia Pac. J. Clin. Nutr. 2007, 16, 301–309. [Google Scholar]
- Liu, E.; Pimpin, L.; Shulkin, M.; Kranz, S.; Duggan, C.P.; Mozaffarian, D.; Fawzi, W.W. Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients 2018, 10, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, L.M.; Kubes, J.N.; Ramírez-Luzuriaga, M.J.; Khishen, S.; Shankar, A.H.; Prado, E.L. Effects of increased hemoglobin on child growth, development, and disease: A systematic review and meta-analysis. Ann. N. Y. Acad. Sci. 2019, 1450, 83–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltussen, R.; Knai, C.; Sharan, M. Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world. J. Nutr. 2004, 134, 2678–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.H.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; World Health Organization: Geneva, Switzerland, 2006; Available online: https://www.who.int/nutrition/publications/micronutrients/guide_food_fortification_micronutrients.pdf (accessed on 2 February 2020).
- Fiedler, J.L.; Macdonald, B. A strategic approach to the unfinished fortification agenda: Feasibility, costs, and cost-effectiveness analysis of fortification programs in 48 countries. Food Nutr. Bull. 2009, 30, 283–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuyama, M.; Harb, T.; David, M.; Davies, P.S.; Hill, R.J. Effect of fortified milk on growth and nutritional status in young children: A systematic review and meta-analysis. Public Health Nutr. 2016, 20, 1214–1225. [Google Scholar] [CrossRef]
- Batista, A.; Silva, R.; Cappato, L.; Ferreira, M.; Nascimento, K.; Schmiele, M.; Esmerino, E.; Balthazar, C.; Silva, H.; Moraes, J.; et al. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J. Funct. Foods 2017, 38, 242–250. [Google Scholar] [CrossRef]
- Helmyati, S.; Rahayu, E.S.; Kandarina, B.J.I.; Juffrie, M. No difference between iron supplementation only and iron supplementation with synbiotic fermented milk on iron status, growth, and gut microbiota profile in elementary school children with iron deficiency. Curr. Nutr. Food Sci. 2020, 16, 220–227. [Google Scholar] [CrossRef]
- Ahanchian, H.; Jafari, S.A.; Ansari, E.; Ganji, T.; Kiani, M.A.; Khalesi, M.; Momen, T.; Kianifar, H. A multi-strain synbiotic may reduce viral respiratry infections in asthmatic children: A randomized controlled trial. Electron. Phys. 2016, 8, 2833–2839. [Google Scholar]
- Helmyati, S.; Sudargo, T.; Kandarina, B.I.; Yuliati, E.; Wisnusanti, S.U.; Puspitaningrum, V.A.D.; Juffrie, M. Tempeh extract fortified with iron and synbiotic as a strategy against anemia. Int. Food Res. J. 2016, 23, 2296–2299. [Google Scholar]
- Agustina, R.; Bovee-Oudenhoven, I.M.J.; Kok, F.J.; Lukito, W.; Fahmida, U.; Van De Rest, O.; Zimmermann, M.B.; Firmansyah, A.; Wulanti, R.; Albers, R.; et al. Probiotics lactobacillus reuteri dsm 17938 and lactobacillus casei crl 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J. Nutr. 2013, 143, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Onubi, O.J.; Poobalan, A.S.; Dineen, B.; Marais, D.; McNeill, G. Effects of probiotics on child growth: A systematic review. J. Health Popul. Nutr. 2015, 34, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, B.; Li, H. Gut microbiota and iron: The crucial actors in health and disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeggi, T.; Kortman, G.A.M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.; Tjalsma, H.; et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 2015, 64, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wu, H.; Zeng, M.; Yu, G.; Dong, S.; Yang, H. Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice. Food Funct. 2018, 9, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Dhingra, U.; Hiremath, G.; Sarkar, A.; Dhingra, P.; Dutta, A.; Black, R.E. Effects of Bifidobacterium lactis HN019 and prebiotic oli-gosaccharide added to milk on iron status, anemia, and growth among children 1 to 4 years old. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Akal, C.; Yetişemiyen, A. Use of whey powder and skim milk powder for the production of fermented cream. Food Sci. Technol. 2016, 36, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Hafiizha, A.; Kayaputri, I.L.; Tensiska, T.; Amalia, N.R. The effect of skim milk concentration on sensory quality and PH of probiotic yoghurt added with red dragon fruit (Hylocereus polyrhizus). J. Ilmu dan Teknol. Has. Ternak 2020, 15, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Maganha, L.C.; Rosim, R.; Corassin, C.H.; Cruz, A.G.; Faria, J.A.F.; Oliveira, C.A.F. Viability of probiotic bacteria in fermented skim milk produced with different levels of milk powder and sugar. Int. J. Dairy Technol. 2013, 67, 89–94. [Google Scholar] [CrossRef]
- National Health and Nutrition Examination Survey. Anthropometry Procedures Manual; NHANES: Washington, DC, USA, 2004.
- Kim, H.-Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef]
- Dumville, J.C.; Torgerson, D.J.; Hewitt, C.E. Reporting attrition in randomised controlled trials. BMJ 2006, 332, 969–971. [Google Scholar] [CrossRef] [Green Version]
- Sazawal, S.; Habib, A.A.; Dhingra, U.; Dutta, A.; Dhingra, P.; Sarkar, A.; Husna, A.; Black, R.E. Impact of micronutrient fortification of yoghurt on micro-nutrient status markers and growth-a randomized double blind controlled trial among school children in Bangladesh. BMC Public Health 2013, 13, 514. [Google Scholar] [CrossRef] [Green Version]
- El Menchawy, I.; El Hamdouchi, A.; El Kari, K.; Saeid, N.; Zahrou, F.E.; Benajiba, N.; El Harchaoui, I.; El Mzibri, M.; El Haloui, N.; Aguenaou, H. Efficacy of multiple micronutrients fortified milk consumption on iron nutritional status in Moroccan schoolchildren. J. Nutr. Metab. 2015, 2015, 690954. [Google Scholar] [CrossRef] [Green Version]
- Haschke, F.; Ziegler, E.E.; Edwards, B.B.; Fomon, S.J. Effect of iron fortification of infant formula on trace mineral absorption. J. Pediatr. Gastroenterol. Nutr. 1986, 5, 768–773. [Google Scholar] [CrossRef]
- Crofton, R.W.; Gvozdanovic, D.; Gvozdanovic, S.; Khin, C.C.; Brunt, P.W.; Mowat, N.; Aggett, P.J. Inorganic zinc and the intestinal absorption of ferrous iron. Am. J. Clin. Nutr. 1989, 50, 141–144. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Child Growth Standards; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Godoy, R.; Nyberg, C.; Eisenberg, D.T.; Magvanjav, O.; Shinnar, E.; Leonard, W.R.; Gravlee, C.; Reyes-García, V.; McDade, T.W.; Huanca, T.; et al. Short but catching up: Statural growth among native Amazonian Bolivian children. Am. J. Hum. Biol. 2009, 22, 336–347. [Google Scholar] [CrossRef]
- Zhang, R.; Undurraga, E.A.; Zeng, W.; Reyes-García, V.; Tanner, S.; Leonard, W.R.; Behrman, J.R.; Godoy, R.A. Catch-up growth and growth deficits: Nine-year annual panel child growth for native Amazonians in Bolivia. Ann. Hum. Biol. 2016, 43, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Raiten, D.J.; Bremer, A.A. Exploring the nutritional ecology of stunting: New approaches to an old problem. Nutrients 2020, 12, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millward, D.J. Nutrition, infection and stunting: The roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr. Res. Rev. 2017, 30, 50–72. [Google Scholar] [CrossRef]
- Finkielstain, G.P.; Lui, J.C.; Baron, J. Catch-up growth: Cellular and molecular mechanisms. World Rev. Nutr. Diet. 2013, 106, 100–104. [Google Scholar] [CrossRef]
- Sazawal, S.; Dhingra, U.; Dhingra, P.; Hiremath, G.; Sarkar, A.; Dutta, A.; Menon, V.P.; Black, R.E. Micronutrient fortified milk improves iron status, anemia and growth among children 1–4 years: A double masked, randomized, controlled trial. PLoS ONE 2010, 5, e12167. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, U.; Nguyen, P.; Martorell, R. Effects of micronutrients on growth of children under 5 years of age. Am. J. Clin. Nutr. 2009, 89, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Lind, T.; Lönnerdal, B.; Stenlund, H.; Gamayanti, I.L.; Ismail, D.; Seswandhana, R.; Persson, L.Å. A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: Effects on growth and development. Am. J. Clin. Nutr. 2004, 80, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am. J. Clin. Nutr. 2017, 106, 1681S–1687S. [Google Scholar] [CrossRef] [PubMed]
- Golden, M.H. Proposed recommended nutrient densities for moderately malnourished children. Food Nutr. Bull. 2009, 30, S267–S342. [Google Scholar] [CrossRef] [PubMed]
- Yogeswara, I.B.A.; Kittibunchakul, S.; Rahayu, E.S.; Domig, K.J.; Haltrich, D.; Nguyen, T.H. Microbial production and enzymatic biosynthesis of γ-aminobutyric acid (Gaba) Using lactobacillus plantarum fncc 260 isolated from Indonesian fermented foods. Processes 2020, 9, 22. [Google Scholar] [CrossRef]
Characteristics | Intervention Group n = 38 | Control n = 43 | p |
---|---|---|---|
Age (months) (n, %) | |||
24–35 months | 18 (47) | 20 (47) | 0.345 a |
36–47 months | 11 (29) | 10 (23) | |
48–59 months | 9 (24) | 13 (30) | |
Birth weight (gram) (n, %) | |||
<2500 | 10 (26) | 4 (9) | 0.347 a |
≥2500 | 28 (74) | 39 (91) | |
Birth length (cm) (n, %) | |||
Unknown | 0 (0) | 1 (2) | 0.700 b |
<48 | 14 (37) | 11 (26) | |
≥48 | 24 (63) | 31 (72) | |
Sex (n, %) | 0.712 a | ||
Male | 21 (55) | 22 (51) | |
Female | 17 (45) | 21 (49) | |
Number of sibling (n, %) | 0.291 a | ||
0–1 | 12 (31) | 9 (21) | |
2–3 | 25 (66) | 31 (72) | |
≤4 | 1 (3) | 3 (7) | |
Mothers’ educational level (n, %) | 0.723 a | ||
Did not attend school | 0 (0) | 0 (0) | |
Elementary school | 3 (8) | 2 (5) | |
Junior high school | 11 (29) | 9 (20) | |
Senior high school | 22 (58) | 30 (70) | |
Bachelor | 2 (5) | 2 (5) | |
Fathers’ educational level (n, %) | 0.498 b | ||
Did not attend school | 1 (3) | 0 (0) | |
Elementary school | 5 (13) | 4 (9) | |
Junior high school | 10 (26) | 10 (23) | |
Senior high school | 19 (50) | 28 (65) | |
Bachelor | 3 (8) | 1 (3) | |
Household income (IDR) (n, %) | 0.347 b | ||
<1,000,000 | 4 (10) | 5 (12) | |
1,000,000–<1,500,000 | 17 (45) | 13 (30) | |
1,500,000–<2,000,000 | 6 (16) | 14 (33) | |
2,000,000–<2,500,000 | 3 (8) | 7 (16) | |
2,500,000–<3,000,000 | 2 (5) | 0 (0) | |
≤3,000,000 | 6 (16) | 4 (9) | |
Episode of illness (past 3 months) (n, %) | 0.853 a | ||
0 | 8 (21) | 9 (21) | |
1 | 15 (39) | 16 (37) | |
2 | 12 (32) | 12 (28) | |
3 | 3 (8) | 6 (14) | |
Illness duration (days) (n, %) | 0.482 a | ||
0 | 8 (21) | 9 (21) | |
1–5 | 11 (29) | 16 (37) | |
6–10 | 8 (21) | 10 (23) | |
11–15 | 6 (16) | 4 (9) | |
16–20 | 2 (5) | 1 (2) | |
<20 | 3 (8) | 3 (7) | |
Height-for-age z-score categories (HAZ) (n, %) | N/A | ||
Stunted | 38 (100) | 43 (100) | |
Normal | 0 (0) | 0 (0) | |
Weight-for-age z-score categories (WAZ) (n, %) | 0.246 a | ||
Underweight | 19 (50) | 27 (63) | |
Normal | 19 (50) | 16 (37) |
Nutritional Status | Intervention Group | Control | p | |
---|---|---|---|---|
Height-for-age z-score (HAZ) | ||||
Post-intervention | Stunted | 29 (76) | 39 (91) | 0.078 a |
Normal | 9 (24) | 4 (9) | ||
Weight-for-age z-score (WAZ) | ||||
Post-intervention | Underweight | 15 (39) | 26 (60) | 0.059 a |
Normal | 23 (61) | 17 (40) |
Dietary Intake | Intervention Group | Control | p |
---|---|---|---|
Energy 2 (kcal) | 1005.37 ± 197.86 | 1118.08 ± 189.48 | 0.011 b |
Carbohydrate 2 (g) | 130.03 ± 32.34 | 143.95 ± 26.82 | 0.037 b |
Protein 2 (g) | 32.32 ± 6.62 | 36.59 ± 8.76 | 0.016 b |
Fat 2 (g) | 41.85 ± 8.60 | 47.09 ± 10.59 | 0.017 b |
Iron 1 (mg) | 5.10 (2.4) | 5.23 (2.07) | 0.011 a |
Zinc 1 (mg) | 3.43 (1.42) | 3.61 (1.56) | 0.116 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmyati, S.; Shanti, K.M.; Sari, F.T.; Sari, M.P.; Atmaka, D.R.; Pratama, R.A.; Wigati, M.; Wisnusanti, S.U.; Nisa’, F.Z.; Rahayu, E.S. Synbiotic Fermented Milk with Double Fortification (Fe-Zn) as a Strategy to Address Stunting: A Randomized Controlled Trial among Children under Five in Yogyakarta, Indonesia. Processes 2021, 9, 543. https://doi.org/10.3390/pr9030543
Helmyati S, Shanti KM, Sari FT, Sari MP, Atmaka DR, Pratama RA, Wigati M, Wisnusanti SU, Nisa’ FZ, Rahayu ES. Synbiotic Fermented Milk with Double Fortification (Fe-Zn) as a Strategy to Address Stunting: A Randomized Controlled Trial among Children under Five in Yogyakarta, Indonesia. Processes. 2021; 9(3):543. https://doi.org/10.3390/pr9030543
Chicago/Turabian StyleHelmyati, Siti, Karina Muthia Shanti, Fahmi Tiara Sari, Martha Puspita Sari, Dominikus Raditya Atmaka, Rio Aditya Pratama, Maria Wigati, Setyo Utami Wisnusanti, Fatma Zuhrotun Nisa’, and Endang Sutriswati Rahayu. 2021. "Synbiotic Fermented Milk with Double Fortification (Fe-Zn) as a Strategy to Address Stunting: A Randomized Controlled Trial among Children under Five in Yogyakarta, Indonesia" Processes 9, no. 3: 543. https://doi.org/10.3390/pr9030543
APA StyleHelmyati, S., Shanti, K. M., Sari, F. T., Sari, M. P., Atmaka, D. R., Pratama, R. A., Wigati, M., Wisnusanti, S. U., Nisa’, F. Z., & Rahayu, E. S. (2021). Synbiotic Fermented Milk with Double Fortification (Fe-Zn) as a Strategy to Address Stunting: A Randomized Controlled Trial among Children under Five in Yogyakarta, Indonesia. Processes, 9(3), 543. https://doi.org/10.3390/pr9030543