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Abstract: With the increasing reliance on global sourcing and the growth in the likelihood of dis-
ruptive incidents, today’s supply networks are more prone to unexpected natural and man-made
disruptive events. In order to alleviate the losses caused by these disruptive events, when a large-
scale event disrupts multiple suppliers simultaneously, a single or several critical suppliers should
be selected from the disrupted ones to assist them to recover their production as soon as possible.
The selection of these recovery suppliers is of great importance in the recovery process of the entire
supply network. Thus, this paper proposes a recovery supplier selection method from the view of
the supply network structure. Firstly, a tripartite graph-based supply model is proposed to depict
a two-stage supply network, which consists of multiple manufacturers and suppliers as well as
the diverse product supply-demand interdependence connecting them. To measure the impacts
caused by supplier disruptions and to evaluate the effectiveness of recovery supplier decisions, two
supply network performance metrics reflecting product supply availability are also given. Then, the
recovery supplier selection problem is described as a combinatorial optimization problem. To solve
this problem, a heuristic algorithm, with enhanced variable neighborhood search (EVNS) is designed
based on the general framework of a variable neighborhood search. Finally, experiments based on
a real-world supply network are conducted. The experimental results indicate that the proposed
method is applicable and effective.

Keywords: supply network management; disruption risk; recovery supplier selection; network
structure; variable neighborhood search

1. Introduction

Recently, supply network managers have become increasingly concerned with dis-
ruptions to their systems, especially events that have the potential to disrupt multiple
components of the supply network. Over the past 20 years, there have been many large-
scale disruptive events, both man-made and natural [1,2]. For example, recently, the
outbreak of the COVID-19 virus affected supply networks globally [3]. Early in March
2020, the number of COVID-19 cases had grown exponentially all over the world, resulting
in border closures, quarantines, and full shut-downs of many crucial facilities, markets,
and activities in the supply networks. As a result, product supply availability in global
supply networks has been drastically reduced. A related survey indicates that the 1000
largest enterprises in the world have been severely impacted by COVID-19 [4].

In order to reduce losses caused by these large-scale supply network disruptions,
management strategies have to be applied [5]. For example, in 2011, as a result of the Great
East Japan earthquake, multiple automobile suppliers were severely damaged including
the giant automotive semiconductor supplier, Renesas Electronics. Due to the earthquake,
its main plant in the Naka region halted its production. The supply of automotive semi-
conductors was expected to cease for eight months. In order to recover the production
of its main plant as soon as possible, Toyota and several other Japanese automobile and
electronic equipment manufacturers sent more than 2500 engineers to support the recovery
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of its main plant. As a result, the recovery time of its main plant to start supplying auto-
mobile semiconductors was shortened from eight to five months [6]. Another example
was the case of the Riken Corporation, which is the largest piston ring supplier in Japan.
In July 2007, a Riken plant in the city of Kashiwazaki was damaged badly by a strong
earthquake. Without delay, under the coordination of Toyota, several Japanese automobile
manufacturers sent an aid team of nearly 700 people to assist in the production recovery.
As a consequence, the production of piston rings was stopped for two weeks only [7].

These real-life cases illustrate a typical disruption recovery method for supply net-
works, namely recovery supplier selection. Recently, lean management strategies, like
reducing inventory and backup suppliers, leave supply networks fragile in the case of a
disaster or catastrophe [8]. When suppliers are damaged by natural or man-made disasters
simultaneously, the downstream firms have to apply strategies to minimize the loss caused
by the product supply shortage, such as seeking alternative sources and assisting the dis-
rupted suppliers to recover their production. However, a qualified substitute supplier can
be very difficult to find in a short time, especially for some critical products. A recent study
of the exposure level of the Ford Motor Company found that the disruption of some critical
suppliers leads to significant profit losses because they are difficult to quickly replace [9]. In
addition, an alternative supplier can be much more expensive. In such a context, assisting
disrupted suppliers to recover their production can be beneficial, alleviating the impact of
disruptions effectively and efficiently. Due to the limitation of cost, it is impossible to assist
all disrupted suppliers to recover their production. To find an optimal selection of recovery
suppliers, studies have been proposed [10–13]. However, these previous works are mainly
from the local or dyadic perspective, they pay little attention to the connectivity pattern of
entities within a supply network, namely the supply network structure.

Recently, some researchers indicate that the management of supply network disrup-
tions needs to take the structure of supply networks into consideration [14,15]. With the
development of global trading and learnings in manufacturing, today’s supply networks
can be huge and complex [16]. As some researchers defined, supply networks are inter-
connected structures that emerge from a largely downstream exchange of goods between
firms (i.e., manufacturers, distributors, retailers, etc.) that are involved in creating a set of
final products [17]. For example, the supply network of a large-scale enterprise may have
multiple manufacturers and these manufacturers are connected with multiple suppliers
by various product supply-demand relations. In the case studied by Sabouhi et al. [18],
Atra Pharmaceutical Company (APC), which is an affiliation of Tamin Pharmaceutical
Investment Company (TPICO), has multiple manufacturers across five Iranian provinces
and these manufacturers purchase from multiple suppliers. In such a context, the disrup-
tion or recovery of a single or a few suppliers could influence the function of the entire
system greatly. For example, the disruption of a supplier supplying various products to
many manufacturers can damage the whole supply network greatly, since the disruption
may result in the cessation of product supply from multiple manufacturers. In the same
way, when selecting a few disrupted suppliers to recover their production, it seems more
beneficial to select suppliers connected with multiple manufacturers. Thus, when decision-
makers such as supply network managers or supply network service companies select the
recovery suppliers for a post-disruption supply network, it is necessary to consider the
macro network structure.

Based on these past works, this study investigates the recovery supplier selection
problem from the perspective of the supply network structure. Firstly, to depict a two-stage
supply network, which is composed of multiple manufacturers and suppliers as well as
the diverse product supply-demand interdependences connecting them, a model using a
tripartite graph is presented. Performance metrics describing product supply availability
are also designed for assessing the damage caused by supplier disruptions and evaluating
the effectiveness of recovery supplier decisions. Then, the problem of recovery supplier
selection is formulated. Based on the variable neighborhood search (VNS) framework, an
enhanced variable neighborhood search (EVNS) is proposed to solve the problem. Finally,
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to validate the effectiveness of the proposed method, experiments based on a real-world
supply network are also conducted.

In the remainder of this paper, Section 2 provides a review of related works. The
proposed supply network model and corresponding performance metrics are described
in Section 3. Section 4 illustrates the EVNS-based recovery supplier selection method.
Section 5 gives the case example to validate the proposed method. Section 6 concludes this
paper.

2. Related Works

Supply network disruptions are usually defined as unexpected events that hamper
the functioning of a supply network [19,20]. They can generally be divided into two types:
random disruptions and target disruptions [21–23]. Random disruptions correspond to
unintentional incidents, like natural disasters, accidents, public health events, etc. Target
disruptions refer to intentional attacks, like a military or terrorist attack. In the past
decades, supply network disruptions happen more and more frequently. At the same time,
damages incurred by these disruptive events are also more severe than ever. According to
related reports, almost 75% of enterprises suffer at least one supply network disruption per
year [24].

To mitigate the damages caused by supply network disruptions, it is essential to
apply management strategies, which mainly fall into two categories, namely proactive and
reactive strategies [25]. Proactive strategies refer to those performed before the occurrence
of disruptions. They are aimed at enhancing the resistant ability of a supply network in
the presence of disruptions, such as adding redundancy [26], fortification of suppliers [27],
and contracting with backup suppliers [28]. Reactive strategies are those conducted after
the occurrence of disruptions. They are focused on recovering the function of a post-
disruption supply network as soon as possible, such as contingent rerouting [29] and
recovery supplier selection [13]. Most of the previous disruption management researches
are from the perspective of a dyad or locally. Recently, with the increasing awareness of the
complex supply network structure, some researchers point out that disruption analysis and
management should take the supply network structure into consideration [15,30,31]. In the
meanwhile, a complex network provides an efficient tool to characterize the structure of a
supply network and conceptualize disruptive events. Thus, supply network disruption
management researches based on complex networks have emerged continuously during
the past years.

Due to the facilitation of complex network modeling methods, the complex supply
network structure can be depicted as a collection of nodes and edges [32–34]. Nodes
denote entities like manufacturers and suppliers. Edges represent the interdependent
relations between entities such as product supply-demand relations, cooperative rela-
tions, and so on. Using complex network modeling and analysis methods, researchers
try to analyze and mitigate supply network disruptions from the level of the network
structure [15,35–37]. Generally, these complex network-based supply network disruption
management researches can be classified into two categories. The first category focuses on
finding an optimal structure of supply networks, which can withstand various types of
disruptions. For example, Zhao et al. designed two heuristic strategies to build, design,
or adjust the supply network structure and evaluated them against random and targeted
disruptions [21–23]. Shi et al. proposed a supply network evolutionary model to generate
a robust supply network structure, which can resist both random and target disruptions
simultaneously [38]. Deng et al. presented a supply network structural optimization
method to enhance the robustness of existing supply networks against target attacks [39].
The second category concentrates on using network centrality metrics to identify the
vulnerabilities within a supply network. For example, Mizgier proposed a bottleneck
identification method to identify entities whose disruptions will inflict the greatest damage
to the entire network [40]. Ledwoch et al. presented a risk identification method using
network centrality metrics [41]. Yan et al. designed comprehensive supplier evaluation
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metrics based on several network centrality metrics to detect the suppliers occupying the
central positions in the network [42,43].

These previous studies have made significant contributions to mitigate disruptions
from the perspective of the supply network structure. However, these studies still have
several limitations. Firstly, the modeling methods adopted in these previous studies
neglect the important role of products in the supply networks. Most of these works assume
that supply networks are homogeneous. They treat all entities in a supply network as
equal. Although some researchers consider the role difference between demanders and
suppliers [21,22], they still ignore the difference of products supplied by different suppliers.
In the meanwhile, some researchers point out that modeling methods without consideration
of the products might be misleading in the analysis of disruptions [44]. As we know, supply
networks form and function in order to transmit products or materials that make up an
end product [36,45]. These products or materials can be distributed among the suppliers
heterogeneously. That is to say, a product can be supplied by many suppliers, and a supplier
could also supply many types of products. Compared with a supplier only supplying a few
types of products, the disruption of a supplier supplying many types of products can impact
the supply network more significantly. The supply network models without consideration
of the products will not reflect such a consequence. Reviewing those high-impact supply
network disruptive events, most of them are related to the stoppage of product supply.
Secondly, these previous works mainly consider enhancing the supply networks’ resistance
ability in the face of disruptions, lacking research exploring how to respond and recover
from disruptions from the view of the supply network structure. Nevertheless, there are
expectations for disruption recovery methods. Since disruptions refer to catastrophic events
that are difficult to predict and control, it seems impossible to eliminate them no matter
how many precautionary actions have been implemented [46]. In such cases, appropriate
recovery strategies are more suitable for tackling these unpredictable disruption risks and
making the supply network more resilient [47].

Based on these previous works, this paper contributes to developing a recovery
supplier selection method from the network structure viewpoint. In this study, a network
considering both the differing roles of manufacturers and suppliers and the diversity of
product supply-demand relations between them is proposed. Facilitated by the proposed
supply network model, performance metrics reflecting product supply availability are
designed. Then, a reactive disruption management method, EVNS-based recovery supplier
selection, is proposed, of which the effectiveness is validated using a real industry case.

3. Supply Network Model and Performance Metrics
3.1. Tripartite Graph-Based Supply Network Model

A “full-spectrum” supply network can be treated as a large-scale “ecosystem”, which
is formed by many diverse entities, like suppliers, manufacturers, retailers, and cus-
tomers [22]. In this study, we will investigate a typical two-stage supply network consisting
of manufacturers, suppliers, and the product supply-demand relations between them. This
is a commonly used structure in many previous works [48,49].

To distinguish the different roles of manufacturers and suppliers as well as the various
product supply-demand relations between them, the two-stage supply network is described
as a directed tripartite graph G = {VM, VP, VS, EPM, ESP}, where the VM, VP, and VS are
three non-overlapping and independent node sets, EPM and ESP are two disjoint edge sets.

VM = {m1, m2, . . . , mNM} is the manufacturer node-set, denoting manufacturers in the
network. VP = P(m1)∪P(m2)∪P(m3), . . . , ∪P(mNM) is the product node-set, representing
the necessary products demanded by the manufacturers. P(mi) = {pi

k| k=1, 2, . . . , |P(mi)|}
denotes the necessary products demanded by mi, where pi

k refers to the k-th necessary
product for mi. VS = {s1, s2, . . . , sNS} is the supplier node-set, denoting suppliers in the
network.

EPM = {(pi
k, mi)| pi

k∈VP, mi∈VM} is the product demand edge set, describing the
demand relations between the necessary products and manufacturers. In EPM, a given
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directed edge (pi
k, mi) denotes the demand relation between manufacturer mi and product

pi
k. ESP = {(sj, pi

k)| sj∈VS, pi
k∈VP} is the product supply edge set, representing the supply

relations between products and suppliers. In ESP, a given directed edge (sj, pi
k) refers to

the supply relation between supplier sj and product pi
k.

As shown in Figure 1, a simple example is given to illustrate the proposed supply
network model. In the figure, three types of entities, manufacturers, products, and suppliers
are marked by blue, green, and yellow respectively. Each manufacturer needs several
different types of products to perform its own production duty. Suppliers supply these
necessary products to satisfy the manufacturers’ demands. For instance, manufacturer m1
needs two types of products, which are denoted by p1

1 and p1
2. In the meanwhile, supplier

s1 supplies products p1
1 to m1, supplier s2 supplies both p1

1 and p1
2 to m1. Hence, (p1

1,
m1) and (p1

2, m1) are two product demand edges. (s1, p1
1), (s2, p1

1) and (s2, p1
2) are three

product supply edges.
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3.2. Performance Metrics

Recovery supplier selection refers to selecting a limited number of suppliers from
the disrupted ones, whose recovery will increase the performance of a post-disruption
supply network most effectively [11]. Proper performance metrics are needed to measure
the damage induced by supplier disruptions and to evaluate the effectiveness of recovery
supplier selection decisions.

Previous researches hold the opinion that the transmission of products is the basic
duty of a supply network. The failure of delivering products to demanders who need
them can be treated as performance decrements of supply networks [50]. Additionally,
real cases indicate that product supply stoppage is one of the main reasons that cause
huge losses for supply networks. For example, several hard disc suppliers were damaged
severely in the 2011 Thailand flooding, which lead to the supply stoppage of hard discs
globally. As a consequence, the production of many computer manufacturers had to halt
their production [51]. In the same year, automobile manufacturer Nissan suffered a lot in
the 2011 Great East Japan earthquake. A critical engine supplier of Nissan was destroyed
in the earthquake. This forced a Nissan plant in the UK to shut down for three days due
to the supply shortage of engines [52]. Based on these considerations, two performance
metrics describing product supply availability, namely the product supply availability rate
and the manufacturer filling rate, are given in this section.

Firstly, we introduce the definition of the product supply availability rate. As men-
tioned above, the duty of a supply network is to deliver necessary products to their
demanders. In the supply network model considered in this research, each product node
represents a type of necessary product demanded by a manufacturer. If a product node
loses all of its supply edges, it means the failure to deliver a type of product to the corre-
sponding demanders. Thus, to reflect the ability of a supply network to deliver necessary
products to their demanders, the product supply availability rate is defined as the percent-
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age of product nodes in the network having access to supplier nodes. The calculation of
the product supply availability rate is given using Equation (1).

rA =
1
|VP| ∑

pk
i ∈VP

ε
[∣∣∣ϕS

(
pk

i

)∣∣∣] (1)

ε
[∣∣∣ϕS

(
pk

i

)∣∣∣] =
 1, i f

∣∣∣ϕS

(
pk

i

)∣∣∣ > 0

0, i f
∣∣∣ϕS

(
pk

i

)∣∣∣ ≤ 0
(2)

where |VP| denotes the total number of product nodes in the network. |ϕS(pi
k)| denotes

the number of supplier nodes attached to pi
k. When |ϕS(pi

k)| > 0, it means that product pi
k

can be delivered from the suppliers to the corresponding demander mi. When |ϕS(pi
k)| =

0, it represents that product pi
k can not be delivered to its demander mi.

Then, the definition of the manufacturer filling rate is presented. In a supply network,
manufacturers depend on their suppliers to obtain the necessary products for producing
their own products. For a given manufacturer, it will not be able to produce its own
products unless it can obtain all the necessary products. Hence, the manufacturer filling
rate is defined as the percentage of manufacturers who can obtain all necessary products to
produce their own products. The calculation of the manufacturer filling rate is presented
using Equation (3).

rF =
1
|VM|

|VM |

∑
i=1

δ[r(mi)− 1] (3)

r(mi) =
1

|P(mi)|

|P(mi)|

∑
k=1

ε
(∣∣∣ϕS

(
pk

i

)∣∣∣) (4)

δ[r(mi)− 1] =
{

1, i f r(mi)− 1 = 0
0, i f r(mi)− 1 6= 0

(5)

where |VM| is the total number of manufacturer nodes in the network. r(mi) describes the
level of mi to obtain all the necessary products. When r(mi) = 1, it means that manufacturer
mi can obtain all necessary products to produce its own products. When r(mi) < 1, it refers
to manufacturer mi being unable to obtain all the necessary products to perform their
production duty.

Figure 2 gives an example to explain the calculation of two proposed performance
metrics. As presented in the figure, the disruption of supplier s4 leads to manufacturer m2
failing to obtain product p2

3. According to the definition of product supply availability
rate and manufacturer filling rate, rA and rF of the supply network shown in Figure 2 are
6/7 and 1/3 respectively.
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4. Enhanced Variable Neighborhood Search-Based Recovery Supplier Selection

After introducing the supply network model and performance metrics, this section
illustrates the EVNS-based recovery supplier selection method. First, the problem of
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recovery supplier selection is described. Then, the EVNS algorithm is designed to solve
the problem, of which the details are presented.

4.1. The Recovery Supplier Selection Problem
4.1.1. Problem Statement and Assumptions

In this subsection, the problem statement and assumptions of recovery supplier
selection are provided.

Firstly, the problem is stated. This study considers the recovery supplier selection
problem under high-impact disruptive events from a perspective of network structure.
When a large-scale disruptive event descends upon a supply network, such as the outbreak
of virus COVID-19, multiple suppliers can be damaged simultaneously. To alleviate the
losses caused by the product supply shortage, decision-makers could assist the disrupted
suppliers to recover their production for reattaining the product supply as soon as possible.
However, the cost for assisting suppliers’ recovery is limited, therefore, it is impossible to
assist all disrupted suppliers. A single or several critical suppliers need to be selected as
recovery suppliers in such a way that the recovery process of the entire supply network is
optimized [13]. Based on the supply network model and performance metrics proposed in
this study, the recovery supplier selection problem can be described as selecting a limited
number of suppliers from the disrupted ones, of which the recovery can increase both
performance metrics rA and rF of the post-disruption supply network most greatly.

Then, assumptions are presented. To simulate supplier disruptions, the node failure
model is adopted [17,31,32,38], which describes the disruption of a supplier node as
the total failure of it. Besides, this study is focused on the disruption management of
supply networks from a macro system level, the autonomous individual behaviors from a
micro level are not considered. Such simplification is common in similar systems such as
epidemiology or food webs. In some previous works from the field of supply networks,
researchers also neglect the micro individual behaviors to focus on a macro network-level
analysis of the supply network [22,23,39]. Thus, the following assumptions are made.

Assumption 1: Once a supplier is disrupted, it will lose all the production ability, which causes all
its product supply edges to be removed in the network.

Assumption 2: Spontaneous recovery behaviors of disrupted suppliers are neglected. Once a
supplier is disrupted, the production ability of it will not be recovered unless it is selected to be a
recovery supplier.

Assumption 3: Autonomous individual behaviors of both manufacturers and suppliers, such as
coordination, are neglected.

Assumption 4: When a disrupted supplier is selected as a recovery supplier, the production ability
of it will be fully recovered. The product supply edge of it will be rebuilt according to the structure
of the original network without disruptions.

Assumption 5: The cost for recovering each disrupted supplier is assumed to be equal. Thus, the
number of selected recovery suppliers is used to denote the limited recovery cost.

An example to illustrate the disruption and recovery of suppliers is given in Figure 3.
As shown in Figure 3a, supplier s1, s2, and s6 are disrupted in the network. The supply
edges of these disrupted suppliers are removed, which are marked in grey. In Figure 3b, s2
is selected from the three disrupted suppliers to be a recovery supplier. It can be observed
that the recovery of s2 is modeled by rebuilding its product supply edges. Comparing
Figure 3a,b, it can also be observed that different recovery supplier decisions can result
in very different results. For example, after the recovery of s2, rA and rF of the recovered
network are 6/7 and 2/3 respectively. If we select s1 as the recovery supplier, rA and rF of
the recovered network will be 5/7 and 1/3. This also indicates the necessity of investigating
the recovery supplier selection problem from the network structure view.
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4.1.2. Mathematical Model

For a residual supply network after the disruption of a supplier set D, denoted by G’,
the recovery supplier selection for network G’ means searching for a limited supplier subset
I from D, the recovery of which will increase both performance metrics rA and rF most
evidently. This is a typical combinatorial optimization problem, which can be formulated
as below:

MaxI H(I) (6)

H(I) = θ × rA
(
GI
′)+ (1− θ)× rF

(
GI
′) (7)

Subject to I ⊆ D (8)

|I| = KR (9)

where I denotes a recovery supplier subset selected from the disrupted supplier set D. |I|
is the number of suppliers in set I. KR is a pre-set integer, representing the limited recovery
cost. Constrain (8) means that recovery suppliers have to be selected from the disrupted
ones. Constrain (9) represents that the number of selected recovery suppliers is constrained
by limited recovery costs, namely the predefined integer KR. GI’ denotes the network G’
after the recovery of supplier set I. rA(GI’) and rF(GI’) denote the product supply availability
rate and manufacturer filling rate of the recovered supply network GI’ respectively. The
objective function (7) refers to a comprehensive performance evaluation of network GI’.
θ is a tunable parameter. When 0 ≤ θ < 0.5, the supply network performance generally
relies on the manufacturer filling rate. When 0.5 < θ ≤ 1, the supply network performance
mainly depends on the product availability rate. Since both product supply availability
rate and manufacturer filling rate are considered to be equally important in this study, θ is
set to be 0.5. The objective function (7) will be used for fitness evaluation in the following
EVNS algorithm.

4.2. Enhanced Variable Neighborhood Search

The recovery supplier selection is formulated as a combinatorial optimization problem
in Section 4.1. According to previous researches, there are two types of methods to solve
such a problem, exact and heuristic algorithms. In theory, exact algorithms can provide
an optimal solution together with the proof of its optimality. However, many practical
instances of combinatorial problems, arising in operations research and other fields, are
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too great for an exact solution to be found in an acceptable time. Meanwhile, heuristic
algorithms provide another option, since they are capable of finding approximate solutions
with high quality within a reasonable time.

VNS is a type of heuristic framework, which is known for its simplicity and flexibil-
ity [53]. The main idea behind VNS is that a local optimum in one neighborhood may
not be a local optimum in other neighborhoods. This allows the algorithm to perform
a powerful intensification of local searches. Therefore, a heuristic algorithm, EVNS is
designed based on the general VNS framework to solve the recovery supplier selection
problem. The following sections will present the details of it.

4.2.1. Solution Representation and Fitness Evaluation

In the proposed EVNS, each feasible solution of the recovery supplier selection prob-
lem is coded using string. Any feasible solution, namely a subset of selected recovery
suppliers, can be represented by a string I={I(1), I(2), . . . , I(KR)}, where I(i) denotes a
supplier selected from the disrupted supplier set D. KR is the pre-set integer, denoting the
limited number of selected recovery suppliers. An example is given in Figure 4 to illustrate
the string-based solution coding method. As shown in the figure, the suppliers marked by
light blue boxes represent the selected recovery suppliers. Using the string-based coding
method, the selected recovery suppliers are presented by {1, 4, 6}.
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To solve the recovery supplier selection problem, operations will be performed to find
the recovery supplier subset from the disrupted supplier set whose recovery will improve
both performance metrics of the post-disruption supply network most evidently. Hence,
each solution needs to be assessed by a fitness value. In this study, solutions with higher
fitness values are considered to be better than those with lower fitness values. According
to the optimized object, the fitness value of a given solution I can be calculated using the
objective Equation (7).

4.2.2. The General Framework of an EVNS

The proposed EVNS is composed of two main procedures: initialization and a two-
stage solution improvement. After the initialization of the solution (Section 4.2.3), EVNS
will iterate a two-stage solution improvement procedure until the terminal condition is
met, which contains a recovery degree-based local neighborhood search, an enhanced local
neighborhood search, and a secondary optimization-based neighborhood changing scheme.
The recovery degree-based local neighborhood search is composed of a recovery degree-
based local neighborhood structure determination (Section 4.2.4) and an exchanging-based
search (Section 4.2.6). The enhancing local neighborhood search is made up by enhancing
local neighborhood structure construction (Section 4.2.5) and an exchanging-based search
(Section 4.2.6). The secondary optimization-based neighborhood changing scheme decides
the alternation between the two local neighborhood searches. In each solution improvement
procedure, the recovery degree-based local search will be performed first. If an improved
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solution is found in the recovery degree-based local search, the enhancing local search
will be applied to optimize the improved solution further. Otherwise, the enhancing local
search will not be performed. The flowchart and main procedures of the EVNS are given in
Figure 5 and Algorithm 1. The key procedures will be presented in the following sections.

Algorithm 1. Enhanced variable neighborhood search (EVNS)

Input: G’, G, D, KR, NPOP, Ncandidate
Output: I

1. I← Initialization(G’, G, D, KR, NPOP)
2. while (end condition is not met)
3. %Recovery degree-based local search
4. Scandidate ← Recovery degree-based local neighborhood structure(G’, G, D, I, Ncandidate)
5. I*← Exchanging-based search(G’, G, I, Ncandidate, Scandidate)
6. if fitness(I*)>fitness(I)
7. I←I*
8. % Enhancing local search
9. Scandidate ← Enhancing local neighborhood structure(G’, G, D, I, Ncandidate)
10. I*← Exchange-based search(G’, G, I, Ncandidate, Scandidate)
11. if fitness(I*)>fitness(I)
12. I←I*
13. end
14. end
15. end

Return: I
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4.2.3. Initialization

Like most heuristic algorithms, the quality of an initial solution can affect both the
solution quality and the converging speed of the EVNS. Thus, a high-quality initial solution
is of great importance. To guarantee the high quality of an initial solution, a random search
will be performed. As shown in Algorithm 2, the initialization contains two steps. Firstly,
a random solution generation procedure is applied to obtain multiple feasible solutions
within the entire solution space. Then, the best one is selected from the randomly generated
solution set as the initial solution.

Algorithm 2. Initialization

Input: G’, G, D, KR, NPOP
Output: I

1. POP = Ø
2. while t < NPOP
3. It ← Select KR supplier nodes from D randomly
4. if It ∩ POP = Ø
5. POP = POP∪{It}
6. end
7. end
8. I← argmaxIt fitness(It)

Return: I

4.2.4. Recovery Degree-Based Local Neighborhood Structure

Local neighborhood search refers to a procedure to optimize the quality of a solution
by modifying part of it. The neighborhood structure can affect the performance of it
greatly. The recovery supplier selection problem concerned in this research means selecting
a limited supplier node subset I from the disrupted supplier node-set D, of which the
recovery will increase both performance metrics rA and rF the most greatly. This can be
treated as a variant of the critical node selection problem. A traditional neighborhood for
the critical node selection problem is defined by the conventional exchange operator which
swaps a node sx∈I with a node sy∈D\I [54]. For a given solution I, this neighborhood
yields KR×(|D|-KR) neighbor solutions. Examining the entire neighborhood can be quite
time-consuming.

To narrow the search scope and to concentrate on the optimization objective, the
recovery degree-based local neighborhood structure is constructed. The directed reason
for performance decreasing of a supply network is product supply stoppage. Due to the
disruption of partial suppliers, some product nodes lose all supply edges, leading to the
dysfunction of corresponding manufacturer nodes further. In a similar way, the perfor-
mance of a post-disruption supply network can also be improved by rebuilding product
supply edges for those product nodes without supply edges. Thus, when considering
exchanging supplier node sx belonging to I with supplier node sy belonging to D\I to
improve I, it seems more proper to select sy whose recovery can rebuild more supply edges
for those product nodes without supply edges in the post-disruption supply network G’.
Based on such a consideration, a recovery degree-based local neighborhood structure is
constructed. As presented in Algorithm 3, there are two main steps:

1. Calculate the recovery degree for each supplier node in set D/I. Recovery degree
is defined as the number of product nodes without supply edges in G’ connected
with a supplier node in the original network G. The expression of recovery degree is
presented using Equation (10). A simple example is presented in Figure 6 to illustrate
the calculation of the recovery degree. In the supply network presented in the figure,
there are three disrupted supplier nodes s1, s2, and s4. According to the definition of
a recovery degree, the recovery degrees of these nodes are 1, 2, and 1 respectively.
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Among the three disrupted supplier nodes, s2 has the highest value of recovery degree.
And the recovery of s2 can increase rA and rF of the entire network most evidently.

VR
(
sj
)
=
∣∣P′ ∩ ϕP

(
sj
)∣∣ (10)

where P’ refers to the product nodes without supply edges in network G’. ϕP(sj)
denotes the product nodes connected with sj in original network G. |P’∩ϕP(sj)|
represents the number of product nodes in set P’∩ϕP(sj).

2. Set the candidate supplier set Scandidate as an empty set. Iterate the roulette wheel-
based candidate supplier selection Ncandidate times to add the selected suppliers into
Scandidate. The possibility of a given supplier sj being selected in a round of roulette
wheel-based candidate supplier selection is presented using Equation (11).

probility
(
sj
)
=

VR
(
sj
)

∑
sv∈D/I/Scandidate

VR(sv)
(11)
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Algorithm 3. Recovery Degree-based Local Neighborhood Structure

Input: G’, G, D, I, Ncandidate
Output: Scandidate

1. for each sj∈D/I
2. calculate VR(sj) in G’ using Equation (10)
3. end
4. Scandidate = Ø
5. for t =1: Ncandidate
6. sadd← using roulette wheel selection to select a supplier from D/I/Scandidate
7. Scandidate = Scandidate∪{sadd}
8. end

Return: Scandidate

4.2.5. Enhancing Local Neighborhood Structure

Searching in a single local neighborhood structure may fall into local optimums. Thus,
this research also designs enhancing local neighborhood structure. Unlike a recovery
degree-based local neighborhood structure, the construction of an enhancing local neigh-
borhood structure considers searching the optimal recovery supplier nodes in the network
after recovering I. As presented in Algorithm 4, the construction of an enhancing local
neighborhood structure is composed of the following steps:

1. The candidate supplier set Scandidate is set as an empty set.
2. Calculate the recovery degree for each supplier node in set D/I/Scandidate in the

network. G’I∪Scandidate, and determine the node with the highest value of recovery
degree as sadd.
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3. Add sadd into set Scandidate. Iterate step. 2 Ncandidate times, until the set Scandidate contains
Ncandidate nodes.

Algorithm 4. Enhancing Local Neighborhood Structure

Input: G’, G, D, I, Ncandidate
Output: Scandidate

1. Scandidate= Ø
2. for t=1: Ncandidate
3. G’I∪Scandidate ← Recovering I∪Scandidate in G’
4. for each sj∈D/I/Scandidate

5. calculate VR(sj) in G’I∪Scandidate using Equation (10)
6. end
7. sadd ← argmaxsj∈D/I/Scandidate VR(sj)
8. Scandidate = Scandidate ∪ {sadd}
9. end

Return: Scandidate

4.2.6. Exchanging-Based Search

Sections 4.2.4 and 4.2.5 present the construction of two local neighborhood struc-
tures by finding a set of candidate suppliers Scandidate in D/I. This section will present the
searching strategy to generate candidate solutions by replacing part supplier nodes in I
with some in Scandidate. To improve the searching efficiency, an exchanging-based search
strategy is applied to generate the candidate solutions [54,55]. The main procedures of
an exchanging-based search are presented in Algorithm 5. This strategy can be divided
into two distinct phases. Firstly, the “nodes adding phase” adds the candidate recovery
supplier node-set Scandidate into the solution I to generate a new solution I*. Then, the
“nodes removing phase” is performed to remove a set of Ncandidate supplier nodes from I*,
which decreases the fitness value minimally. Figure 7 presents an example to illustrate the
“nodes adding phase” and “nodes removing phase”.

Algorithm 5. Exchanging-based Search

Input: G’, G, I, Ncandidate, Scandidate
Output: I*

1. % Nodes adding phase
2. I*=I ∪ Scandidate
3. % Node removing phase
4. for t = 1: Ncandidate
5. F= Ø
6. for each sj∈I*
7. F(sj)← calculate fitness(I*/{sj})
8. end
9. sremove←argmaxsj∈I* F(sj)
10. I*←I*/{sremove}
11. end

Return: I*
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5. Case Example

This section presents a case example to evaluate the proposed EVNS-based recovery
supplier selection method. Firstly, an empirical supply network is constructed. Then,
experiments based on the empirical network are conducted to verify the effectiveness of
the proposed method.

5.1. Empirical Supply Network

For the construction of an empirical supply network, product supply-demand data
for the automotive industry was collected from Gasgoo automobile supplier database.
Based on the database, users can query the suppliers by the supplied products or client
names. Thus, data describing supply-demand relations between 47 manufacturers and
5579 suppliers involving 27 types of automobile products were obtained from the database.

Base on the collected data, an empirical supply network is built. Basic characters
of the empirical supply network are presented in Table 1. It can be observed that the
number of manufacturers is much higher than suppliers. The main reason is that a whole
car is an extremely complex product, involving more than 5000 kinds of components. In
addition, outsourcing is common in the automobile industry. A manufacturer relies on
many suppliers for the assembly of whole cars. It is also found that there is an imbalance
between the number of product demand edges and the number of product supply edges.
The main reason is that manufacturers tend to adopt a multi-sourcing strategy to enhance
their ability to resist supplier disruptions. Thus, a product node can be connected by
multiple supplier nodes.

Table 1. Basic characters of the empirical supply network.

Type Subtype Number

Node
Manufacturer Nodes 47

Product Nodes 1269
Supplier Nodes 5579

Edge Product demand edge 1269
Product supply edge 27,436

Previous works indicate that the degree distribution of a supply network can affect its
robustness against disruption greatly [21,22]. Thus, the degree distribution of the empirical
supply network is analyzed specifically. Figure 8a,b presents the degree distribution of
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product nodes and supplier nodes respectively. It can be observed that both of them
can be fitted using a truncated power-law distribution [56]. Such highly skewed degree
distribution indicates that supply networks in the real world are uneven. A very small
number of entities occupy the central position in the network. Such results imply that
supply networks in the real world can be vulnerable to the disruption of those intensively
connected suppliers.
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5.2. Evaluation of EVNS-Based Recovery Supplier Selection Method

The EVNS-based recovery supplier selection method will be evaluated in this section.
Firstly, experiments are conducted for parameter tuning. Then, comparative experiments
are made to compare the proposed method with others. To validate the effectiveness of the
EVNS-based recovery supplier selection method further, the proposed two-stage solution
improvement procedure is also evaluated. To achieve statistically significant results, each
experiment was repeated 10 times. The final experimental results are calculated based on
the independent 10 experiments. All experiments were performed using MATLAB R2014a
(MathWorks, Natick, Massachusetts, USA) and run on a PC equipped with an Intel Core i7
and 16 GB of memory, running Windows 7.

5.2.1. Parameter Tuning

Like most heuristic algorithms, the performance of EVNS also relies on its parameters.
As shown in Algorithm 1, EVNS only has two parameters NPOP and Ncandidate. NPOP is set
to be 100. To tune parameter Ncandidate, we followed the common practice in the heuristic
literature by testing a limited number of parameter configurations on a specific instance as
follows. Firstly, the disruption scenario is set to be a random disruption of 3000 suppliers
and the number of recovery supplier KR is settled to be 10, namely this problem is used as
a specific instance to determine the value of Ncandidate. Then, the termination condition is
set to be 30 generations. Experiments under the different values of Ncandidate are conducted
to analyze the impact of Ncandidates upon the quality of optimal solutions and running time.

Figure 9 presents the experimental results. As shown in Figure 9a,b both the fitness
value of optimal solutions and running time increase with the increase of Ncandidates. It also
has been noticed that the increment of fitness between 0.1 × KR, 0.2 × KR is most obvious.
For ensuring both solution quality and time efficiency, Ncandidate is determined to be 0.2 × KR.

5.2.2. Comparative Experiments

To assess the EVNS-based recovery supplier selection method proposed in this re-
search, comparative experiments are conducted. For the purpose of comparison, two types
of recovery supplier selection methods are considered. The first type is network centrality-
based target recovery methods, including degree centrality-based target recovery method
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(DC-TR) [57] and betweenness centrality-based target recovery method (BC-TR) [58]. The
above methods use degree and betweenness centrality to rank the disrupted suppliers in
descending orders and select the top-KR suppliers as the recovery suppliers respectively.
The second type includes heuristic algorithm-based recovery supplier selection methods,
including Genetic Algorithm (GA) [59] and Greedy1 [60]. They are two general critical
node detection algorithms. In this study, these two algorithms are used to solve the recov-
ery supplier selection problem concerned in this research. The parameters of GA are set
according to reference [59]. To be fair, GA and EVNS were running on our platform within
the same maximal running time of 600 s.
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To analyze whether the proposed method can adapt to different disruption scenarios,
both random and target disruptions are taken into consideration. According to the previous
works [21,22], random disruptions are modeled as the random failures of supplier nodes.
Target disruptions are simulated using degree-based target failures of supplier nodes.

Since the number of recovery suppliers could impact the method performance, ex-
periments under various values of recovery ratio (fr) are also made. fr is defined as the
percentage of selected recovery suppliers to the number of the initial disrupted suppliers.
The calculation of the recovery ratio is presented using Equation (12).

fr =
KR

|D| (12)

where |D| represents the number of initial disrupted suppliers, KR represents the number
of recovery suppliers.

Experimental Result under Random Disruption Scenario

Figure 10 presents the experimental results under the random disruption of 3000
suppliers. Figure 10a,b show the comparisons of rA and rF recovery curves using different
supplier recovery methods. As shown in Figure 10a, along with the increasing of fr, all
the recovery supplier selection methods can improve rA more evidently. It can also be
observed that the recovery effect of the EVNS-based method is much better than others.
The experimental results presented in Figure 10b are similar to Figure 10a. It is also noticed
that the recovering speeds of both rA and rF tend to slow down with the increasing of fr.
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For a quantitative comparison of different recovery supplier selection methods, the
area under the rA recovery curve (AUCrA) and rF recovery curve (AUCrF) for each recovery
supplier selection method is calculated. Table 2 reports the average values, the maximal
values, and the minimum values of AUCrA and AUCrF of 10 repeated experiments. As
shown in the table, the EVNS-based method achieves the biggest value for all indicators.
Such results also validate the effectiveness of the EVNS-based recovery supplier selection
method.

Table 2. AUCrA and AUCrF comparison of different methods under the random disruption of 3000
suppliers.

AUCrA AUCrF

Aver Max Min Aver Max Min

EVNS 9.910 × 10−3 9.972 × 10−3 9.842 × 10−3 9.040 × 10−3 9.617 × 10−3 8.702 × 10−3

DC-TR 9.816 × 10−3 9.910 × 10−3 9.759 × 10−3 7.368 × 10−3 8.511 × 10−3 6.660 × 10−3

BC-TR 9.806 × 10−3 9.906 × 10−3 9.727 × 10−3 7.236 × 10−3 8.404 × 10−3 6.426 × 10−3

GA 9.856 × 10−3 9.941 × 10−3 9.786 × 10−3 8.445 × 10−3 9.362 × 10−3 8.021 × 10−3

Greedy1 9.846 × 10−3 9.911 × 10−3 9.779 × 10−3 8.283 × 10−3 9.064 × 10−3 7.851 × 10−3

Experimental Results under the Target Disruption Scenario

In anticipating random supplier disruptions, target supplier disruptions are also
considered in the comparative experiment. Figure 11 presents the experimental results
under the target disruption of 3000 suppliers. Figure 11a,b shows the rA and rF recovery
curve comparisons using different supplier recovery methods under the target disruption
of 3000 suppliers. The results presented in Figure 11 are similar to Figure 10. With the
increasing of fr, all the recovery supplier selection methods can improve both rA and rF
more evidently. The EVNS-based method outperforms others. Comparing Figure 10 with
Figure 11, it can be observed that target disruptions can induce much higher damage than
random disruptions. This is caused by the skewed degree distributions of the empirical
network. In the network, a very small number of suppliers provide many products to many
manufacturers, and the disruption of these important suppliers may cause a large-scale
product supply stoppage.

Table 3 also reports the average values, the maximal values, and the minimum values
of AUCrA and AUCrF in the 10 repeated experiments. As shown in the table, the EVNS-
based method is also better than the others with respect to all three indicators. Such a
result indicates that the proposed EVNS-based recovery supplier selection method can also
outperform other methods under the target disruption scenario.
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Table 3. AUCrA and AUCrF comparison of different methods under the target disruption of 3000
suppliers.

AUCrA AUCrF

Aver Max Min Aver Max Min

EVNS 8.711 × 10−3 8.772 × 10−3 8.690 × 10−3 3.513 × 10−3 4.043 × 10−3 3.128 × 10−3

DC-TR 8.532 × 10−3 8.569 × 10−3 8.508 × 10−3 2.189 × 10−3 2.383 × 10−3 1.872 × 10−3

BC-TR 8.419 × 10−3 8.456 × 10−3 8.380 × 10−3 1.726 × 10−3 1.936 × 10−3 1.362 × 10−3

GA 8.426 × 10−3 8.519 × 10−3 8.326 × 10−3 3.068 × 10−3 3.319 × 10−3 2.638 × 10−3

Greedy1 8.423 × 10−3 8.521 × 10−3 8.327 × 10−3 1.589 × 10−3 1.809 × 10−3 1.255 × 10−3

5.2.3. Evaluation of Two-Stage Solution Improvement

In the EVNS, a two-stage solution improvement procedure is proposed, which is com-
posed of a recovery degree-based local neighborhood search, enhancing local neighborhood
search, and secondary optimization-based neighborhood selection scheme.

To evaluate the proposed two-stage solution improvement method, experiments are
also conducted to compare the EVNS with three other algorithms, specifically RLNS, ELNS,
and EVNS0. In the RLNS, the algorithm only performs the recovery degree-based local
neighborhood search. As for ELNS, it will only use the enhancing local neighborhood
search to find optimal solutions. In EVNS0, the secondary optimization-based neighbor-
hood selection scheme in the two-stage solution improvement procedure is replaced by
random selection. Comparative experiments were performed on two instances, namely re-
covering 0.6% disrupted suppliers under a random and target disruption of 3000 suppliers
respectively. Each algorithm was run 10 times on each instance within the same maximum
running time of 60 s.

Figure 12 and Table 4 present the experimental results. Figure 12a,b shows the fitness
curve comparisons of the four algorithms under random and target disruption of 3000
suppliers respectively. It can be observed that the EVNS is capable of finding better
solutions within a shorter time in both Figure 12a,b. For each instance, the average fitness
value, the best fitness value, and the worst fitness value of the 10 trials achieved by each
algorithm are also presented in Table 4. It shows that EVNS attains the best results in
terms of three indicators for both instances. It can be induced that the proposed two-stage
solution improvement is able to improve algorithm performance, suggesting that the
EVNS-based recovery supplier selection method can efficiently find these critical disrupted
suppliers which are necessary to be recovered as soon as possible.
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Table 4. Optimal solution fitness comparison of EVNS, RLNS, ELNS, and EVNS0.

Random Disruption Target Disruption

faver fmax fmin faver fmax fmin

EVNS 1.8901 1.9054 1.8834 1.2943 1.3341 1.2104
RLNS 1.8454 1.8629 1.8203 1.1879 1.2616 1.1087
ELNS 1.8797 1.9039 1.8621 1.2704 1.2782 1.2561

EVNS0 1.8688 1.8842 1.8408 1.2819 1.3105 1.2522

5.3. Discussion of Experimental Results

Structural characters of the empirical supply network are investigated. The degree
distributions of it are highly skewed. One implication of such structural character is that
the network can retain its function in the presence of random supplier disruptions. On
the other hand, the disruption of hub suppliers with massive product supply edges may
damage the function of the overall network significantly.

Comparative experiments verify the effectiveness of the proposed EVNS-based re-
covery supplier selection method. It is found that the proposed EVNS-based method
outperforms other methods under both random and target disruption scenarios. Compar-
ing with target disruptions, the tolerance of random disruptions in the empirical supply
network is stronger. This is consistent with the skewed degree distribution. Additionally,
under both random and target disruption scenarios, it is observed that recovering very
few disrupted suppliers can alleviate the impacts caused by massive supplier disruptions
greatly. However, it is also found that along with the increase of recovery suppliers, the
recovering rate of both performance metrics also slow down. Thus, it is important to
determine a proper number of recovery suppliers in practice.

6. Conclusions
6.1. Contributions to Knowledge

To cope with the various, unavoidable and unpredictable supply network disruptions,
it is essential to design proper recovery strategies for a post-disruption supply network,
such as recovery supplier selection. Previous studies considered the recovery supplier
selection problem from the focal or dyad view [10–13], without the consideration of the
supply network structure. However, today’s supply networks can be huge and complex.
Disruption management needs to consider the supply network structure from a macro
level [31–33]. Thus, this study proposes a recovery supplier selection method from the
network structure level to fulfill the knowledge gap. The knowledge contributions are
concluded as below.
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First, to reflect the heterogeneous roles of manufacturers and suppliers and the various
product supply-demand relations between them, a tripartite graph-based supply network
model is designed. Unlike many previous studies [21–23,31], the proposed model is capable
of reflecting the heterogeneous roles of nodes in a supply network. Facilitated by the model,
two performance metrics are also proposed to describe product supply availability in the
network.

Second, the EVNS-based recovery supplier selection method is proposed. The recov-
ery supplier selection is formulated as a combinatorial problem. To solve the problem
effectively and efficiently, a variant of a VNS, the EVNS is proposed. In the algorithm,
a two-stage solution improvement is designed to improve the searching efficiency. The
effectiveness of it is validated using experiments.

Thirdly, contributions to supply network structural analysis are also made in this
work. An empirical supply network is built using the product supply-demand information
from the automobile industry. Structural characters of it are investigated. It is found that
the degree distributions are highly skewed. That is to say, hub suppliers with massive
edges are critically important to the overall network, the disruption of them can reduce
the function of the entire network evidently. In the meanwhile, the network can tolerate
random supplier disruptions.

6.2. Implications for Practice

The presented method provides a reactive approach for decision-makers, such as
supply chain managers or service companies, to build a resilient supply network. The
practical applicability of it to alleviate the damages caused by supplier disruptions has
already been verified in the case example. This subsection will discuss these practical
implications further.

Firstly, the decision-makers can use the proposed supply network model and perfor-
mance metrics to estimate the damage caused by potential single or supplier disruptions.
This can present a robustness assessment of supply networks.

Secondly, the decision-makers can use the proposed method to determine an appropri-
ate response to supplier disruptions. After the selection of recovery suppliers, immediate
responses, such as the activation of assistant actions, are required. However, it is also
noticed that the recovering speeds of both performance metrics are slowing down with the
increase of the number of recovery suppliers. Thus, it is important to determine a proper
number of recovery suppliers in practice.

Thirdly, this research also has implications for supplier evaluation and management
practices. Usually, companies focus on the internal qualities or capabilities when evaluating
suppliers. Structural analysis of the empirical supply network indicates individual suppli-
ers’ structural positions should be paid more attention. Some suppliers occupy the central
positions, disruption of them may impact the entire system greatly. For such suppliers,
decision-makers should monitor them more closely.

Finally, since the empirical supply network structure shows different robustness to
different disruption types, decision-makers may consider designing the supply network in
a way that it can retain functionality under various types of disruptions.

6.3. Limitations and Further Work

The following aspects of the research can be extended in the future.
Firstly, considering the visuality of manufacturers is often limited within their first-

tier suppliers, the proposed supply network model only considers the interdependence
between manufacturers and their directed suppliers. However, knowing the extended
network is important, so that appropriate risk mitigation plans can be prepared in advance.
We may use the link prediction method to solve the problem of losing visibility of extended
networks and expand this research into a multi-tier structure.

Secondly, the cascading failures are neglected in this work. In reality, the disruption
can cascade through the supply network, leading to significant economic loss. Since the
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supply model proposed in this study considers the role differences between manufacturers
and suppliers and differentiates the various product supply-demand relations connecting
them, the traditional cascading model for unipartite networks can not be applied in the
proposed model. We will try to develop appropriate cascading models, which can bring
the product supply-demand relations between suppliers and manufacturers together.
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