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Abstract: The requirements for new materials are increasing with each new application, which, in
most cases, means an enhancement in the complexity of the development process. Nanoporous
sol-gel-based materials, especially aerogels, are promising candidates for thermal superinsulation,
electrodes for energy conversion and storage or high-end adsorbers. Their synthesis and processing
route is complex, and the relationship between the material/processing parameters and the resulting
structural and physical properties is not straightforward. Using small-angle X-ray scattering (SAXS)
allows for fast structural characterization of both the gel and the resulting aerogel; combining these
results with the respective physical properties of the aerogels and using these data as inputs for
machine learning (ML) algorithms provide an approach to predict physical properties on the basis of a
structural dataset. This data-driven strategy may be a feasible approach to speed up the development
process. Thus, the study aimed to provide a proof of concept of ML-based model derivation from
material, process and SAXS data to predict physical properties such as the solid-phase thermal
conductivity (λs) of silica aerogels from a structural dataset. Here, we used different data subsets as
predictors according to different states of synthesis (wet and dry) to evaluate the model performance.

Keywords: sol-gel materials; SAXS; machine learning; material development

1. Introduction

Sol-gel-derived porous solids represent a class of materials with a high number of
synthesis and processing parameters. This class enables the provision of porous materials
and composites with a designed chemical composition and independent control of the
specific surface area, porosity and particle size, as well as excellent shaping capabilities via
templating, sedimentation or molding [1]. In contrast to other types of porous materials,
such as sinter metals, ceramics, foams or fiber felts, the sol-gel route allows for the synthesis
of (monolithic) nanoporous materials with extremely high porosities of up to 99%. With
these special properties, aerogels are unrivaled candidates for thermal superinsulation,
energy conversion and storage, catalyst supports and dielectric materials [2,3], to name
just a few target applications. Depending on the application, the requirement of different
properties and combinations thereof must be fulfilled, e.g., materials with high porosity
and small pore sizes for thermal insulation, but with sufficient mechanical stability for
easy handling.

Although the mechanical properties and solid-phase thermal conductivities (represent-
ing the main thermal transport path in ambient conditions) of aerogels are connected to the
porosity in a first-order approximation [4–6], these properties are also strongly controlled
by other characteristics, such as the branching of the gel backbone and its connectivity, as
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well as the necks between the subunits forming the gel skeleton, i.e., properties that are
hard to quantify experimentally. Within the material development process, analysis by
small-angle X-ray scattering (SAXS) provides fast characterization of structural quantities
such as specific surface area and branching (fractality) of the solid phase, as well as particle
and cluster size. Thus far, there is no unequivocal relationship between SAXS data and the
resulting physical properties.

Due to the large number of process parameters and the complexity of the resulting
structure, a new approach to speed up materials’ development for aerogels would be very
helpful in supporting the above-mentioned applications [7]. In this context, a variety of
machine learning (ML) algorithms, development environments and datasets arise to sup-
port material development processes. Applications of machine learning (ML) in materials
science include the following:

• Finding new materials or promising material combinations;
• Classifying materials or properties by recognizing patterns;
• Predicting structural or performance properties from data subsets.

The overall objective is to support “experience-” and “intuition-based” decision-
making or leave the “beaten path” with ML as a data-driven approach [8]. This has
huge potential to shorten material development processes significantly. In particular,
the prediction of a material structure from synthesis and processing parameters and the
relationship between its mechanical/thermal structure and the resulting performance are
promising fields of ML application. Oftentimes, analytical relationships cannot be applied
due to the large number and complexity of influencing factors, e.g. on materials’ synthesis
and processing, on the resulting physical properties, etc. The challenge, therefore, is to
fit or interpret the results of these characterization methods in terms of their structure–
process–performance relationship. Here, ML can make a significant contribution [9] and
further the development of nanoporous materials by digitalization, thus confirming the
statement by Schmidt et al. in 2019, “One of the most exciting tools that have entered the
material science toolbox is machine learning” [10].

That the combination of SAXS with ML approaches can lead to relevant information
was shown inter alia by Roth et al. [11], who analyzed a solution cast gradient consisting
of colloidal gold nanoparticles on top of a silicon substrate. A widely evolved approach
with respect to shape classification and molecular mass determination of biomolecules was
investigated by Franke et al. [12], who demonstrated the great potential of SAXS with ML.
Unfortunately, such large datasets are not available for SAXS data with respect to porous
sol-gel materials. However, this publication may be a starting point improving the material
development process in the sol-gel system using machine learning.

2. Sol-Gel Materials: Synthesis and Characterization
2.1. Synthesis of Sol-Gel Materials

For the investigation and proof of concept of combining sol-gel materials with machine
learning for material development, a series of silica aerogels were chosen as the model
system. The silica aerogels were synthesized using a 2-step process following the procedure
described by Scherer et al. [13]. The raw materials used were tetraethoxysilane (TEOS)
as a silica source, ethanol as a solvent, high-purity water for hydrolysis and hydrochloric
acid and ammonia solution to adjust the pH. The three synthesis parameters used were
the target density, ρtarget (assuming that all silane in the liquid volume was converted to
SiO2), the molar ratio of water to TEOS, xHT, and the (calculated) pH, assuming that the
whole solution was water. Gelling and aging were performed in airtight vessels at 50 ◦C
for 24 h overall. Subsequent washing with ethanol replaced the liquid in the pores prior to
supercritical drying (SCD) with CO2.

2.2. Structural, Mechanical and Thermal Analysis of the Materials

In addition to the density of the (dry) aerogels, the structural properties of the gels
and the aerogels were determined using small-angle X-ray scattering (SAXS) with a SAXS-



Processes 2021, 9, 672 3 of 12

point 1.0 instrument from Anton Paar using Cu Kα radiation (wavelength 1.54 Å) at two
sample detector distances of 109 and 562 mm. Analysis was performed on wet gels and
the respective aerogels derived by supercritical drying (SCD). Thus, the structural changes
between the wet and dry versions reflect the impact of the drying process on the structural
characteristics. For the measurements, the wet gels were placed into a sealed cell with
polyimide windows and an excess of ethanol to avoid drying. The SCD-dried aerogels
were prepared as thin slices and placed in a solid sample holder. Prior to measurement,
the dry silica aerogels were degassed for 8 h at 1 mbar and 110 ◦C according to the rec-
ommendations given by Scherdel et al. [14]. The scattering intensity was normalized to
the mass-specific scattering cross-section m−1·dσ/dΩ in units of cm2 g−1 sr−1, using a
glassy carbon reference with a well-known scattering cross-section as the secondary stan-
dard. Figure 1 shows a typical scattering curve for the investigated silica aerogels. Three
regions with different slopes in the double-logarithmic plot of the differential scattering
cross-section m−1·dσ/dΩ vs. the scattering vector, q, can be identified; the q-values of
the intersections between the different slopes are related to the cluster, dcluster, and the
particle size, dparticle [15]. As the conversion factor to the scattering entity size, d, the
relation d = π/q was applied [16]. The fractal dimension, df, in the power law dependence
(~q−df) [17] is a measure of the mutual arrangement of the primary particles in a cluster.
Using the Porod regime (~q−4), the specific surface area, SSAXS, can be calculated [18].
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Figure 1. Typical scattering curve of a supercritical drying (SCD)-dried silica aerogel. Three regions
with different slopes (i.e., power law dependence) can be identified. According to the aerogel scheme
on top, the intersections are related to cluster (dcluster) and particle size (dparticle), respectively.

The solid-phase thermal conductivity of the silica aerogels (λs) was determined using
the transient hot-wire method [19], measured under vacuum at 0.3 mbar.
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3. Machine Learning in Material Development
3.1. Machine Learning Meta Models

As introduced in Section 1, machine learning is already applied to various specific
topics in computational materials science. General boundary conditions must be fulfilled to
enable the set-up of machine learning algorithms. Ramprasad et al. [8] named two distinct
steps for all data-driven approaches to perform quantitative predictions:

1. Numerical representation of inputs (e.g., synthesis parameters and characteriza-
tion results);

2. Establishing the mapping/learning between inputs and target properties (e.g., me-
chanical/thermal properties).

These very general steps for machine learning contain some challenges, which need
to be considered to deploy an executable algorithm. In particular, the initial numerical
description with an ontology that is as general as possible for the research field and
the description of workflows, e.g., for synthesis processes, require the greatest effort
within the well-established Cross Industry Standard Process for Data Mining (CRISP-DM)
model [20] [21]. This meta-model is somewhat of a standard to handle machine learning
or data mining problems in a systematic way. Figure 2 shows the model adopted for the
research field of computational materials.
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Figure 2. Adopted Cross Industry Standard Process for Data Mining (CRISP-DM) model based
on [14].

In terms of the “right” modeling, the selection and adaption of an appropriate al-
gorithm must be conducted systematically. Doan and Kalita proposed a meta-learning
model for regression problems using supervised learning [22]. This model was modified
according to our approach for sol-gel materials to predict their thermal and structural
properties. Figure 3 shows the adopted meta-model for algorithm selection. Based on an
initial dataset, the relevant data were filtered to gain a training example (data-subset). We
used the MATLAB regression learner tool to evaluate a huge set of potential ML models.
Meta-knowledge about the common suitability of the model approaches helped to reduce
the number of model approaches that can be considered for our research. The supervised
learning procedure resulted in a ranking of various models. Here, the root mean square
error (RMSE) represented the performance indicator of the ML model.
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Figure 3. Adopted meta-model following Doan, T. and Kalita, J. [19].

New material discovery and material design for optimal structure–property relation-
ships are just two areas of application for ML techniques, as conventional methodologies
are highly iterative and multidimensional [23,24]. The presented approach in this contribu-
tion utilizes synthesis, drying parameters and structural SAXS data from wet and/or dry
gels to train ML models.

3.2. Machine Learning in Sol-Gel Processes

The previous sections presented the principle of aerogel synthesis as well as the
determination of SAXS data for the wet gels and the dried aerogels. The approach yielded
different datasets, such as synthesis parameters and structural data from SAXS, which may
be used to predict physical properties such as the solid-phase thermal conductivity (λs)
via machine learning. In Figure 4, the process layer shows the sol-gel process steps and
the created data, beginning with the synthesis parameters. SAXS provided the structural
characteristics of the wet gels and the aerogels. After supercritical drying, the resulting
aerogels were additionally characterized with respect to their thermal properties (solid-
phase thermal conductivity, λs).

The application of ML techniques uses four strategies, which imply different progress
in material processing:

I. Synthesis parameters;
II. Synthesis parameters and wet gel SAXS data;
III. Dry gel SAXS data;
IV. Synthesis parameters and dry gel SAXS data.

We investigated relevant ML algorithms that might fit this regression problem, with a
dataset of n = 9 for the proof of concept. Regarding small datasets, Schmidt et al. stated [10]
that it is also possible to use ML as a simple fitting procedure for low-dimensional data
such as ours for the presented proof-of-concept. Table 1 illustrates the ML strategies with
the used predictors as well as the responses.
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Table 1. Predictors and responses according to the applied machine learning (ML) strategies.

ML Strategy Strategy Description Predictor Response

I Synthesis parameters ρtarget, pH, xHT λs

II Synthesis parameters and
wet gel SAXS data

ρtarget, pH, xHT df,wet,
dCluster,wet

λs

III Dry gel SAXS data SSAXS,df, dCluster λs

IV Synthesis parameters and
dry gel SAXS data

ρtarget, pH, xHT, SSAXS,
df, dCluster

λs

The choice of the different ML strategies (S I–S IV) was oriented to the material
development process. The earlier we can apply valid ML models to predict the resulting
properties (here, solid thermal conductivity, λs), the more beneficial it is for streamlining
the process. Hence, S I tends to predict the λs from just the synthesis parameter of the
material. By using SAXS as an intermediate characterization method of the wet gel, S II
considers these predictors. After the (critical) drying process, SAXS is also applied to the
dry gel. In S III, SSAXS, df and dCluster as the resulting SAXS data are the basis of ML model
training. S IV takes the synthesis parameter as well as the dry SAXS data into account to
predict the λs. The following section presents and discusses the results gathered from the
SAXS characterization of the wet and dry gels and the derivation of the ML models with
respect to the described strategies.

4. Results and Discussion
4.1. Fast Structural Characterization—Results

After the sol-gel process, the wet gels were characterized using SAXS (Figure 5). The
strong incoherent background of the ethanol superimposing the Porod regime allowed only
for determination of the cluster size and fractal dimension of the wet gels. The data derived
from SAXS are summarized in Table 2 along with the respective synthesis parameters of
the wet gels.
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Table 2. Synthesis parameters of the silica gels investigated along with the small-angle X-ray
scattering (SAXS) data derived on the wet gels prior to supercritical drying.

#
Synthesis Parameter SAXS Wet Gels

ρtarget

(kgm−3)
pH xHT df,wet

dCluster,wet
(nm)

A 120 11.0 2.2 2.18 10.3
B 180 11.0 2.2 2.11 7.0
C 120 12.6 2.2 2.25 9.4
D 180 12.6 2.2 2.14 6.2
E 120 11.0 3.2 2.22 10.3
F 180 11.0 3.2 2.12 6.9
G 120 12.6 3.2 2.16 8.6
H 180 12.6 3.2 2.11 5.8
I 150 11.8 2.7 2.14 7.8

After supercritical drying, the aerogel samples were characterized with respect to their
structural and thermal properties. The scattering curves of aerogels A to I on an absolute
scale are shown in Figure 6. The data of the SCD-dried silica aerogels are summarized in
Table 3.

Assuming that all silane is converted to SiO2 and that the sample volume stays
constant during processing, the bulk density of the aerogels should have been similar to
the target density of the synthesis. However, as the bulk density reached values of up to
708 kg/m3 (at ρtarget = 120 kg/m3), a big change during processing was obvious and was
mainly caused by a strong shrinkage during SCD. Another parameter that changed strongly
with SCD was the fractal dimension df, which was similar for all wet gels characterized
(df ≈ 2.16) but varied to a large extent for the respective aerogels (2.17 to 2.90). This finding
shows, exemplarily, why a straightforward interpretation of porous sol-gel systems may
be challenging. In our case, the correlation between the bulk density and the resulting
thermal property was R2 = 0.966 (see Figure 7), and it can be determined for the given type
of aerogel with little effort when the solid specimen is geometrically defined.
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Table 3. Bulk density, ρ, of the SCD-dried silica aerogels along with structural, mechanical and
thermal properties.

# ρ

(kgm-3)
SSAXS

(m2g−1) df
dCluster

(nm)
λs

(10−3 W(mK)−1)

A 708 1384 2.90 8.3 73.2
B 586 1693 2.72 5.6 68.8
C 260 1752 2.37 9.2 17.8
D 310 1575 2.31 6.0 22.1
E 346 1320 2.57 9.2 31.5
F 408 1607 2.49 6.5 41.4
G 206 1525 2.30 8.3 12.8
H 267 1343 2.17 6.0 20.6
I 708 1384 2.90 8.3 73.2

Oftentimes, for other sol-gel materials, the bulk density is difficult to evaluate correctly,
e.g., due to the irregular shape of the synthesized specimen (aerogel granules, powder,
small specimen in early stage of material development, etc.). Hence, intermediate char-
acterization, e.g., by SAXS in combination with ML, can be a feasible approach to gain
(predictive) models from these data combined with synthesis parameters. For aerogels in
general, the total thermal conductivity in ambient conditions is often the application-related
target. In contrast to the type of silica aerogels used in this study, the thermal conductivity
in ambient conditions may contain significant contributions from gaseous and radiative
heat transfer. In this case, density will only be a secondary parameter. Furthermore, for
potential applications, physical properties such as thermal conductivity are more rele-
vant, even if there are first-order correlations with structural properties. Thus, a heuristic
approach such as machine learning seems to be inviting.
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4.2. Machine Learning Results

As mentioned in Section 3, we applied four different ML strategies to derive models
to predict the physical properties of the aerogels without using the bulk density (ρ). The
assigned ML problem belongs to the class of supervised regression learning, as the λs
should be forecasted. Based on the CRISP-DM circle and the meta-learning model of Doan
and Kalita [20], we created data subsets and applied the most appropriate algorithm(s) to
retrieve the relevant responses from the data. The models were ranked according to their
overall quality using the RMSE indicator for evaluating the model performance with the
following:

RMSE =
√

1/n (yi − oi)2, (1)

where n is the number of samples, yi is the i-th predicted value and oi is the i-th observed
value. The sample number (n = 9) was split. Six datasets were used for the model training
and three for the model validation. We applied the data for linear regression (LR) and
Gaussian process regression (GPR) ML models, which are “classical” regression models
regarding this problem formulation of (multi-variate) regression [22,23]. Linear regression
is the simplest model to predict an independent variable (Y) from a single or multiple
dependent variable(s) (x), defined by

Y = α + β·x (2)

for linear and
Y = α + β1 x1 + b2 x2 + . . . + bn xn (3)

for multiple linear regression.
GPR, as another promising ML model, tends to specify distributions over functions

without having to commit to a specific functional form [25]. It is also a powerful tool for
small datasets [26]. GPR is a Bayesian approach, which derives a probability distribution
over all possible values. The prior probabilities at parameter w, p(w) are relocated on the
basis of the observed (training) data according to the Bayes rule:

p(w|y,X) = (p(y|X,w)·p(w))/(p(y|X)), (4)
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where p(w|y,X) represents the new distribution. The information of both, the prior dis-
tribution and the dataset is represented in this new distribution. Rasmussen provided a
detailed explanation of the GPR algorithm in [27].

Figure 8 shows the results comprehensively. The RMSE values for the linear regression
(LR) and Gaussian process regression (GPR) models predicting the response parameter λs
are illustrated for each ML strategy, S I to S IV, for the trained and validated models.

Figure 8. Root mean square error (RMSE) values of linear regression (LR) and Gaussian process regression (GPR) ML models
for each strategy (see Table 1) and the response parameter λs. Comprehensive results of the trained and validated models.

The trained models had different performance levels depending on the chosen data
input, which depended on the ML strategy. For S I and S II, the model quality was not
appropriate for LR or GPR considering the RMSE of both the trained and validated models.
This is an indication that the supercritical drying process strongly changed the structural
and, thus, physical properties, as the synthesis parameters and SAXS data of the wet gels
showed a low correlation to the response λs. In other words, the structures generated (and
determined by SAXS) from the wet gel were inadequate to predict the structural changes
caused by SCD and, thus, failed to predict the λs. After supercritical drying (S III and S
IV), the LR model had an RMSE of around 2 for the training and 10 for predicting the
thermal conductivity λs (model validation). In relation to the scale of the training and
test data, a validated model using the indicated RMSE as a measure of the overall model
performance is promising for the LR approach, despite the small set of validation data. The
model coefficients βi (see Equation (2)) are shown in Table 4, where α = −487.9. Despite
the small dataset used of n = 9, it can be seen that the ML-based models for predicting λs
were strongly improved by the SAXS data, as they represented the thermal properties of
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the aerogel. Therefore, in addition to the good correlation with bulk density, the SAXS data
of aerogels also allowed for a good estimation of λs. It can also be stated that only using
synthesis parameters did not lead to a sufficient prediction model. In particular, this also
means that the process of supercritical drying had a significant impact on the structural
thermal properties of the resulting sol-gel materials.

Table 4. Model coefficients, β, for the linear regression model for Strategy IV.

βi Value

df 146.000
xHT 14.270
pH 11.796

SSAXS 0.025
ρtarget −0.047

dCluster −6.365

Generally, a larger dataset leads to greater statistical power for pattern recognition,
but numerous studies performed using a small dataset have also shown a high accuracy
(in this case, for brain disorders) [28]. Hence, we wanted to show a proof of concept using
the intermediate SAXS data of dried gels and synthesis parameter data as an alternative to
the bulk density to predict the response parameter λs of our material system.

Based on the results, we can accelerate the material development and characterization
process in cases where the bulk density cannot be evaluated easily and in such a way that
extensive tests for the direct determination of λs can be avoided if the ML strategies S III
and S IV predict unsatisfactory values of λs. At the same time, SAXS characterization is
a high-throughput method, which enables targeted development of sol-gel materials by
combining SAXS and ML. Non-suitable material combinations in terms of the required λs
can be left out to narrow the search space.

5. Conclusions and Further Research

The contribution shows an accelerated data-driven approach for the targeted devel-
opment of sol-gel materials. Based on the fast, high-throughput SAXS characterization of
sol-gel-based nanostructured materials, the trained machine learning models enhanced
the development process by using the SAXS data to predict, e.g., thermal properties. The
results indicate that the synthesis parameter alone are not sufficient for predictions, as gels
change too much during processing (e.g., SCD). The same applies for wet gel characteriza-
tion with SAXS. However, it can be concluded that the aerogel SAXS data in combination
with trained GPR models have a good quality and, thus, enable the prediction of physical
properties such as λs. To the best of the authors’ knowledge, we have presented, for the
first time, a synergy of SAXS and machine learning in a porous sol-gel system. Further
research should aim to feed the models with larger datasets to enhance the validation and
to transfer the approach to other material systems and targeted developments.
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