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S.S.R.; Petrů, M.; Heidarrezaei, M.

Effect of Alumina Additives on

Mechanical and Fresh Properties of

Self-Compacting Concrete: A Review.

Processes 2021, 9, 554. https://

doi.org/10.3390/pr9030554

Academic Editor:

Shaghayegh Hamzehlou

Received: 18 February 2021

Accepted: 15 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia,
Skudai 81310, Johor, Malaysia

2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran;
semy2016@pci.iaun.ac.ir

3 Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of
Liberec (TUL), Studentska 2, 461 17 Liberec, Czech Republic; s.s.r.koloor@gmail.com

4 Technical University of Liberec (TUL), Studentska 2, 461 17 Liberec, Czech Republic; michal.petru@tul.cz
5 School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia,

Skudai 81310, Johor, Malaysia; mahshidheidarrezaei2@graduate.utm.my
* Correspondence: shokravihoofar@utm.my

Abstract: Self-compacting concrete (SCC) has been increasingly used in the construction sector due
to its favorable characteristics in improving various durability and rheology aspects of concrete such
as deformability and segregation resistance. Recently, the studies on the application of nano-alumina
(NA) produced from factory wastes have been significantly considered to enhancing the performance,
and mechanical strength, of SCC. Many experimental works show that NA can be used in SCC
with appropriate proportion to enjoy the benefits of improved microstructure, fresh and hardened
properties, durability, and resistance to elevated temperature. However, a limited detailed review
is available to particularly study using NA to improve the performance of SCC, so far. Hence, the
present study is conducted to fill the existing gap of knowledge. In this study, the effect of using
NA in improving rheological, mechanical parameters, and elevated temperature resistance of SCC
is reviewed. This research summarized the studies in this area, which have been different from the
previous researches, and provided a discussion on limitations, practical implications, and suggestions
for future studies.

Keywords: self-compacting concrete; self-consolidating concrete; waste alumina; nano alu-
mina; nanoparticles

1. Introduction

Concrete is a construction material that is widely used in buildings [1,2], bridges [3–5],
and other civil structures [6,7]. The application of nanoparticles in concrete has received
great attention recently because of the ultrafine size of their particles [8]. A limited number
of nanoparticles have demonstrated utility for improving the durability and mechanical
properties of concrete. Nazari and Riahi [9] reported that the addition of nano-alumina
(NA) particles into concrete mixtures can enhance strength gaining, water permeability,
and the pore structure characteristics of concrete. Khoshakhlagh et al. [10] indicated that
the inclusion of Fe2O3 nanoparticles in cementitious materials improves the compressive
strength. Moreover, Fe2O3 nanoparticles act as nanofillers to recover the pore structure
enhancing the water permeability of concrete.

Self-compacting concrete (SCC) is concrete with enhanced fresh properties that allow
pouring without external compaction [11,12]. SCC was first reported in Japan in 1988 [13].
SCC contains the same components as conventional concrete but with different proportions
and fresh characteristics [14]. The main fresh characteristic of SCC is high workability that
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enables the concrete to fill formwork to achieve full compaction without vibration [15].
The compressive strength of SCC compared to the ordinary concrete with the same water
to cement ratio is considerably higher [16]. The higher compressive strength of SCC is
attributed to its dense microstructure as compared to conventional concrete [17]. Apart
from high workability, SCC must possess a high filling ability, passing ability, and resistance
to static and dynamic segregation [18]. Nazari and Riahi [19] indicated that the inclusion
of SiO2 nanoparticles enhances the flexural strength of SCC and accelerates cement hydra-
tion. The inclusion of TiO2 nanoparticles also can improve the formation of C-S-H gel in
SCC resulting in faster hydration and improved growth of the mechanical and durability
properties of concrete [20–22].

NA is a chemical compound containing aluminum and oxygen [23,24]. The addition of
NA to concrete can significantly affect the fresh properties of concrete due to their high ratio
of surface area to volume [25]. NA has high chemical reactivity and behaves as pozzolanic
reaction promoters owing to its high ratio of the surface area [26]. NA can improve the
mechanical parameters of cementitious composites exposed to elevated temperatures [27].
It was reported that the inclusion of NA in SCC can accelerate the formation of hydrated
products, and pore structure while reducing the workability of fresh concrete, water
absorption of hardened specimens [28]. Table 1 shows the advantages and disadvantages
of SCC which has been exploited from literature. As can be seen from the presented
pros and cons analysis, the advantages are significantly higher than the inconveniences
provoked. In Figure 1 (a and b) the application of roller alumina in tile manufacturing
factories and the factory wastes of the alumina rollers are shown, respectively.
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Figure 1. The application of roller alumina in tile manufacturing factories; (a) ceramic roller kiln, (b) factory wastes.

Since the introduction of SCC, a large number of studies are conducted on enhancing
the engineering properties of the SCC as well as the prediction of the loading capacity of
SCC based on the associated mixture design. Despite the large volume of literature on the
production of SCC and the relevant admixtures such as nano-particles, little attention has
been given to predicting the complex interaction between incorporated admixtures and
mechanical characteristics of the SCC. To the authors’ knowledge, there is no review paper
on the prediction model for the compressive strength of SCC. Some papers have discussed
the prediction of the mechanical and rhetorical behavior of SCC but their main focus is only
on mixed design. This study attempts to fill part of this void in the literature by offering a
discussion on the application of NA in SCC.
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Table 1. The advantages and disadvantages of self-compacting concrete (SCC).

Advantages Ref. Disadvantages Ref.

Speeded up
construction [29] Prolonged demolding time [30]

Improved the
construction quality [31] Increased risk and

associated uncertainty [32]

Safer work conditions [33] Lowered elevated
temperature resistance [34]

The increased service
life of formworks due
to the elimination
of vibration

[31]
Higher formwork pressure
means higher
formwork costs.

[35]

Improved quality of
the final product [33] Not fully known

fire behavior [36]

Reduced manpower [33]
Maintaining ready-mixed
is not easy under the
construction site

[37]

Improved ecological
footprint [38] Not appropriate for every

application [39]

Improved economic [38] Unsuitable choice for
horizontal castings [40]

Enhanced filling
spaces in dense
reinforcement or
inaccessible voids

[38] Higher associated costs for
ready-mixed [41]

Improved
freeze-thaw resistance [42]

Using conventional drum
mixers are not suitable for
the distribution

[43]

Noise-free working
atmosphere [31] Not standardized

mix design [44]

2. Nanoparticles

Nanotechnology has become a popular and necessary part of science and technology
in recent years by addressing nanoparticles in atomic or molecular size [45]. Nanoparticles
are defined as materials where at least one dimension of a particle is less than 100 nm.
Partial replacement of nano-materials with cement in the mix design can enhance the
physical and chemical characteristics of fresh and hardened concrete [46]. The addition of
nanoparticles can improve the microstructural properties, filler effect, compactness, and
durability, as well as accelerating cement hydration [47]. Nanoparticles can also act as
pozzolanic materials and produce the additional formation of calcium–silicate–hydrates
(C–S–H) gel and, by taking place of pozzolanic reactions. The C–S–H gel Formation can
improve stiffness, flexural, tensile, and shear strength of cement-concrete [48]. Uniform
dispersion of nanoparticles in concrete is the key issue in obtaining the expected mechanical
and chemical characteristics [49,50]. The applied nanoparticles in the concrete mix to
partially replace cement are spherical shapes cementitious materials.

The addition of nanoparticles can improve the microstructural properties, compact-
ness, and durability of hardened concrete [19,48]. The effect of nanoparticles as partial
cement replacement in the concrete mix has been studied by many researchers in re-
cent years. Nano-SiO2 is the most widely investigated nanoparticle [19,51–53] while
the effect of adding other partials such as nano-TiO2 [22,54,55], nano-Al2O3 [9,56,57],
nano-ZnO2 [58,59], nano-Fe2O3 [10,60], nano-CuO [61], nano-SnO2, nano-ZrO2 [62], nano-
TiO2 [63], carbon nanotubes [64], carbon nano-fibers [45], polycarboxylates [65], nano-
Cr2O3 [48,66], nano-clay [45] and nano-CaCO3 [62,67] in properties of fresh and hardened
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concrete has been investigated so far. For example, Tawfik et al. [68] evaluated the effect of
nano-waste ceramic and nano-silica on the mechanical properties of hardened concrete.
The obtained results showed improvement in the performance of concrete but also resolved
the footprint caused by this waste. Jalal et al. [69] studied the effect of TiO2 nanoparticle
inclusion in tensile strength, thermal, rheological, transport, and microstructural properties
of SCC. The chemical effect of TiO2 as partial replacement of cement accelerates the forma-
tion of C–S–H gel and hydration resulting in increased split tensile strength of concrete
specimens. Moreover adding TiO2 nanoparticles can enhance the pore structure of concrete
by shifting the distributed pores into a less harmful configuration. Joshaghani et al. [20]
evaluated the fresh, mechanical, and durability properties of nano-TiO2, nano-Al2O3 and
nano-Fe2O3, on SCC two different contents of 3% and 5%. It was observed that addition of
3% nanoparticles can slightly improve workability properties of the mixes by increasing
the water demand. Calcium ferric hydrate (C-F-H) gel formation enhanced the compres-
sive strength and durability properties in nano-Fe2O3, nano-Al2O3 and nano-TiO2. It
was reported that nanoparticles addition controlled the formation of C-S-H gel, lowering
permeability to penetration of malicious ions of chloride.

Fresh properties of concrete containing nanoparticles are one of the most investigated
subjects. Workability, flowability, and consistency of concrete are greatly affected by the
addition of nanoparticles [70]. Generally, the flowability of SCC mixes is reduced by the
addition of nanomaterials [71]. This reduction is mainly attributed to the ability of nanopar-
ticles to absorb more water molecules due to their large area surface [20]. Mechanical
properties of hardened concrete including flexural, tensile, shear, and compressive strength
and their change due to incorporation of the microparticle in concrete are another most
important study in recent years [72]. It is stated that nanoparticles act as nuclei to form
hydration products filling micropores [73]. The formation of a dense C-S-H gel is facili-
tated by altering cement hydration that leads to an increase in compressive strength [74].
Adding excessive amounts of nanoparticles may adversely affect the compressive strength
due to restricting the Ca(OH)2 crystals growth. Several research studies have investi-
gated the influence of nanoparticles on the durability of hardened concrete. It was stated
that the water absorption of SCC mixes with nanoparticles is different from the control
specimens due to the formation of hydrated products [75]. On the other hand, the addi-
tion of nanoparticles may affect the capillary permeability of concrete and the specimens
containing nanoparticles can better resist chloride penetration [76,77].

3. Production Processes of Nano Alumina

There are different methods for the extraction and production of alumina nanopar-
ticles. Alumina is mainly extracted from two main resources of clays and coal fly ash
(CFA) [78]. The row materials undergo several chemical processes for extracting their
alumina contents. The production phase of nano alumina is performed by arc plasma,
precipitation, hydrothermal, and sol-gel methods. Functionalization is the last step in NA
production aiming at improving surface characteristics [79]. The functionalization process
prevents agglomeration between alumina nano-particles that is mainly caused by the high
surface energy and activity of nanoparticles [80,81].

3.1. Extraction of Alumina Nanoparticles

Clay is a natural mineral that is widely used to produce nano alumina due to its quite
abundant availability and low cost. Kaoline is clay made from kaolinite Al2O3.2SiO22H2O
that contains high alumina content ranged between 25 to 40%. Kaolin is a product of weath-
ering of all granitic rocks which is characterized by its fire resistance, good plasticity, and
other unique chemical and physical properties [82]. Kaolin is a chemically inert material
within a wide pH range and it is not listed as a hazardous material [83]. The alumina
extraction process from clays is performed using acids such as nitric acid, hydrochloric, or
sulfuric acid to dissolve the alumina followed by clay roasting. Heavy metal ores of clay
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are extracted using acid leachants [78]. The chemical reaction for removing heavy metals
from clays can be shown below.

Al2O3H2O + 3H2SO4 → Al2(SO4)3 + 4H2O (1)

CFA is another major source of alumina nanoparticles. CFA is rich in alumina and
alumina contents in CFA is found around 50%. The process of alumina extraction from
CFA includes three important steps namely sintering [84], hydro-chemical [85], and acid
processes [86]. The process of extracting alumina particles from CFA is shown in Figure 2.
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3.2. Production of Alumina Nanoparticles

Different methods are developed to produce alumina nano-particles that include arc
plasma, hydrothermal, sol-gel, and precipitation. The arc plasma process is defined as a
thermal treatment of solid feedstock utilizing an arc between anode and cathode generally
made of graphitic carbon for generating plasma. Using plasma for the production of
alumina has lower residue as well as lower production and maintenance costs compared
to traditional gas and oil burners [87]. Saravanakumar et al. [88] converted aluminum
dross into ultrafine alumina powder using a plasma arc melting process. It was reported
that the amount of the conversion of Al dross to alumina powder substantially correlates
with plasma power. Madhu Kumar et al. [89] and Kumar et al. [90] used a D.C. arc plasma
reactor for the preparation of alumina nano-particles. Fu et al. [91] adopted microwave
oxygen plasma to prepare alumina nanoparticles sized 21–24 nm. Stanislaus et al. [92]
investigated the hydrothermal process for the production of alumina nanoparticles in the
presence and absence of various additives. Noguchi et al. [6] used hydrothermal reaction
in supercritical water using a continuous flow reactor to prepare alumina -crystalline
nano particles.

Sol-gel and coprecipitation, two common methods to extract nano alumina with dif-
ferent sizes and morphologies. spherical particles of alumina can be prepared by using
the sol-gel method while spherical and hexagonal alumina particles can be formed by the
co-precipitation method [93,94]. Mirjalili et al. [95] synthesized alumina nanoparticles by
a sol-gel method. It was shown that the addition of surfactant and incorporated stirring
time are parameters that affect the shape and size of the formed particle. Belekar et al. [96]
obtained alumina granules with an average size of 30 nm by a modified sol-gel method.
The process included hydrolysis of Al (NO3)3 in aqueous media. Esmaeilirad et al. [97] pre-
pared alumina by heterogeneous deposition-precipitation, sol-gel, and the co-precipitation
methods. The alumina prepared by the sol-gel method using La-Cu/AlSE showed the best
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performance. Feng et al. [98] used aluminum powders as the aluminum source and acetic
acid as precipitants to prepare alumina powders in a precipitation process.

4. Sustainability of Nano Alumina

The use of nanoparticles is not yet a cost-effective option for the construction indus-
try and particularly as a concrete additive. Hence, meaningful approaches are needed
to be carried out to overcome that limitation. The valorization of industrial waste is a
sustainable way to wisely utilize renewable resources. Aluminum dross is a toxic industrial
waste generated from aluminum refining industries that contain aluminum oxynitride
(AlON), aluminum oxide (Al2O3), aluminum metal (Al), and impurities such as potassium
chloride and sodium chloride [88]. Based on reports nearly 95% of aluminum dross is
landfilled without treatment that is hazardous to the environment in China [99]. Using
conventional disposal or landfilling practices of aluminum wastes without proper treat-
ment and recycling strategy can adversely contribute to human health due to the toxic
nature of materials [100]. Hence aluminum dross should be converted into inert or less
toxic products [88].

EI-Katatny et al. [101] used caustic soda for leaching an aluminum factory waste
under atmospheric and high-pressure aluminum to form alumina. David and Kopac [102]
proposed an alumina extraction method from aluminum dross using a chemical route.
Dash et al. [103] recycled aluminum dross using acid dissolution and salt treatment for
recovering residual aluminum. Das et al. [104] adopted acid treatment for the recy-
cling of aluminum dross to obtain alumina generated by Indian aluminum industries.
Sarker et al. [105] used an acid dissolution process to extract alumina from Bangladesh
foundry industries. Singh et al. [106] optimized a chemical process for the production
of alumina through recycling aluminum dross. How et al. [107] recovered alumina from
the wastes of an aluminum production factory in Malaysia. The recovering process of
alumina consisted of acid leaching, alkaline precipitation, and calcinations steps. Most of
the aforementioned processes incorporated alkaline salts for the treatment of aluminum
dross that are hazardous to groundwater and agricultural soil and it is important to remove
these chemicals before discharging them to the environment.

Plasma processing of materials is a fast and environmentally-friendly method to
treat and high volume reduction of various types of wastes. Szente et al. [87] conducted
a comparative study on using plasma systems and traditional oil and gas burners for
recovering aluminum from dross. It was reported that the plasma process provides cheaper
operation costs (at least 23%) with lower residues than oil/gas burners. Yang et al. [108]
treated aluminum dross using a radio frequency-based plasma to recover high-purity fine
aluminum oxide (with the size of 8 µm). Saravanakumar et al. [88] reported using arc
plasma to convert dross of aluminum into alumina powder in an eco-friendly manner. The
obtained results indicated that the application of arc plasma can be efficiently used to treat
aluminum dross to recover alumina powder.

5. Self-Compacting Concrete (SCC)

SCC mixes always contain a large number of powder materials, viscosity-modifying
admixtures, and superplasticizer [109–111]. Higher cement content in concrete has some
negative effects such as a rise in material cost, increased thermal stress, and shrinkage [112].
The requirement for cement replacements in SCC is usually met by the use of filler materials
such as fly ash (FA), pulverized fuel ash (PFA), marble powder (MP), basalt powder (BP),
granulated ground blast-furnace slag (GGBS), limestone powder, etc. [112]. Uysal and
Sumer [113] investigated the effect of different mineral admixtures on the properties of SCC
such as durability, workability, and reducing cement content. The replacement of Portland
cement with FA, GGBS, BP, and MP increases the fluidity and can improve mechanical
properties, and durability of the SCC against sulfate attack. Fathi et al. [114] also testified
that fibers reduce the slump and compressive strength of SCC but increase its flexural
tensile strength. Talking about mechanical properties, Ahmad et al. [115] compared the
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mechanical properties of normal concrete (NC), SCC, and glass fiber reinforced SCC. It was
observed that addition of fiber glass to SCC decreased the workability of the concrete but it
significantly enhanced flexural of ruptures in test specimens. The change in compressive
strength by addition of glass fibers was small enough to be ignorable.

SCC is extensively used in various types of structures such as commercial buildings
and industrial structures that are subjected to high temperatures or accidental fires. Hence,
gaining proper information on the effects of high temperatures on the performance of
SCC is necessary. The effect of high-temperature on the behavior of SCC was studied
by many researchers. Anand et al. [116] reviewed the effect of the elevated temperature
on the chemical and mechanical properties of concrete. Distinct behavior was found in
mechanical properties of normal, high strength, and SCC when they are exposed to high
temperatures. It was revealed that parameters such as the compressive, tensile, and flexural
strength of concrete, water-cement ratio, cement type, the density of concrete, aggregate
type, reinforcement percentage, and reinforcement cover are some of the important factors
that affect the concrete performance at elevated temperature.

Annerel et al. [117] revealed that the thermal influence of raised temperature on the me-
chanical behavior of SCC is much significant compared to normal concrete. Pineaud et al. [118]
studied the mechanical properties of high-performance SCC under raised temperatures ranged
from 20 to 600 ◦ C. The results of experiments on 11 different mix designs showed that increas-
ing the temperature reduces their E-value and compressive strength significantly. Andiç-Çakır
and Hızal [119] explored the properties of SCC under raised temperature ranged from 300 to
900 ◦C. It was shown that the aggregate type and w/c ratio are the most influential param-
eters in the modulus of elasticity and compressive strength of the SCC while the aggregate
type is the main influential parameter in tensile strength. Table 2 shows some of these
changes within a various temperature range of exposure. Further studies on the influence
of raised temperature on the mechanical properties of concrete can be found somewhere
else [120–122]. There are limited studies on the behavior of SCC with nanoparticles and
subjected to high-temperature [123,124].

Table 2. The changes in physical and chemical parameters of concrete due to exposure to elevated
temperature (data are exploited from [120]).

Investigated Parameter Temperature Range Effect of Temperature Rise

Compressive strength 100–800 ◦C. • Decreases in a linear rate

Porosity and pore size 100–800 ◦C.
Above 1000 ◦C,

• Increase of porosity and
pore sizes

• Porosities are smaller
and better structured

Elastic modulus. 100–800 ◦C. • Decreases in a linear rate

Splitting tensile strength 100–800 ◦C. • Decreases in a linear rate

Stress-strain relationship 100–800 ◦C

• Flatter stress-strain
curves, downwards and
rightwards shift of the
peak stress

Residual flexural strength 100–800 ◦C • Decreases in a linear rate

Water evaporation At 105 ◦C
At 400 ◦C

• Free water and
physically absorbed
water are completely lost.
Chemically bonded
water start to lose

• Capillary water is lost
completely
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Table 2. Cont.

Investigated Parameter Temperature Range Effect of Temperature Rise

Hydration Up to 300 ◦C
• Hydration of

un-hydrated cement is
improved

Microstructure Up to 200 ◦C
200 ◦C–400 ◦C

• No micro-cracks
• The intensity of

micro-cracks increases

6. Nano Alumina (NA) Applications in SCC

Nanotechnology is a research area that has revolutionized the mechanical and chemical
properties of materials [125,126]. Nanotechnology is a promising research field with
applications to improve the quality of the product and the performance of concretes [127].
The nanoparticle is applied in SCC aiming to reduce segregation and to modify fresh
properties and mechanical strength., and. NA is a kind of ultra-fine chemical compound
of aluminum and oxygen with a large surface area, high density, high melting point, high
hardness, and good chemical stability with particle sizes in the range of 1~100 nm [128].
The advantages of using NA in concrete are presented in Table 3.

Table 3. Advantages of using nano-alumina (NA) in concrete.

Advantages Reference

Reduced porosity of the microstructure as the voids were filled by NS. [129]

Decreased in water absorption [130]

Improved frost resistance of concrete [131]

Controlled the setting time of the cement through a faster hydration
process will be. [132]

Reduced amount of un-hydrated cement in the mix [129]

Increased modulus of elasticity of cement mortar. [133]

Reduced segregation and flocculation. [124]

Refined voids in the hydration gel as a nanofiller. [124]

Reduced coefficients of permeability by 1–3 orders of magnitude. [133]

Sua-iam et al. [134] studied the effect of using recycled NA and fly ash in SCC. It was
shown that using recycled NA and fly ash could considerably enhance the compressive
strength and workability of SCC. Mohseni et al. studied the effects of NA and rice husk
ash (RHA) in polypropylene fiber (PPF) reinforced concrete. The combined inclusion of,
NA, PPF, and RHA reduced the water absorption and drying shrinkage of mortars and
increased flexural strength. Farzadnia et al. [135] investigated the chemical composition,
microstructure and mechanical properties of NA-based high strength mortars subjected to
elevated temperatures ranged from 100 ◦C to 1000 ◦C. It was indicated that the addition
of NA improved 16% of the compressive strength of samples. Behfarnia and Salemi [136]
studied the influence of NS and NA on frost resistance and mechanical properties of con-
crete. Higher frost-resistance was achieved for concrete with NA while concrete containing
NS had higher compressive strength. Zhan et al. [137] analyzed the effect of NA in the
hydration of cement. Accelerated cement hydration and enhanced compressive strength at
all ages were recorded. Owing to accelerated cement hydration, the strongest growth at
28 days was less obvious. Mohammadyan-Yasouj et al. [27] investigated the compressive
strength and modulus of elasticity of each SCC mix design under temperatures of 27 ◦C,
100 ◦C, 200 ◦C, 300 ◦C, 450 ◦C, and 600 ◦C for specimens cured in 7 and 28-days. It was
observed that addition of NA into the mix enhances the compressive strength of SCC for
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samples cured at 28-day in temperature under 100 ◦C. E-value of the samples cured on
28-day exhibited increasing trend. Figure 3 shows the comparison compressive strength of
self-compacting concrete (SCC) at target temperatures for specimens cured at 28-days.

 

Figure 3. Comparison of 28-day compressive strength of self-compacting concrete (SCC) at target 
temperatures [27]. 
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Figure 3. Comparison of 28-day compressive strength of self-compacting concrete (SCC) at target temperatures [27].

Szymanowski and Sadowski [138] explored the applicability of NA mortars for over-
laying concrete floors. It was shown that the mortar with Al2O3 nano-powder used to
make the overlay was less porous than the reference mortar. Li et al. [139] investigated the
effect of NA on the elastic modulus of cement composite. Based on the experiment, the
elastic modulus of mortars was increased by incorporating NA into the matrix. Nazari
and Riahi [9] investigated the effect of curing medium on the physical, mechanical, and
thermal properties of NA concrete. It was observed that curing of the specimens in satu-
rated limewater resulted in accelerated setting time. Barbhuiya et al. [140] reported the
effects of NA inclusion on the early-age microstructural properties of cement paste. It was
revealed a denser microstructure with larger crystals of portlandite in the cement matrix.
Mohseni et al. [77] conducted a comparative study on the single and the combined effects
of adding NS), nano alumina (NA), and NT on the durability and mechanical properties of
SCC. The ternary combination of NA, NS, and NT had the best permeability to chloride
ingress and electrical resistivity at 3%. Heikal et al. [141] studied the resistance of cement
pastes with NA against fire. By enhancing the hydration reaction of cement phases higher
compressive strength, bulk density, gel/space ratio was reported for the prepared cement
paste. Khaliq and Khan [121] investigated the material properties of calcium aluminate
cement concrete (CACC) under elevated temperatures. It was revealed that the presence of
alumina as a binding agent significantly enhances the mechanical performance and axial
strain in CACC. Niewiadomski et al. [42] presented a comparative study to assess the effect
of NA, NS, and NT nanoparticle additives. It was indicated that the addition of up to
4 wt.% of NA and NT showed no improvement in concrete strength. Table 4 summarizes
the literature on the application of NA in SCC.
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Table 4. Summary of the literature on the application of nano-alumina (NA) in SCC.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Suaiam and
Makul [134,142]

Rheological and
mechanical

properties SCC
with high

volumes of
alumina

28 and
90 days

Φ150 mm ×
300 mm 0.38 Alumina Below ≈5 mm

0, 25, 50, 75, and
100% of the total

fine aggregate

• Velocity
measurements

• Compressive
strength,

• V-funnel,
• Blocking flow

assessment
• J-ring flow
• Ultrasonic pulse
• Slump flow,

• SCC mixtures
containing waste
alumina had 75%
higher
compressive
strength.

Mohseni et al.
[143]

Cement mortars
containing rice

husk ash,
Polypropylene
fiber (PPF), and
nano-alumina

(NA)

28 and
90 days

50 × 50 ×
50 mm3 and
50 × 50 ×
200 mm3

0.49 NA 20 nm 0, 1, 2 and 3%,

• Compressive
strength,

• Flexural
strength,

• Water
absorption and

• Drying
shrinkage

• NA improved the
compressive
strength of mortar.

• The addition of
RHA, NA, and
PPF reduced both
drying shrinkage
and water
absorption and
increased flexural
strength.

Gowda et al.
[129]

Durability and
microstructural

properties of
mortars with

NA

28 days 70.5× 70.5×
70.5 mm3 0.79 NA - 1, 3 and 5%

• Water
absorption

• Electrical
resistivity

• Scanning
electron
microscope
(SEM)

• Increasing of the
NA increased
water absorption

• Electrical resistivity
was almost the
same for 3% and
5% NA.

• The addition of NA
gave a denser
microstructure in
the mortar.
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Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Farzadnia et al.
[135]

Elevated
temperature’s
effect on NA

-based mortars

1, 7, and
28 days

50 × 50
× 50 mm3

and Φ20 mm
× 50 mm

0.35 NA the average size of
13 nm 0, 1, 2 and 3%

• Differential
scanning
calorimetry
(DSC)

• X-ray powder
diffractometry
(XRD)

• SEM tests
• Residual

compressive
strength,

• Elastic modulus,
and

• Measurement of
gas permeability
coefficient

• NA enhanced the
compressive
strength of
mortars by 16%.

• NA improved
residual properties
of mortars at
temperatures from
0 ◦C to 400 ◦C.

• The addition of 1%
NA reduced gas
permeability of
mortars at
temperatures from
0 ◦C to 600 ◦C.

• The inclusion of
NA reduced the
intensity of CH
formation at room
temperature and
400 ◦C.

• The NA inclusion
transformed the
CH crystallization
from well to ill.

Behfarnia and
Salemi [136]

Frost resistance
of NA concrete

7, 28 and
120 days

70 × 70 ×
70 mm3. 0.48 NA 15 nm 1% and more

than 2%

• Compressive
strength

• Loss of mass
measurement

• Change in
length

• Water
absorption test

• NA increased the
compressive
strength of
concrete.

• Frost resistance of
concrete mixes
improved by the
addition of NA.
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Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Zhan et al. [137]

Effect of NA on
early hydration
and mechanical

properties of
cement pastes

1, 3, 7, and
28 days

cubes of size
20 mm ×
20 mm ×

20 mm
cubes of size

6 mm ×
6 mm ×
13 mm

0.456 NA 30 nm 0%, 1%, 2% and
4%

• Compressive
strength

• Isothermal
conduction
calorimetry

•
Thermogravimetric
analysis

• Backscattered
electron imaging
and energy
dispersive
spectroscopy

• Mercury
intrusion
porosimetry
(MIP)

• NA speeded the
aluminate and
silicate phases
reactions in
ordinary cement.

• NA improved
compressive
strength at all
ages.

• NA modified
pastes at 12 h.

Szymanowski
and Sadowski

[138]

NA-based
cement mortars

for concrete
floors

28 days

71 × 71 ×
71 mm3,

11 × 11 ×
11 mm3,

and 40 × 40
× 80 mm3

0.3 NA Below 50 nm 0.5, 1 and 1.5%

• Compressive
and flexural
strength.

• Subsurface
tensile strength

• Abrasion
resistance

• Hardness.

• The addition of
0.5% of NA
increased
subsurface tensile
strength and
reduced abrasion
resistance

• The addition of
0.5% of NA
resulted in a less
porous mortar
than the reference.



Processes 2021, 9, 554 13 of 22

Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Li et al. [139]

Preparation and
mechanical

properties of the
NA based

cement
composite

3 days,
7 days,
28 days

Φ20 ×
40 mm 0.4 NA Below 150 nm 5% and 7%

• Elastic modulus
• Compressive

strength

• In 5% of NA, the
E-value of
composites
improved by
143%.

• The compressive
strength of 5% NA
composites
increased by 30%
at 7 days.

Nazari and
Riahi [9]

Different curing
media for NA in

concrete

7, 28 and
90 days

Cubes of
100 mm
edge for

compressive
strength

tests, cubes
with 200 mm
× 50 mm ×

50 mm

0.40 NA 15 nm 0.5%, 1.5% and
2%

• Compressive
strength

water absorption

• XRD analysis

Split tensile strength
Flexural strength

•
Thermogravimetric
analyzer (TGA)

• Al2O3
nanoparticles have
significantly
higher strength.

• The optimum
level of NA
content was
achieved by 1.0%.

• The pore structure
of SCC containing
NA is improved
and the content of
all mesopores and
macropores is
increased.
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Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Barbhuiya et al.
[140]

Early-age
microstructural

properties of
adding NA to
cement paste

1, 3, 7, and
28 days

50 × 50 ×
50 mm3 0.40 NA 27–43 nm 2% and 4%

• Compressive
strength

water absorption

• XRD analysis
• FTIR analysis
• Electron

microscopy
Scanning

• No noticeable
change was
observed in the
early-age
compressive
strength by NA
addition.

• The addition of
NA induced no
phase change.

Mohseni et al.
[77]

Effects of NA on
mechanical,

rheological, and
durability

properties of
SCC

3, 7, 28 and
90 days

50 × 50 ×
50 mm3 and

Φ100 ×
50 mm

0.4 NA 15 nm 1%, 3%, and 5%

• Water
absorption

• Electrical
resistivity

• Rapid chloride
permeability
tests

• NA improved the
flexural and
compressive
strengths of
specimens with
10% and 20%
RHA.

• The most effective
amount of NA
was 3% by weight
of the binder.

• Water absorption
decreased with the
increase of NA
dosage up to 3%.

• The formation of
denser
microstructure
with NA addition.
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Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Heikal et al.
[141]

Physico-
mechanical,

microstructure
characteristics

and fire
resistance of

cement pastes
with NA -

3, 7, 28, and
90 days. - NA 15 ± 3 nm 1, 2, 4 and 6 %

• Setting times,
• Bulk density
• Gel/space ratio
• Compressive

strength
• XRD
• TEM
• Differential

thermal analysis
(DTA)/TGA

• Free lime
contents (FL, %)

• NA addition
shortens the
setting times.

• 1% NA enhanced
the compressive
strength of the
pastes up to
27.22%.

• NA speeded up
the hydration.

• 1% NA enhanced
the fire resistance.

Khaliq and
Khan [121]

High-
temperature

material
properties of

calcium
aluminate

cement concrete

3, 14, and
28 days

Φ100 mm ×
200 mm 0.5

calcium
aluminate

cement
concrete

- -

• SEM
• Compressive

and tensile
strength

• Elastic modulus
• Compressive

toughness
• Visual

investigations

• Better tensile and
compressive
strength was
achieved in
temperature up to
800 ◦C.

• stress-strain
response and E
value were
improved.

• Compressive
toughness was
improved in
temperature up to
800 ◦C.
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Table 4. Cont.

Ref. Research Topic Test Age
(day)

Sample Size W/C (%)
Alumina

Remarks
Type Size (mm) Amount of

Alumina
Investigated
Parameters

Niewiadomski
et al. [42]

Self-compacting
concrete

modified with
NA

28 and
90 days

100 × 100 ×
100 mm3,
40 × 40 ×
160 mm3,

and
Φ25 mm ×

20 mm

0.42 NA Below 50 nm

Cement
replacement
0.5 wt.%, 1.0

wt.%, 2.0 wt.%
and 3.0 wt.% of

the.

• Compressive
strength

• Flexural strength
• hardness
• Elastic modulus

• The fluidity of
concrete
deteriorated with
an increased
amount of NA.

• The samples with
the addition of NA
had a larger size of
air pores than the
reference sample.

• Concretes with
NA showed no
improvement in
compressive and
flexural strengths.
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7. Conclusions

This review is aimed to investigate the effect of NA on rheology and mechanical
parameters of SCC subjected to elevated temperature. Then the potential of predicting
the mechanical parameters of SCC is further studied. It was concluded from the litera-
ture review that the rheology parameters of the fresh SCC are significantly affected by
the addition of NA due to their high surface-area-to-volume ratio. The addition of NA
reduces slump flow diameter while the variation of the workability is contributed with the
replacement ratio. NA has lower water and chloride ions permeability that is due to the
accelerated hydration process. Moreover, enhanced durability and compressive strength
are achieved by adding a small amount of NA to SCC. Therefore, the use of NA enhances
the performance of SCC. The addition of NA to SCC results in a denser microstructure
as compared to normal SCC. The authors believe that future research in the field of NA
should further concentrate on enhancing the elevated temperature resistance and thermal
behavior of SCC to enable more sustainable and durable construction and to extend the
SCC use to more application fields.
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