Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study
Abstract
:1. Introduction
- surface oxidation,
- opaque ceramics fusion,
- dentin and enamel ceramics fusion, and
- glaze fusion.
2. Materials and Methods
2.1. Materials Used and Processing
2.2. Heat Treatment Simulating Porcelain Firing Processes
2.3. Microstructure and Chemical Characterization
- -
- The thickness of the oxide layers varied in the range of 1.16–1.78 μm.
- -
- The average atomic mass of the elements creating the oxides is high, which directly affects the depth of penetration of the primary electron beam.
2.4. Corrosion Properties Examinations
2.5. Statistical Analysis
3. Results
3.1. Microstructure and Chemical Characterization
3.2. Corrosion Properties Examinations
4. Discussion
5. Conclusions
- The corrosion resistance after HT simulating porcelain firing was affected by the microstructure of the oxides covering surface of alloys.
- For cast alloys, the coarse secondary phases were detrimental to the formation of protective homogeneous oxide films. The highest resistance to corrosion after the HT was observed in SLM alloys due to the microstructural homogeneity of the oxide layers.
- The lowest corrosion resistance of cast alloys after HT was a result of their inhomogeneous oxide layers. In terms of the MSM alloy, the lower corrosion resistance may be caused by the porosity.
- The structure of oxides forming during PFM processes reflected the morphology of the primary alloys.
- We are aware that the methods and kinds of apparatus used in the present study, e.g., scanning electron microscopy and EDS, were inadequate for detailed examinations of oxide layers.
- Further research is needed to obtain more precise information about oxide layer structures and compositions (for example, X-ray photoelectron spectroscopy). Such research, which would include cross-section examinations, will enable us to compare the thicknesses of oxide layers on the surfaces of Co–Cr alloys and determine the possible relationship between oxide thickness and the primary alloy’s structure.
- Further investigations should also be focused on simulating the high chemical aggression of physiological fluids in the oral cavity. Many factors can change the pH of saliva, in ranges between 3.5 and 8.3, and the pH of saliva may contribute to the corrosion of dental implants.
- The next objective would be to characterize the effect of saliva pH on the passive behavior of these alloys after PFM.
- The authors are aware that with such a small number of tests, the test power allows only to determine that the results are not varied by accident. Increasing sample size will boost the statistical power of the tests carried. The current study should be considered as a pilot study and further investigations should be focused on the minimum number of groups (for example only SLM group with CST group as a control one) with increased sample size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Moser, J.B.; Jameson, L.M.; Malone, W.F.P. The effect of oxidation heat treatment on porcelain bond strength in selected base metal alloys. J. Prosthet. Dent. 1991, 66, 439–444. [Google Scholar] [CrossRef]
- Suleiman, S.H.; von Steyern, P.V. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol. Scand. 2013, 71, 1280–1289. [Google Scholar] [CrossRef]
- Al Jabbari, Y.S.; Barmpagadaki, X.; Psarris, I.; Zinelis, S. Microstructural, mechanical, ionic release and tarnish resistance characterization of porcelain fused to metal Co–Cr alloys manufactured via casting and three different CAD/CAM techniques. J. Prosthodont. Res. 2019, 63, 150–156. [Google Scholar] [CrossRef]
- Kovalev, A.; Mishina, V.; Titov, V.; Moiseev, V.; Tolochko, N. Selective laser sintering of steel powders to obtain products based on SAPR models. Metallurgist 2000, 4, 206–209. [Google Scholar] [CrossRef]
- Iseri, U.; Ozkurt, Z.; Kazazoglu, E. Shear strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent. Mater. J. 2011, 30, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Metikos-Hukovic, M.; Babic, R. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy. Corros. Sci. 2007, 49, 3570–3579. [Google Scholar] [CrossRef]
- Manaranche, C.; Hornberger, R. A proposal for the classification of dental alloys according to their resistance to corrosion. Dent. Mater. 2007, 23, 1428–1437. [Google Scholar] [CrossRef]
- Chang, J.-C.; Oshid, Y.; Gregory, R.L.; Andres, C.J.; Barco, T.M.; Brown, D.T. Electrochemical study on microbiology-related corrosion of metallic dental materials. BioMed. Mater. Eng. 2003, 13, 281–295. [Google Scholar] [PubMed]
- Johnson, T.; Van Noort, R.; Stokes, C.W. Surface analysis of porcelain fused to metal systems. Dent. Mater. 2006, 22, 330–337. [Google Scholar] [CrossRef]
- Eschler, P.Y.; Reclaru, L.; Luthy, H.; Blatter, A.; Larue, C.; Susz, C.; Bosch, J. Corrosion Testing of Cobalt-Chromium Dental Alloys doped with Precious Metals. Eur. Cells Mater. 2005, 26, 4358–4365. [Google Scholar]
- Milosev, I. The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions. Electrochim. Acta 2012, 78, 259–273. [Google Scholar] [CrossRef]
- Bauer, S.; Schmuki, P.; Von der Mark, K.; Park, J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Prog. Mater. Sci. 2013, 58, 261–326. [Google Scholar] [CrossRef]
- Sang-Bae, L.; Ju-hye, L.; Woong-Chul, K.; Sae-Yoon, O.; Kyoung-Nam, K.; Ji-Hwan, K. Effect of different oxidation treatments on the bonding strength of new dental alloys. Thin Solid Films 2009, 517, 5370–5374. [Google Scholar]
- Qiu, J.; Yu, W.-Q.; Zhang, F.-Q.; Smales, R.J.; Zhang, Y.-L.; Lu, C.-H. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing. Eur. J. Oral Sci. 2011, 119, 93–101. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Zhang, W.; Jiang, N.; Li, D. Additive manufacturing of biomedical constructs with biomimetic structural organizations. Materials 2016, 9, 909. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, B.; Kruth, J.P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp. J. 2007, 13, 196–203. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, W.C.; Kim, H.Y.; Kim, J.H. An evaluation of marginal fit of three unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent. Mater. 2013, 29, 91–96. [Google Scholar] [CrossRef]
- Xin, X.Z.; Chen, J.; Xiang, N.; Wei, N. Surface properties and corrosion behaviour of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem. Biophys. 2013, 67, 983–990. [Google Scholar] [CrossRef]
- Tuna, S.H.; Pekmez, N.Ö.; Kürkçüo, I. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods. J. Prosthet. Dent. 2015, 114, 725–734. [Google Scholar] [CrossRef]
- Krug, K.P.; Knauber, A.W.; Nothdurft, F.P. Fracture behaviour of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy. Clin. Oral Investig. 2015, 19, 401–411. [Google Scholar] [CrossRef]
- Li, K.C.; Prior, D.J.; Waddell, J.N.; Swain, M.V. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co–Cr dental alloys. Dent. Mater. 2015, 31, 306–315. [Google Scholar] [CrossRef]
- Adzali, N.M.S.; Jamaludin, S.B.; Derman, M.N. Effect of Sintering on the Physical and Mechanical Properties of Co-Cr- Mo (F-75)/HAP Composites. Sains Malays. 2013, 42, 1763–1768. [Google Scholar]
- Quante, K.; Ludwig, K.; Kern, M. Marginal and internal fit of metal–ceramic crowns fabricated with a new laser melting technology. Dent. Mater. 2008, 24, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Akova, T.; Ucar, Y.; Tukay, A.; Balkaya, M.C.; Brantley, W.A. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent. Mater. 2008, 24, 1400–1404. [Google Scholar] [CrossRef] [PubMed]
- Xiang, N.; Xin, X.Z.; Chen, J.; Wei, B. Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting. J. Dent. 2012, 40, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Oyague, R.; Osorio, R.; Osorio, E.; Sanchez-Aguilera, F.; Toledano, M. The effect of surface treatments on the micro roughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc. Res. Tech. 2012, 75, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukis, T.; Zinelis, S.; Eliades, G.; Al-Wazzan, K.; Rifaiy, M.A.; Al Jabbari, Y.S. Selective laser melting technique of Co–Cr dental alloys: A review of structure and properties and comparative analysis with other available techniques. J. Prosthodont. 2015, 24, 303–312. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Ohmura, K.; Chiba, A. Preventing high-temperature oxidation of Co–Cr-based dental alloys by boron doping. J. Mater. Chem. 2016, 4, 309–317. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Chiba, A. Surface characterisation of Ni-free Co–Cr–W-based dental alloys exposed to high temperatures and the effects of adding silicon. Corros. Sci. 2015, 94, 411–419. [Google Scholar] [CrossRef]
- Li, J.; Ye, X.; Li, B.; Liao, J.; Zhuang, P.; Ye, J. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt–chromium alloys. Eur. J. Oral Sci. 2015, 123, 297–304. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Liao, J.; Liu, L.; Ye, X.; Lin, S.; Ye, J. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J. Prosthet. Dent. 2017, 118, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Saji, V.-S.; Choe, H.-C. Electrochemical behaviour of Co–Cr and Ni–Cr dental cast alloys. Trans. Nonferrous Met. Soc. China 2009, 19, 785–790. [Google Scholar] [CrossRef]
- Hsua, R.W.W.; Yang, C.C.; Huang, C.A.; Chen, Y.S. Electrochemical corrosion studies on Co–Cr–Mo implant alloy in biological solutions. Mater. Chem. Phys. 2005, 93, 531–538. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Kuramoto, K.; Chiba, A. Development of new Co–Cr–W-based biomedical alloys: Effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater. Des. 2014, 55, 987–998. [Google Scholar] [CrossRef]
- Yamanaka, K. Influence of carbon addition on mechanical properties and microstructures of Ni-free Co–Cr–W alloys subjected to thermomechanical processing. J. Mech. Behav. Biomed. Mater. 2014, 37, 1751–6161. [Google Scholar] [CrossRef] [PubMed]
- Wylie, C.M.; Shelton, R.M.; Fleming, G.J.; Davenport, A.J. Corrosion of nickel-based dental casting alloys. Dent. Mater. 2007, 23, 714–723. [Google Scholar] [CrossRef]
- Al Jabbari, Y.S.; Koutsoukis, T.; Barmpagadaki, X.; Zinelis, S. Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent. Mater. 2014, 30, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Matkovic, T.; Matkovic, P.; Malina, J. Effects of Ni and Mo on the microstructure and some other properties of Co–Cr dental alloys. J. Alloys Compd. 2004, 366, 197–293. [Google Scholar] [CrossRef]
- Karpuschewski, B.; Pieper, H.J.; Krause, M.; Doring, J. CoCr is not the same: CoCr-blanks for dental machining. In Future Trends in Production Engineering; Schuh, G., Neugebauer, R., Uhlmann, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 261–274. [Google Scholar]
- Xin, X.-Z.; Che, J.; Xiang, J.; Gong, Y.; Wei, B. Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent. Mater. 2014, 30, 263–270. [Google Scholar] [CrossRef]
- Ardlin, B.I.; Dahl, J.E.; Tibballs, J.E. Static immersion and irritation tests of dental metal- ceramic alloys. Eur. J. Oral Sci. 2005, 113, 83–89. [Google Scholar] [CrossRef]
- Kim, H.R.; Jang, S.H.; Kim, Y.K.; Son, J.S.; Min, B.K.; Kim, K.H. Microstructures and mechanical properties of Co–Cr dental alloys fabricated by three CAD/CAM- based processing techniques. Materials 2016, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, A.; Suyalatu, S.; Nakamoto, T.; Natsuka, J.; Nomura, N.; Tsutsumi, Y.; Migita, S.; Doi, H.; Kurosu, S.; Chiba, A.; et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 2013, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Reclaru, L.; Ardelean, L.; Rusu, L.C.; Sinescu, C. Co-Cr material selection in prosthetic restoration: Laser sintering Technology. Solid State Phenom. 2012, 188, 412–415. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, W.; Xie, M.; Xu, W.; Liu, Y.; Lin, J.; Yu, C.; Tang, K.; Liu, W.; Yang, K.; et al. Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys. Appl. Surf. Sci. 2019, 464, 262–272. [Google Scholar] [CrossRef]
- Serra-Prat, J.; Cano-Batalla, J.; Cabratosa-Termes, J.; Figueras-Àlvarez, O. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: Shear bond strength and sensitivity to thermocycling. J. Prosthet. Dent. 2014, 112, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.-O.A.; Mischler, S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim. Acta 2004, 49, 2167–2178. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Kim, Y.K.; Son, J.S.; Min, B.K.; Kim, K.-H.; Kwon, T.-Y. Comparison of in vitro biocompatibility of a Co–Cr dental alloy produced by new milling/post-sintering or traditional casting technique. Mater. Lett. 2016, 178, 300–303. [Google Scholar] [CrossRef]
- Rylska, D.; Sokołowski, G.; Konieczny, B.; Sokołowski, J. The structure and corrosive properties of the CoCr-base dental alloy obtained by soft material milling followed by sinterization. J. Achiev. Mater. Manuf. Eng. 2016, 2, 60–71. [Google Scholar] [CrossRef]
- Buciumeanu, M.; Bagheri, A.; Souza, J.C.M.; Silva, F.S.; Henriques, B. Tribocorrosion behavior of hot pressed CoCrMo alloys in artificial saliva. Tribol. Int. 2016, 97, 423–430. [Google Scholar] [CrossRef]
- Krasicka-Cydzik, E.; Oksiuta, Z.; Dabrowski, J.R. Corrosion testing of sintered samples made of the Co-Cr-Mo alloy for surgical applications. J. Mater. Sci. Mater. Med. 2005, 16, 97–202. [Google Scholar] [CrossRef] [PubMed]
Sample | Co | Cr | W | Mo | Si | Others |
---|---|---|---|---|---|---|
CST 1 | 60.0 | 28.0 | 9.0 | - | 1.5 | Mn, Fe < 1%. |
CST 2 | 62.4 | 25.5 | 5.2 | 5.1 | 1.1 | Nb, Fe, N < 1%. |
MSM | 66.0 | 28.0 | - | 5.0 | - | Mn, Si, Fe < 1%; Organic binder: 1–2%. |
SLM 1 | 62.7 | 28.8 | - | 6.0 | 0.7 | C, Fe, Si, Mn < 1%. |
SLM 2 | 58.5 | 25.3 | 7.3 | 6.6 | 0.9 | Mn 0.8%; Fe < 1%. |
Process | Opaque 1 | Opaque 2 | Dentine 1 | Dentine 2 | Final Glaze |
---|---|---|---|---|---|
B | 400 °C | 650 °C | 600 °C | 600 °C | 650 °C |
S | 8 min | 5 min | 7 min | 10 min | 5 min |
V1 | 400 °C | 650 °C | 600 °C | 600 °C | - |
t1 | 65 °C/min | 55 °C/min | 45 °C/min | 45 °C/min | 55 °C/min |
T | 1000 °C | 945 °C | 935 °C | 935 °C | 910 °C |
V2 | 1000 °C | 935 °C | 920 °C | 925 °C | - |
H | 1 min | - | - | - | - |
Sample | CST1 | CST2 | MSM | SLM1 | SLM2 |
---|---|---|---|---|---|
Average oxide thickness [μm] | 1.59 | 1.59 | 1.25 | 1.61 | 1.26 |
Oxide [wt %] | CST1 | CST2 | MSM | SLM1 | SLM2 |
---|---|---|---|---|---|
CoO | 55.76 | 52.26 | 41.1 | 36.43 | 36.74 |
Cr2O3 | 35.23 | 33.83 | 49.6 | 56.2 | 49.47 |
MoO3 | - | 5.82 | 5.24 | 4.8 | 4.55 |
SiO2 | 2.59 | 3.1 | 2.28 | 1.58 | 2.8 |
WO3 | 6.42 | 4.99 | - | - | 4.9 |
MnO | - | - | 1.78 | 0.99 | 1.52 |
Sample | jcorr [A/cm2] | Ecorr [V] | Rp [Ohm/cm2]·103 |
---|---|---|---|
CST1 | 5.65 × 10−7 ± 0.19 | −0.464 ± 0.016 | 46.632 ± 0.055 |
CST2 | 4.07 × 10−6 ± 0.14 | −0.524 ± 0.011 | 15.662 ± 0.0085 |
MSM | 2.6 × 10−7 ± 0.07 | −0.481 ± 0.009 | 99.774 ± 0.0017 |
SLM1 | 2.05 × 10−7 ± 0.08 | −0.324 ± 0.005 | 168.114 ± 0.096 |
SLM2 | 4.2 × 10−8 ± 0.2 | −0.459 ± 0.003 | 652.988 ± 0.138 |
Sample | CST1 | CST2 | MSM | SLM1 | SLM2 |
---|---|---|---|---|---|
Ebr [V] | −0.129 ± 0.007 | 0.108 ± 0.006 | −0.054 ± 0.003 | 0.320 ± 0.0015 | 0.428 ± 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rylska, D.; Januszewicz, B.; Sokołowski, G.; Sokołowski, J. Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study. Processes 2021, 9, 636. https://doi.org/10.3390/pr9040636
Rylska D, Januszewicz B, Sokołowski G, Sokołowski J. Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study. Processes. 2021; 9(4):636. https://doi.org/10.3390/pr9040636
Chicago/Turabian StyleRylska, Dorota, Bartłomiej Januszewicz, Grzegorz Sokołowski, and Jerzy Sokołowski. 2021. "Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study" Processes 9, no. 4: 636. https://doi.org/10.3390/pr9040636
APA StyleRylska, D., Januszewicz, B., Sokołowski, G., & Sokołowski, J. (2021). Corrosion Resistance of Cr–Co Alloys Subjected to Porcelain Firing Heat Treatment—In Vitro Study. Processes, 9(4), 636. https://doi.org/10.3390/pr9040636